zjasper666 commited on
Commit
8655a4b
1 Parent(s): 5e1c428

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. .github/PULL_REQUEST_TEMPLATE.md +17 -0
  3. .github/workflows/python-package.yml +30 -0
  4. .gitignore +36 -0
  5. .pylintrc +449 -0
  6. LICENSE +201 -0
  7. README.md +354 -7
  8. assets/demo_narrow.gif +3 -0
  9. assets/qa_browser.png +0 -0
  10. assets/screenshot_cli.png +0 -0
  11. assets/screenshot_gui.png +0 -0
  12. assets/server_arch.png +0 -0
  13. assets/vicuna_logo.jpeg +0 -0
  14. docker/Dockerfile +7 -0
  15. docker/docker-compose.yml +36 -0
  16. docs/arena.md +48 -0
  17. docs/awq.md +71 -0
  18. docs/commands/conv_release.md +38 -0
  19. docs/commands/data_cleaning.md +19 -0
  20. docs/commands/leaderboard.md +37 -0
  21. docs/commands/local_cluster.md +38 -0
  22. docs/commands/pypi.md +11 -0
  23. docs/commands/webserver.md +94 -0
  24. docs/dashinfer_integration.md +23 -0
  25. docs/dataset_release.md +6 -0
  26. docs/exllama_v2.md +63 -0
  27. docs/gptq.md +59 -0
  28. docs/langchain_integration.md +90 -0
  29. docs/lightllm_integration.md +18 -0
  30. docs/mlx_integration.md +23 -0
  31. docs/model_support.md +140 -0
  32. docs/openai_api.md +152 -0
  33. docs/server_arch.md +2 -0
  34. docs/third_party_ui.md +24 -0
  35. docs/training.md +118 -0
  36. docs/vicuna_weights_version.md +97 -0
  37. docs/vllm_integration.md +25 -0
  38. docs/xFasterTransformer.md +90 -0
  39. fastchat/__init__.py +1 -0
  40. fastchat/constants.py +82 -0
  41. fastchat/conversation.py +2117 -0
  42. fastchat/data/__init__.py +0 -0
  43. fastchat/data/clean_sharegpt.py +232 -0
  44. fastchat/data/convert_alpaca.py +38 -0
  45. fastchat/data/extract_gpt4_only.py +32 -0
  46. fastchat/data/extract_single_round.py +29 -0
  47. fastchat/data/filter_wrong_format.py +44 -0
  48. fastchat/data/get_stats.py +82 -0
  49. fastchat/data/hardcoded_questions.py +168 -0
  50. fastchat/data/inspect_data.py +33 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/demo_narrow.gif filter=lfs diff=lfs merge=lfs -text
.github/PULL_REQUEST_TEMPLATE.md ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!-- Thank you for your contribution! -->
2
+
3
+ <!-- Please add a reviewer to the assignee section when you create a PR. If you don't have the access to it, we will shortly find a reviewer and assign them to your PR. -->
4
+
5
+ ## Why are these changes needed?
6
+
7
+ <!-- Please give a short summary of the change and the problem this solves. -->
8
+
9
+ ## Related issue number (if applicable)
10
+
11
+ <!-- For example: "Closes #1234" -->
12
+
13
+ ## Checks
14
+
15
+ - [ ] I've run `format.sh` to lint the changes in this PR.
16
+ - [ ] I've included any doc changes needed.
17
+ - [ ] I've made sure the relevant tests are passing (if applicable).
.github/workflows/python-package.yml ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Python package
2
+
3
+ on: [push, pull_request]
4
+
5
+ jobs:
6
+ build:
7
+
8
+ runs-on: ubuntu-latest
9
+ strategy:
10
+ fail-fast: false
11
+ matrix:
12
+ python-version: ["3.10"]
13
+
14
+ steps:
15
+ - uses: actions/checkout@v3
16
+ - name: Set up Python ${{ matrix.python-version }}
17
+ uses: actions/setup-python@v4
18
+ with:
19
+ python-version: ${{ matrix.python-version }}
20
+ cache: 'pip'
21
+ - name: Install dependencies
22
+ run: |
23
+ python -m pip install --upgrade pip
24
+ python -m pip install -e '.[dev]'
25
+ - name: Run linter
26
+ run: |
27
+ pylint -d all -e E0602 ./fastchat/
28
+ - name: Check formatting
29
+ run: |
30
+ black --check .
.gitignore ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Python
2
+ __pycache__
3
+ *.pyc
4
+ *.egg-info
5
+ dist
6
+ .venv
7
+
8
+ # Log
9
+ *.log
10
+ *.log.*
11
+ *.json
12
+ !playground/deepspeed_config_s2.json
13
+ !playground/deepspeed_config_s3.json
14
+
15
+ # Editor
16
+ .idea
17
+ *.swp
18
+
19
+ # Other
20
+ .DS_Store
21
+ wandb
22
+ output
23
+ checkpoints_flant5_3b
24
+
25
+ # Data
26
+ *.pkl
27
+ *.csv
28
+ tests/state_of_the_union.txt
29
+
30
+ # Build
31
+ build
32
+
33
+ # Image data
34
+ serve_images
35
+ val2014
36
+ vqa_examples
.pylintrc ADDED
@@ -0,0 +1,449 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This Pylint rcfile contains a best-effort configuration to uphold the
2
+ # best-practices and style described in the Google Python style guide:
3
+ # https://google.github.io/styleguide/pyguide.html
4
+ #
5
+ # Its canonical open-source location is:
6
+ # https://google.github.io/styleguide/pylintrc
7
+
8
+ [MASTER]
9
+
10
+ # Files or directories to be skipped. They should be base names, not paths.
