Spaces:
Runtime error
Runtime error
import sklearn | |
import gradio as gr | |
import joblib | |
import pandas as pd | |
import datasets | |
import requests | |
import json | |
import dateutil.parser as dp | |
import pandas as pd | |
from huggingface_hub import hf_hub_url, cached_download | |
import time | |
def get_row(): | |
response_tomtom = requests.get( | |
'https://api.tomtom.com/traffic/services/4/flowSegmentData/absolute/10/json?key=azGiX8jKKGxCxdsF1OzvbbWGPDuInWez&point=59.39575,17.98343') | |
json_response_tomtom = json.loads(response_tomtom.text) # get json response | |
currentSpeed = json_response_tomtom["flowSegmentData"]["currentSpeed"] | |
freeFlowSpeed = json_response_tomtom["flowSegmentData"]["freeFlowSpeed"] | |
congestionLevel = currentSpeed/freeFlowSpeed | |
confidence = json_response_tomtom["flowSegmentData"]["confidence"] # Reliability of the traffic data, by percentage | |
# Get weather data from SMHI, updated hourly | |
response_smhi = requests.get( | |
'https://opendata-download-metanalys.smhi.se/api/category/mesan1g/version/2/geotype/point/lon/17.983/lat/59.3957/data.json') | |
json_response_smhi = json.loads(response_smhi.text) | |
# weather data manual https://opendata.smhi.se/apidocs/metanalys/parameters.html#parameter-wsymb | |
referenceTime = dp.parse(json_response_smhi["referenceTime"]).timestamp() | |
t = json_response_smhi["timeSeries"][0]["parameters"][0]["values"][0] # Temperature | |
ws = json_response_smhi["timeSeries"][0]["parameters"][4]["values"][0] # Wind Speed | |
prec1h = json_response_smhi["timeSeries"][0]["parameters"][6]["values"][0] # Precipation last hour | |
fesn1h = json_response_smhi["timeSeries"][0]["parameters"][8]["values"][0] # Snow precipation last hour | |
vis = json_response_smhi["timeSeries"][0]["parameters"][9]["values"][0] # Visibility | |
# Use current time | |
referenceTime = time.time() | |
row ={"referenceTime": referenceTime, | |
"temperature": t, | |
"wind speed": ws, | |
"precipation last hour": prec1h, | |
"snow precipation last hour": fesn1h, | |
"visibility": vis, | |
"confidence of data": confidence} | |
row = pd.DataFrame([row], columns=row.keys()) | |
print(row) | |
row.dropna(axis=0, inplace=True) | |
return row | |
model = joblib.load(cached_download( | |
hf_hub_url("tilos/Traffic_Prediction", "traffic_model.pkl") | |
)) | |
def infer(input_dataframe): | |
return pd.DataFrame(model.predict(input_dataframe)).clip(0, 1) | |
title = "Stoclholm Highway E4 Real Time Traffic Prediction" | |
description = "Stockholm E4 (59°23'44.7"" N 17°59'00.4""E) highway real time traffic prediction" | |
# inputs = [gr.Dataframe(row_count = (1, "fixed"), col_count=(7,"fixed"), | |
# headers=["referenceTime", "t", "ws", "prec1h", "fesn1h", "vis", "confidence"], | |
# # datatype=["timestamp", "float", "float", "float", "float", "float"], | |
# label="Input Data", interactive=1)] | |
# outputs = [gr.Dataframe(row_count = (1, "fixed"), col_count=(1, "fixed"), label="Predictions", headers=["Congestion Level"])] | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
inputs = gr.Dataframe(row_count = (1, "fixed"), col_count=(7,"fixed"), | |
headers=["referenceTime", "t", "ws", "prec1h", "fesn1h", "vis", "confidence"], | |
# datatype=["timestamp", "float", "float", "float", "float", "float"], | |
label="Input Data", interactive=1) | |
with gr.Column(): | |
outputs = gr.Dataframe(row_count = (1, "fixed"), col_count=(1, "fixed"), label="Predictions", headers=["Congestion Level"]) | |
with gr.Row(): | |
btn_sub = gr.Button(value="Submit") | |
btn_sub.click(infer, inputs = inputs, outputs = outputs) | |
#examples = gr.Examples(fn = infer, examples=[get_row()],inputs=inputs,outputs=outputs ,cache_examples=True) | |
examples = gr.Examples(fn = infer, examples=[get_row()] ,inputs=inputs, outputs=outputs, cache_examples=False) | |
demo.load(get_row, inputs = None, outputs = [inputs], every=10) | |
# interface = gr.Interface(fn = infer, inputs = inputs, outputs = outputs, title=title, description=description, examples=[get_row()], cache_examples=False) | |
# interface.launch() | |
if __name__ == "__main__": | |
demo.queue().launch() |