tilos's picture
Update app.py
c6c72d9
raw
history blame
5.14 kB
import sklearn
import gradio as gr
import joblib
import pandas as pd
import datasets
import requests
import json
import dateutil.parser as dp
import pandas as pd
from huggingface_hub import hf_hub_url, cached_download
import time
from datetime import datetime
def get_row():
response_tomtom = requests.get(
'https://api.tomtom.com/traffic/services/4/flowSegmentData/absolute/10/json?key=azGiX8jKKGxCxdsF1OzvbbWGPDuInWez&point=59.39575,17.98343')
json_response_tomtom = json.loads(response_tomtom.text) # get json response
currentSpeed = json_response_tomtom["flowSegmentData"]["currentSpeed"]
freeFlowSpeed = json_response_tomtom["flowSegmentData"]["freeFlowSpeed"]
congestionLevel = currentSpeed/freeFlowSpeed
confidence = json_response_tomtom["flowSegmentData"]["confidence"] # Reliability of the traffic data, by percentage
# Get weather data from SMHI, updated hourly
response_smhi = requests.get(
'https://opendata-download-metanalys.smhi.se/api/category/mesan1g/version/2/geotype/point/lon/17.983/lat/59.3957/data.json')
json_response_smhi = json.loads(response_smhi.text)
# weather data manual https://opendata.smhi.se/apidocs/metanalys/parameters.html#parameter-wsymb
# referenceTime = dp.parse(json_response_smhi["referenceTime"]).timestamp()
t = json_response_smhi["timeSeries"][0]["parameters"][0]["values"][0] # Temperature
ws = json_response_smhi["timeSeries"][0]["parameters"][4]["values"][0] # Wind Speed
prec1h = json_response_smhi["timeSeries"][0]["parameters"][6]["values"][0] # Precipation last hour
fesn1h = json_response_smhi["timeSeries"][0]["parameters"][8]["values"][0] # Snow precipation last hour
vis = json_response_smhi["timeSeries"][0]["parameters"][9]["values"][0] # Visibility
# Use current time
referenceTime = datetime.fromtimestamp(time.time())
row ={"referenceTime": referenceTime,
"temperature": t,
"wind speed": ws,
"precipation last hour": prec1h,
"snow precipation last hour": fesn1h,
"visibility": vis,
"confidence of data": confidence}
row = pd.DataFrame([row], columns=row.keys())
print(row)
row.dropna(axis=0, inplace=True)
return row
model = joblib.load(cached_download(
hf_hub_url("tilos/Traffic_Prediction", "traffic_model.pkl")
))
def infer(input_dataframe):
serie = input_dataframe["referenceTime"]
ts = dp.parse(serie.iloc[0]).timestamp()
input_dataframe["referenceTime"] = ts
res = pd.DataFrame(model.predict(input_dataframe)).clip(0, 1).iloc[0, 0]
if res > 0.8:
status = "Smooth Traffic on E4"
elif res > 0.5:
status = "Slight congestion on E4"
else:
status = "Total congestion on E4"
return pd.Dataframe({'Freeflow Level':[res], 'Status': [status]})
title = "Stoclholm Highway E4 Real Time Traffic Prediction"
description = "Stockholm E4 (59°23'44.7"" N 17°59'00.4""E) highway real time traffic prediction"
# inputs = [gr.Dataframe(row_count = (1, "fixed"), col_count=(7,"fixed"),
# headers=["referenceTime", "t", "ws", "prec1h", "fesn1h", "vis", "confidence"],
# # datatype=["timestamp", "float", "float", "float", "float", "float"],
# label="Input Data", interactive=1)]
# outputs = [gr.Dataframe(row_count = (1, "fixed"), col_count=(1, "fixed"), label="Predictions", headers=["Congestion Level"])]
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
inputs = gr.Dataframe(row_count = (1, "fixed"), col_count=(7,"fixed"),
headers=["referenceTime", "t", "ws", "prec1h", "fesn1h", "vis", "confidence"],
# datatype=["timestamp", "float", "float", "float", "float", "float"],
label="Input Data", interactive=1)
with gr.Column():
outputs = gr.Dataframe(row_count = (1, "fixed"), col_count=(2, "fixed"), label="Predictions", headers=["Freeflow Level", "Status"])
with gr.Row():
btn_sub = gr.Button(value="Submit")
with gr.Row():
btn_ref = gr.Button(value="Get real-time data")
btn_sub.click(infer, inputs = inputs, outputs = outputs)
btn_ref.click(get_row, inputs = None, outputs = inputs)
#examples = gr.Examples(fn = infer, examples=[get_row()],inputs=inputs,outputs=outputs ,cache_examples=True)
examples = gr.Examples(fn = infer, examples=[get_row()] ,inputs=inputs, outputs=outputs, cache_examples=False)
# demo.load(get_row, inputs = None, outputs = [inputs], every=10)
demo.load(get_row, inputs = None, outputs = [inputs])
# interface = gr.Interface(fn = infer, inputs = inputs, outputs = outputs, title=title, description=description, examples=[get_row()], cache_examples=False)
# interface.launch()
if __name__ == "__main__":
demo.queue().launch()