11
+ ignore=third_party,ray_patches,providers
12
+
13
+ # Files or directories matching the regex patterns are skipped. The regex
14
+ # matches against base names, not paths.
15
+ ignore-patterns=
16
+
17
+ # Pickle collected data for later comparisons.
18
+ persistent=no
19
+
20
+ # List of plugins (as comma separated values of python modules names) to load,
21
+ # usually to register additional checkers.
22
+ load-plugins=
23
+
24
+ # Use multiple processes to speed up Pylint.
25
+ jobs=4
26
+
27
+ # Allow loading of arbitrary C extensions. Extensions are imported into the
28
+ # active Python interpreter and may run arbitrary code.
29
+ unsafe-load-any-extension=no
30
+
31
+
32
+ [MESSAGES CONTROL]
33
+
34
+ # Only show warnings with the listed confidence levels. Leave empty to show
35
+ # all. Valid levels: HIGH, INFERENCE, INFERENCE_FAILURE, UNDEFINED
36
+ confidence=
37
+
38
+ # Enable the message, report, category or checker with the given id(s). You can
39
+ # either give multiple identifier separated by comma (,) or put this option
40
+ # multiple time (only on the command line, not in the configuration file where
41
+ # it should appear only once). See also the "--disable" option for examples.
42
+ #enable=
43
+
44
+ # Disable the message, report, category or checker with the given id(s). You
45
+ # can either give multiple identifiers separated by comma (,) or put this
46
+ # option multiple times (only on the command line, not in the configuration
47
+ # file where it should appear only once).You can also use "--disable=all" to
48
+ # disable everything first and then reenable specific checks. For example, if
49
+ # you want to run only the similarities checker, you can use "--disable=all
50
+ # --enable=similarities". If you want to run only the classes checker, but have
51
+ # no Warning level messages displayed, use"--disable=all --enable=classes
52
+ # --disable=W"
53
+ disable=abstract-method,
54
+ apply-builtin,
55
+ arguments-differ,
56
+ attribute-defined-outside-init,
57
+ backtick,
58
+ bad-option-value,
59
+ basestring-builtin,
60
+ buffer-builtin,
61
+ c-extension-no-member,
62
+ consider-using-enumerate,
63
+ cmp-builtin,
64
+ cmp-method,
65
+ coerce-builtin,
66
+ coerce-method,
67
+ delslice-method,
68
+ div-method,
69
+ duplicate-code,
70
+ eq-without-hash,
71
+ execfile-builtin,
72
+ file-builtin,
73
+ filter-builtin-not-iterating,
74
+ fixme,
75
+ getslice-method,
76
+ global-statement,
77
+ hex-method,
78
+ idiv-method,
79
+ implicit-str-concat-in-sequence,
80
+ import-error,
81
+ import-self,
82
+ import-star-module-level,
83
+ inconsistent-return-statements,
84
+ input-builtin,
85
+ intern-builtin,
86
+ invalid-str-codec,
87
+ locally-disabled,
88
+ logging-format-interpolation, # FIXME(sky): make pass.
89
+ logging-fstring-interpolation, # FIXME(sky): make pass.
90
+ long-builtin,
91
+ long-suffix,
92
+ map-builtin-not-iterating,
93
+ misplaced-comparison-constant,
94
+ missing-function-docstring,
95
+ metaclass-assignment,
96
+ next-method-called,
97
+ next-method-defined,
98
+ no-absolute-import,
99
+ no-else-break,
100
+ no-else-continue,
101
+ no-else-raise,
102
+ no-else-return,
103
+ no-init, # added
104
+ no-member,
105
+ no-name-in-module,
106
+ no-self-use,
107
+ nonzero-method,
108
+ oct-method,
109
+ old-division,
110
+ old-ne-operator,
111
+ old-octal-literal,
112
+ old-raise-syntax,
113
+ parameter-unpacking,
114
+ print-statement,
115
+ raising-string,
116
+ range-builtin-not-iterating,
117
+ raw_input-builtin,
118
+ rdiv-method,
119
+ reduce-builtin,
120
+ relative-import,
121
+ reload-builtin,
122
+ round-builtin,
123
+ setslice-method,
124
+ signature-differs,
125
+ standarderror-builtin,
126
+ suppressed-message,
127
+ sys-max-int,
128
+ too-few-public-methods,
129
+ too-many-ancestors,
130
+ too-many-arguments,
131
+ too-many-boolean-expressions,
132
+ too-many-branches,
133
+ too-many-instance-attributes,
134
+ too-many-locals,
135
+ too-many-nested-blocks,
136
+ too-many-public-methods,
137
+ too-many-return-statements,
138
+ too-many-statements,
139
+ trailing-newlines,
140
+ unichr-builtin,
141
+ unicode-builtin,
142
+ unnecessary-pass,
143
+ unpacking-in-except,
144
+ useless-else-on-loop,
145
+ useless-object-inheritance,
146
+ useless-suppression,
147
+ using-cmp-argument,
148
+ wrong-import-order,
149
+ xrange-builtin,
150
+ zip-builtin-not-iterating,
151
+
152
+
153
+ [REPORTS]
154
+
155
+ # Set the output format. Available formats are text, parseable, colorized, msvs
156
+ # (visual studio) and html. You can also give a reporter class, eg
157
+ # mypackage.mymodule.MyReporterClass.
