tilos's picture
Update app.py
7772a1c
raw
history blame
2.42 kB
import sklearn
import gradio as gr
import joblib
import pandas as pd
import datasets
import requests
import json
import dateutil.parser as dp
title = "Stoclholm Highway E4 Real Time Traffic Prediction"
description = "Stockholm E4 (59°23'44.7"" N 17°59'00.4""E) highway real time traffic prediction, updated in every hour"
inputs = [gr.Dataframe(row_count = (1, "fixed"), col_count=(7,"fixed"), label="Input Data", interactive=1)]
outputs = [gr.Dataframe(row_count = (1, "fixed"), col_count=(1, "fixed"), label="Predictions", headers=["Congestion Level"])]
model = joblib.load("./traffic_model.pkl")
def infer(input_dataframe):
return pd.DataFrame(model.predict(input_dataframe))
response_tomtom = requests.get(
'https://api.tomtom.com/traffic/services/4/flowSegmentData/absolute/10/json?key=azGiX8jKKGxCxdsF1OzvbbWGPDuInWez&point=59.39575,17.98343')
json_response_tomtom = json.loads(response_tomtom.text) # get json response
currentSpeed = json_response_tomtom["flowSegmentData"]["currentSpeed"]
freeFlowSpeed = json_response_tomtom["flowSegmentData"]["freeFlowSpeed"]
congestionLevel = currentSpeed/freeFlowSpeed
confidence = json_response_tomtom["flowSegmentData"]["confidence"] # Reliability of the traffic data, by percentage
# Get weather data from SMHI, updated hourly
response_smhi = requests.get(
'https://opendata-download-metanalys.smhi.se/api/category/mesan1g/version/2/geotype/point/lon/17.983/lat/59.3957/data.json')
json_response_smhi = json.loads(response_smhi.text)
# weather data manual https://opendata.smhi.se/apidocs/metanalys/parameters.html#parameter-wsymb
referenceTime = dp.parse(json_response_smhi["referenceTime"]).timestamp()
t = json_response_smhi["timeSeries"][0]["parameters"][0]["values"][0] # Temperature
ws = json_response_smhi["timeSeries"][0]["parameters"][4]["values"][0] # Wind Speed
prec1h = json_response_smhi["timeSeries"][0]["parameters"][6]["values"][0] # Precipation last hour
fesn1h = json_response_smhi["timeSeries"][0]["parameters"][8]["values"][0] # Snow precipation last hour
vis = json_response_smhi["timeSeries"][0]["parameters"][9]["values"][0] # Visibility
row = [referenceTime, t, ws, prec1h, fesn1h, vis, confidence, congestionLevel]
gr.Interface(fn = infer, inputs = inputs, outputs = outputs, title=title, description=description, examples=[row]).launch()