158
+ output-format=text
159
+
160
+ # Put messages in a separate file for each module / package specified on the
161
+ # command line instead of printing them on stdout. Reports (if any) will be
162
+ # written in a file name "pylint_global.[txt|html]". This option is deprecated
163
+ # and it will be removed in Pylint 2.0.
164
+ files-output=no
165
+
166
+ # Tells whether to display a full report or only the messages
167
+ reports=no
168
+
169
+ # Python expression which should return a note less than 10 (10 is the highest
170
+ # note). You have access to the variables errors warning, statement which
171
+ # respectively contain the number of errors / warnings messages and the total
172
+ # number of statements analyzed. This is used by the global evaluation report
173
+ # (RP0004).
174
+ evaluation=10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10)
175
+
176
+ # Template used to display messages. This is a python new-style format string
177
+ # used to format the message information. See doc for all details
178
+ #msg-template=
179
+
180
+
181
+ [BASIC]
182
+
183
+ # Good variable names which should always be accepted, separated by a comma
184
+ good-names=main,_
185
+
186
+ # Bad variable names which should always be refused, separated by a comma
187
+ bad-names=
188
+
189
+ # Colon-delimited sets of names that determine each other's naming style when
190
+ # the name regexes allow several styles.
191
+ name-group=
192
+
193
+ # Include a hint for the correct naming format with invalid-name
194
+ include-naming-hint=no
195
+
196
+ # List of decorators that produce properties, such as abc.abstractproperty. Add
197
+ # to this list to register other decorators that produce valid properties.
198
+ property-classes=abc.abstractproperty,cached_property.cached_property,cached_property.threaded_cached_property,cached_property.cached_property_with_ttl,cached_property.threaded_cached_property_with_ttl
199
+
200
+ # Regular expression matching correct function names
201
+ function-rgx=^(?:(?P<exempt>setUp|tearDown|setUpModule|tearDownModule)|(?P<camel_case>_?[A-Z][a-zA-Z0-9]*)|(?P<snake_case>_?[a-z][a-z0-9_]*))$
202
+
203
+ # Regular expression matching correct variable names
204
+ variable-rgx=^[a-z][a-z0-9_]*$
205
+
206
+ # Regular expression matching correct constant names
207
+ const-rgx=^(_?[A-Z][A-Z0-9_]*|__[a-z0-9_]+__|_?[a-z][a-z0-9_]*)$
208
+
209
+ # Regular expression matching correct attribute names
210
+ attr-rgx=^_{0,2}[a-z][a-z0-9_]*$
211
+
212
+ # Regular expression matching correct argument names
213
+ argument-rgx=^[a-z][a-z0-9_]*$
214
+
215
+ # Regular expression matching correct class attribute names
216
+ class-attribute-rgx=^(_?[A-Z][A-Z0-9_]*|__[a-z0-9_]+__|_?[a-z][a-z0-9_]*)$
217
+
218
+ # Regular expression matching correct inline iteration names
219
+ inlinevar-rgx=^[a-z][a-z0-9_]*$
220
+
221
+ # Regular expression matching correct class names
222
+ class-rgx=^_?[A-Z][a-zA-Z0-9]*$
223
+
224
+ # Regular expression matching correct module names
225
+ module-rgx=^(_?[a-z][a-z0-9_]*|__init__)$
226
+
227
+ # Regular expression matching correct method names
228
+ method-rgx=(?x)^(?:(?P<exempt>_[a-z0-9_]+__|runTest|setUp|tearDown|setUpTestCase|tearDownTestCase|setupSelf|tearDownClass|setUpClass|(test|assert)_*[A-Z0-9][a-zA-Z0-9_]*|next)|(?P<camel_case>_{0,2}[A-Z][a-zA-Z0-9_]*)|(?P<snake_case>_{0,2}[a-z][a-z0-9_]*))$
229
+
230
+ # Regular expression which should only match function or class names that do
231
+ # not require a docstring.
232
+ no-docstring-rgx=(__.*__|main|test.*|.*test|.*Test)$
233
+
234
+ # Minimum line length for functions/classes that require docstrings, shorter
235
+ # ones are exempt.
236
+ docstring-min-length=10
237
+
238
+
239
+ [TYPECHECK]
240
+
241
+ # List of decorators that produce context managers, such as
242
+ # contextlib.contextmanager. Add to this list to register other decorators that
243
+ # produce valid context managers.
244
+ contextmanager-decorators=contextlib.contextmanager,contextlib2.contextmanager
245
+
246
+ # Tells whether missing members accessed in mixin class should be ignored. A
247
+ # mixin class is detected if its name ends with "mixin" (case insensitive).
248
+ ignore-mixin-members=yes
249
+
250
+ # List of module names for which member attributes should not be checked
251
+ # (useful for modules/projects where namespaces are manipulated during runtime
252
+ # and thus existing member attributes cannot be deduced by static analysis. It
253
+ # supports qualified module names, as well as Unix pattern matching.
254
+ ignored-modules=
255
+
256
+ # List of class names for which member attributes should not be checked (useful
257
+ # for classes with dynamically set attributes). This supports the use of
258
+ # qualified names.
259
+ ignored-classes=optparse.Values,thread._local,_thread._local
260
+
261
+ # List of members which are set dynamically and missed by pylint inference
262
+ # system, and so shouldn't trigger E1101 when accessed. Python regular
263
+ # expressions are accepted.
264
+ generated-members=
265
+
266
+
267
+ [FORMAT]
268
+
269
+ # Maximum number of characters on a single line.
270
+ max-line-length=100
271
+
272
+ # TODO(https://github.com/PyCQA/pylint/issues/3352): Direct pylint to exempt
273
+ # lines made too long by directives to pytype.
274
+
275
+ # Regexp for a line that is allowed to be longer than the limit.
276
+ ignore-long-lines=(?x)(
277
+ ^\s*(\#\ )?<?https?://\S+>?$|
278
+ ^\s*(from\s+\S+\s+)?import\s+.+$)
279
+
280
+ # Allow the body of an if to be on the same line as the test if there is no
281
+ # else.
282
+ single-line-if-stmt=yes
283
+
284
+ # List of optional constructs for which whitespace checking is disabled. `dict-
285
+ # separator` is used to allow tabulation in dicts, etc.: {1 : 1,\n222: 2}.
286
+ # `trailing-comma` allows a space between comma and closing bracket: (a, ).
287
+ # `empty-line` allows space-only lines.
288
+ no-space-check=
289
+
290
+ # Maximum number of lines in a module
291
+ max-module-lines=99999
292
+
293
+ # String used as indentation unit. The internal Google style guide mandates 2
294
+ # spaces. Google's externaly-published style guide says 4, consistent with
295
+ # PEP 8. Here we use 4 spaces.
296
+ indent-string=' '
297
+
298
+ # Number of spaces of indent required inside a hanging or continued line.
299
+ indent-after-paren=4
300
+
301
+ # Expected format of line ending, e.g. empty (any line ending), LF or CRLF.
302
+ expected-line-ending-format=
303
+
304
+
305
+ [MISCELLANEOUS]
306
+
307
+ # List of note tags to take in consideration, separated by a comma.
308
+ notes=TODO
309
+
310
+
311
+ [STRING]
312
+
313
+ # This flag controls whether inconsistent-quotes generates a warning when the
314
+ # character used as a quote delimiter is used inconsistently within a module.
315
+ check-quote-consistency=yes
316
+
317
+
318
+ [VARIABLES]
319
+
320
+ # Tells whether we should check for unused import in __init__ files.
321
+ init-import=no
322
+
323
+ # A regular expression matching the name of dummy variables (i.e. expectedly
324
+ # not used).
325
+ dummy-variables-rgx=^\*{0,2}(_$|unused_|dummy_)
326
+
327
+ # List of additional names supposed to be defined in builtins. Remember that
328
+ # you should avoid to define new builtins when possible.
329
+ additional-builtins=
330
+
331
+ # List of strings which can identify a callback function by name. A callback
332
+ # name must start or end with one of those strings.
333
+ callbacks=cb_,_cb
334
+
335
+ # List of qualified module names which can have objects that can redefine
336
+ # builtins.
337
+ redefining-builtins-modules=six,six.moves,past.builtins,future.builtins,functools
338
+
339
+
340
+ [LOGGING]
341
+
342
+ # Logging modules to check that the string format arguments are in logging
343
+ # function parameter format
344
+ logging-modules=logging,absl.logging,tensorflow.io.logging
345
+
346
+
347
+ [SIMILARITIES]
348
+
349
+ # Minimum lines number of a similarity.
350
+ min-similarity-lines=4
351
+
352
+ # Ignore comments when computing similarities.
353
+ ignore-comments=yes
354
+
355
+ # Ignore docstrings when computing similarities.
356
+ ignore-docstrings=yes
357
+
358
+ # Ignore imports when computing similarities.
359
+ ignore-imports=no
360
+
361
+
362
+ [SPELLING]
363
+
364
+ # Spelling dictionary name. Available dictionaries: none. To make it working
365
+ # install python-enchant package.
366
+ spelling-dict=
367
+
368
+ # List of comma separated words that should not be checked.
369
+ spelling-ignore-words=
370
+
371
+ # A path to a file that contains private dictionary; one word per line.
372
+ spelling-private-dict-file=
373
+
374
+ # Tells whether to store unknown words to indicated private dictionary in
375
+ # --spelling-private-dict-file option instead of raising a message.
376
+ spelling-store-unknown-words=no
377
+
378
+
379
+ [IMPORTS]
380
+
381
+ # Deprecated modules which should not be used, separated by a comma
382
+ deprecated-modules=regsub,
383
+ TERMIOS,
384
+ Bastion,
385
+ rexec,
386
+ sets
387
+
388
+ # Create a graph of every (i.e. internal and external) dependencies in the
389
+ # given file (report RP0402 must not be disabled)
390
+ import-graph=
391
+
392
+ # Create a graph of external dependencies in the given file (report RP0402 must
393
+ # not be disabled)
394
+ ext-import-graph=
395
+
396
+ # Create a graph of internal dependencies in the given file (report RP0402 must
397
+ # not be disabled)
398
+ int-import-graph=
399
+
400
+ # Force import order to recognize a module as part of the standard
401
+ # compatibility libraries.
402
+ known-standard-library=
403
+
404
+ # Force import order to recognize a module as part of a third party library.
405
+ known-third-party=enchant, absl
406
+
407
+ # Analyse import fallback blocks. This can be used to support both Python 2 and
408
+ # 3 compatible code, which means that the block might have code that exists
409
+ # only in one or another interpreter, leading to false positives when analysed.
410
+ analyse-fallback-blocks=no
411
+
412
+
413
+ [CLASSES]
414
+
415
+ # List of method names used to declare (i.e. assign) instance attributes.
416
+ defining-attr-methods=__init__,
417
+ __new__,
418
+ setUp
419
+
420
+ # List of member names, which should be excluded from the protected access
421
+ # warning.
422
+ exclude-protected=_asdict,
423
+ _fields,
424
+ _replace,
425
+ _source,
426
+ _make
427
+
428
+ # List of valid names for the first argument in a class method.
429
+ valid-classmethod-first-arg=cls,
430
+ class_
431
+
432
+ # List of valid names for the first argument in a metaclass class method.
433
+ valid-metaclass-classmethod-first-arg=mcs
434
+
435
+
436
+ [EXCEPTIONS]
437
+
438
+ # Exceptions that will emit a warning when being caught. Defaults to
439
+ # "Exception"
440
+ overgeneral-exceptions=StandardError,
441
+ Exception,
442
+ BaseException
443
+
444
+ #######
445
+
446
+ # https://github.com/edaniszewski/pylint-quotes#configuration
447
+ string-quote=single
448
+ triple-quote=double
449
+ docstring-quote=double
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -1,12 +1,359 @@
1
  ---
2
- title: Bf16 Vs Fp8
3
- emoji: 🐠
4
- colorFrom: gray
5
- colorTo: indigo
6
  sdk: gradio
7
  sdk_version: 4.41.0
8
- app_file: app.py
9
- pinned: false
10
  ---
 
 
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: bf16_vs_fp8
3
+ app_file: fastchat/serve/gradio_block_arena_anony.py
 
 
4
  sdk: gradio
5
  sdk_version: 4.41.0
 
 
6
  ---
7
+ # FastChat
8
+ | [**Demo**](https://chat.lmsys.org/) | [**Discord**](https://discord.gg/HSWAKCrnFx) | [**X**](https://x.com/lmsysorg) |
9
 
10
+ FastChat is an open platform for training, serving, and evaluating large language model based chatbots.
11
+ - FastChat powers Chatbot Arena (https://chat.lmsys.org/), serving over 10 million chat requests for 70+ LLMs.
12
+ - Chatbot Arena has collected over 500K human votes from side-by-side LLM battles to compile an online [LLM Elo leaderboard](https://leaderboard.lmsys.org).
13
+
14
+ FastChat's core features include:
15
+ - The training and evaluation code for state-of-the-art models (e.g., Vicuna, MT-Bench).
16
+ - A distributed multi-model serving system with web UI and OpenAI-compatible RESTful APIs.
17
+
18
+ ## News
19
+ - [2024/03] 🔥 We released Chatbot Arena technical [report](https://arxiv.org/abs/2403.04132).
20
+ - [2023/09] We released **LMSYS-Chat-1M**, a large-scale real-world LLM conversation dataset. Read the [report](https://arxiv.org/abs/2309.11998).
21
+ - [2023/08] We released **Vicuna v1.5** based on Llama 2 with 4K and 16K context lengths. Download [weights](#vicuna-weights).
22
+ - [2023/07] We released **Chatbot Arena Conversations**, a dataset containing 33k conversations with human preferences. Download it [here](https://huggingface.co/datasets/lmsys/chatbot_arena_conversations).
23
+
24
+ <details>
25
+ <summary>More</summary>
26
+
27
+ - [2023/08] We released **LongChat v1.5** based on Llama 2 with 32K context lengths. Download [weights](#longchat).
28
+ - [2023/06] We introduced **MT-bench**, a challenging multi-turn question set for evaluating chatbots. Check out the blog [post](https://lmsys.org/blog/2023-06-22-leaderboard/).
29
+ - [2023/06] We introduced **LongChat**, our long-context chatbots and evaluation tools. Check out the blog [post](https://lmsys.org/blog/2023-06-29-longchat/).
30
+ - [2023/05] We introduced **Chatbot Arena** for battles among LLMs. Check out the blog [post](https://lmsys.org/blog/2023-05-03-arena).
31
+ - [2023/03] We released **Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90% ChatGPT Quality**. Check out the blog [post](https://vicuna.lmsys.org).
32
+
33
+ </details>
34
+
35
+ <a href="https://chat.lmsys.org"><img src="assets/demo_narrow.gif" width="70%"></a>
36
+
37
+ ## Contents
38
+ - [Install](#install)
39
+ - [Model Weights](#model-weights)
40
+ - [Inference with Command Line Interface](#inference-with-command-line-interface)
41
+ - [Serving with Web GUI](#serving-with-web-gui)
42
+ - [API](#api)
43
+ - [Evaluation](#evaluation)
44
+ - [Fine-tuning](#fine-tuning)
45
+ - [Citation](#citation)
46
+
47
+ ## Install
48
+
49
+ ### Method 1: With pip
50
+
51
+ ```bash
52
+ pip3 install "fschat[model_worker,webui]"
53
+ ```
54
+
55
+ ### Method 2: From source
56
+
57
+ 1. Clone this repository and navigate to the FastChat folder
58
+ ```bash
59
+ git clone https://github.com/lm-sys/FastChat.git
60
+ cd FastChat
61
+ ```
62
+
63
+ If you are running on Mac:
64
+ ```bash
65
+ brew install rust cmake
66
+ ```
67
+
68
+ 2. Install Package
69
+ ```bash
70
+ pip3 install --upgrade pip # enable PEP 660 support
71
+ pip3 install -e ".[model_worker,webui]"
72
+ ```
73
+
74
+ ## Model Weights
75
+ ### Vicuna Weights
76
+ [Vicuna](https://lmsys.org/blog/2023-03-30-vicuna/) is based on Llama 2 and should be used under Llama's [model license](https://github.com/facebookresearch/llama/blob/main/LICENSE).
77
+
78
+ You can use the commands below to start chatting. It will automatically download the weights from Hugging Face repos.
79
+ Downloaded weights are stored in a `.cache` folder in the user's home folder (e.g., `~/.cache/huggingface/hub/<model_name>`).
80
+
81
+ See more command options and how to handle out-of-memory in the "Inference with Command Line Interface" section below.
82
+
83
+ **NOTE: `transformers>=4.31` is required for 16K versions.**
84
+
85
+ | Size | Chat Command | Hugging Face Repo |
86
+ | --- | --- | --- |
87
+ | 7B | `python3 -m fastchat.serve.cli --model-path lmsys/vicuna-7b-v1.5` | [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) |
88
+ | 7B-16k | `python3 -m fastchat.serve.cli --model-path lmsys/vicuna-7b-v1.5-16k` | [lmsys/vicuna-7b-v1.5-16k](https://huggingface.co/lmsys/vicuna-7b-v1.5-16k) |
89
+ | 13B | `python3 -m fastchat.serve.cli --model-path lmsys/vicuna-13b-v1.5` | [lmsys/vicuna-13b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5) |
90
+ | 13B-16k | `python3 -m fastchat.serve.cli --model-path lmsys/vicuna-13b-v1.5-16k` | [lmsys/vicuna-13b-v1.5-16k](https://huggingface.co/lmsys/vicuna-13b-v1.5-16k) |
91
+ | 33B | `python3 -m fastchat.serve.cli --model-path lmsys/vicuna-33b-v1.3` | [lmsys/vicuna-33b-v1.3](https://huggingface.co/lmsys/vicuna-33b-v1.3) |
92
+
93
+ **Old weights**: see [docs/vicuna_weights_version.md](docs/vicuna_weights_version.md) for all versions of weights and their differences.
94
+
95
+ ### Other Models
96
+ Besides Vicuna, we also released two additional models: [LongChat](https://lmsys.org/blog/2023-06-29-longchat/) and FastChat-T5.
97
+ You can use the commands below to chat with them. They will automatically download the weights from Hugging Face repos.
98
+
99
+ | Model | Chat Command | Hugging Face Repo |
100
+ | --- | --- | --- |
101
+ | LongChat-7B | `python3 -m fastchat.serve.cli --model-path lmsys/longchat-7b-32k-v1.5` | [lmsys/longchat-7b-32k](https://huggingface.co/lmsys/longchat-7b-32k-v1.5) |
102
+ | FastChat-T5-3B | `python3 -m fastchat.serve.cli --model-path lmsys/fastchat-t5-3b-v1.0` | [lmsys/fastchat-t5-3b-v1.0](https://huggingface.co/lmsys/fastchat-t5-3b-v1.0) |
103
+
104
+ ## Inference with Command Line Interface
105
+
106
+ <a href="https://chat.lmsys.org"><img src="assets/screenshot_cli.png" width="70%"></a>
107
+
108
+ (Experimental Feature: You can specify `--style rich` to enable rich text output and better text streaming quality for some non-ASCII content. This may not work properly on certain terminals.)
109
+
110
+ #### Supported Models
111
+ FastChat supports a wide range of models, including
112
+ LLama 2, Vicuna, Alpaca, Baize, ChatGLM, Dolly, Falcon, FastChat-T5, GPT4ALL, Guanaco, MTP, OpenAssistant, OpenChat, RedPajama, StableLM, WizardLM, xDAN-AI and more.
113
+
114
+ See a complete list of supported models and instructions to add a new model [here](docs/model_support.md).
115
+
116
+ #### Single GPU
117
+ The command below requires around 14GB of GPU memory for Vicuna-7B and 28GB of GPU memory for Vicuna-13B.
118
+ See the ["Not Enough Memory" section](#not-enough-memory) below if you do not have enough memory.
119
+ `--model-path` can be a local folder or a Hugging Face repo name.
120
+ ```
121
+ python3 -m fastchat.serve.cli --model-path lmsys/vicuna-7b-v1.5
122
+ ```
123
+
124
+ #### Multiple GPUs
125
+ You can use model parallelism to aggregate GPU memory from multiple GPUs on the same machine.
126
+ ```
127
+ python3 -m fastchat.serve.cli --model-path lmsys/vicuna-7b-v1.5 --num-gpus 2
128
+ ```
129
+
130
+ Tips:
131
+ Sometimes the "auto" device mapping strategy in huggingface/transformers does not perfectly balance the memory allocation across multiple GPUs.
132
+ You can use `--max-gpu-memory` to specify the maximum memory per GPU for storing model weights.
133
+ This allows it to allocate more memory for activations, so you can use longer context lengths or larger batch sizes. For example,
134
+
135
+ ```
136
+ python3 -m fastchat.serve.cli --model-path lmsys/vicuna-7b-v1.5 --num-gpus 2 --max-gpu-memory 8GiB
137
+ ```
138
+
139
+ #### CPU Only
140
+ This runs on the CPU only and does not require GPU. It requires around 30GB of CPU memory for Vicuna-7B and around 60GB of CPU memory for Vicuna-13B.
141
+ ```
142
+ python3 -m fastchat.serve.cli --model-path lmsys/vicuna-7b-v1.5 --device cpu
143
+ ```
144
+
145
+ Use Intel AI Accelerator AVX512_BF16/AMX to accelerate CPU inference.
146
+ ```
147
+ CPU_ISA=amx python3 -m fastchat.serve.cli --model-path lmsys/vicuna-7b-v1.5 --device cpu
148
+ ```
149
+
150
+ #### Metal Backend (Mac Computers with Apple Silicon or AMD GPUs)
151
+ Use `--device mps` to enable GPU acceleration on Mac computers (requires torch >= 2.0).
152
+ Use `--load-8bit` to turn on 8-bit compression.
153
+ ```
154
+ python3 -m fastchat.serve.cli --model-path lmsys/vicuna-7b-v1.5 --device mps --load-8bit
155
+ ```
156
+ Vicuna-7B can run on a 32GB M1 Macbook with 1 - 2 words / second.
157
+
158
+ #### Intel XPU (Intel Data Center and Arc A-Series GPUs)
159
+ Install the [Intel Extension for PyTorch](https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/installation.html). Set the OneAPI environment variables:
160
+ ```
161
+ source /opt/intel/oneapi/setvars.sh
162
+ ```
163
+
164
+ Use `--device xpu` to enable XPU/GPU acceleration.
165
+ ```
166
+ python3 -m fastchat.serve.cli --model-path lmsys/vicuna-7b-v1.5 --device xpu
167
+ ```
168
+ Vicuna-7B can run on an Intel Arc A770 16GB.
169
+
170
+ #### Ascend NPU
171
+ Install the [Ascend PyTorch Adapter](https://github.com/Ascend/pytorch). Set the CANN environment variables:
172
+ ```
173
+ source /usr/local/Ascend/ascend-toolkit/set_env.sh
174
+ ```
175
+
176
+ Use `--device npu` to enable NPU acceleration.
177
+ ```
178
+ python3 -m fastchat.serve.cli --model-path lmsys/vicuna-7b-v1.5 --device npu
179
+ ```
180
+ Vicuna-7B/13B can run on an Ascend NPU.
181
+
182
+ #### Not Enough Memory
183
+ If you do not have enough memory, you can enable 8-bit compression by adding `--load-8bit` to commands above.
184
+ This can reduce memory usage by around half with slightly degraded model quality.
185
+ It is compatible with the CPU, GPU, and Metal backend.
186
+
187
+ Vicuna-13B with 8-bit compression can run on a single GPU with 16 GB of VRAM, like an Nvidia RTX 3090, RTX 4080, T4, V100 (16GB), or an AMD RX 6800 XT.
188
+
189
+ ```
190
+ python3 -m fastchat.serve.cli --model-path lmsys/vicuna-7b-v1.5 --load-8bit
191
+ ```
192
+
193
+ In addition to that, you can add `--cpu-offloading` to commands above to offload weights that don't fit on your GPU onto the CPU memory.
194
+ This requires 8-bit compression to be enabled and the bitsandbytes package to be installed, which is only available on linux operating systems.
195
+
196
+ #### More Platforms and Quantization
197
+ - For AMD GPU users, please install ROCm and [the ROCm version of PyTorch](https://pytorch.org/get-started/locally/) before you install FastChat. See also this [post](https://github.com/lm-sys/FastChat/issues/104#issuecomment-1613791563).
198
+ - FastChat supports ExLlama V2. See [docs/exllama_v2.md](/docs/exllama_v2.md).
199
+ - FastChat supports GPTQ 4bit inference with [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa). See [docs/gptq.md](/docs/gptq.md).
200
+ - FastChat supports AWQ 4bit inference with [mit-han-lab/llm-awq](https://github.com/mit-han-lab/llm-awq). See [docs/awq.md](/docs/awq.md).
201
+ - [MLC LLM](https://mlc.ai/mlc-llm/), backed by [TVM Unity](https://github.com/apache/tvm/tree/unity) compiler, deploys Vicuna natively on phones, consumer-class GPUs and web browsers via Vulkan, Metal, CUDA and WebGPU.
202
+
203
+ #### Use models from modelscope
204
+ For Chinese users, you can use models from www.modelscope.cn via specify the following environment variables.
205
+ ```bash
206
+ export FASTCHAT_USE_MODELSCOPE=True
207
+ ```
208
+
209
+ ## Serving with Web GUI
210
+
211
+ <a href="https://chat.lmsys.org"><img src="assets/screenshot_gui.png" width="70%"></a>
212
+
213
+ To serve using the web UI, you need three main components: web servers that interface with users, model workers that host one or more models, and a controller to coordinate the webserver and model workers. You can learn more about the architecture [here](docs/server_arch.md).
214
+
215
+ Here are the commands to follow in your terminal:
216
+
217
+ #### Launch the controller
218
+ ```bash
219
+ python3 -m fastchat.serve.controller
220
+ ```
221
+
222
+ This controller manages the distributed workers.
223
+
224
+ #### Launch the model worker(s)
225
+ ```bash
226
+ python3 -m fastchat.serve.model_worker --model-path lmsys/vicuna-7b-v1.5
227
+ ```
228
+ Wait until the process finishes loading the model and you see "Uvicorn running on ...". The model worker will register itself to the controller .
229
+
230
+ To ensure that your model worker is connected to your controller properly, send a test message using the following command:
231
+ ```bash
232
+ python3 -m fastchat.serve.test_message --model-name vicuna-7b-v1.5
233
+ ```
234
+ You will see a short output.
235
+
236
+ #### Launch the Gradio web server
237
+ ```bash
238
+ python3 -m fastchat.serve.gradio_web_server
239
+ ```
240
+
241
+ This is the user interface that users will interact with.
242
+
243
+ By following these steps, you will be able to serve your models using the web UI. You can open your browser and chat with a model now.
244
+ If the models do not show up, try to reboot the gradio web server.
245
+
246
+ #### (Optional): Advanced Features, Scalability, Third Party UI
247
+ - You can register multiple model workers to a single controller, which can be used for serving a single model with higher throughput or serving multiple models at the same time. When doing so, please allocate different GPUs and ports for different model workers.
248
+ ```
249
+ # worker 0
250
+ CUDA_VISIBLE_DEVICES=0 python3 -m fastchat.serve.model_worker --model-path lmsys/vicuna-7b-v1.5 --controller http://localhost:21001 --port 31000 --worker http://localhost:31000
251
+ # worker 1
252
+ CUDA_VISIBLE_DEVICES=1 python3 -m fastchat.serve.model_worker --model-path lmsys/fastchat-t5-3b-v1.0 --controller http://localhost:21001 --port 31001 --worker http://localhost:31001
253
+ ```
254
+ - You can also launch a multi-tab gradio server, which includes the Chatbot Arena tabs.
255
+ ```bash
256
+ python3 -m fastchat.serve.gradio_web_server_multi
257
+ ```
258
+ - The default model worker based on huggingface/transformers has great compatibility but can be slow. If you want high-throughput batched serving, you can try [vLLM integration](docs/vllm_integration.md).
259
+ - If you want to host it on your own UI or third party UI, see [Third Party UI](docs/third_party_ui.md).
260
+
261
+ ## API
262
+ ### OpenAI-Compatible RESTful APIs & SDK
263
+ FastChat provides OpenAI-compatible APIs for its supported models, so you can use FastChat as a local drop-in replacement for OpenAI APIs.
264
+ The FastChat server is compatible with both [openai-python](https://github.com/openai/openai-python) library and cURL commands.
265
+ The REST API is capable of being executed from Google Colab free tier, as demonstrated in the [FastChat_API_GoogleColab.ipynb](https://github.com/lm-sys/FastChat/blob/main/playground/FastChat_API_GoogleColab.ipynb) notebook, available in our repository.
266
+ See [docs/openai_api.md](docs/openai_api.md).
267
+
268
+ ### Hugging Face Generation APIs
269
+ See [fastchat/serve/huggingface_api.py](fastchat/serve/huggingface_api.py).
270
+
271
+ ### LangChain Integration
272
+ See [docs/langchain_integration](docs/langchain_integration.md).
273
+
274
+ ## Evaluation
275
+ We use MT-bench, a set of challenging multi-turn open-ended questions to evaluate models.
276
+ To automate the evaluation process, we prompt strong LLMs like GPT-4 to act as judges and assess the quality of the models' responses.
277
+ See instructions for running MT-bench at [fastchat/llm_judge](fastchat/llm_judge).
278
+
279
+ MT-bench is the new recommended way to benchmark your models. If you are still looking for the old 80 questions used in the vicuna blog post, please go to [vicuna-blog-eval](https://github.com/lm-sys/vicuna-blog-eval).
280
+
281
+ ## Fine-tuning
282
+ ### Data
283
+
284
+ Vicuna is created by fine-tuning a Llama base model using approximately 125K user-shared conversations gathered from ShareGPT.com with public APIs. To ensure data quality, we convert the HTML back to markdown and filter out some inappropriate or low-quality samples. Additionally, we divide lengthy conversations into smaller segments that fit the model's maximum context length. For detailed instructions to clean the ShareGPT data, check out [here](docs/commands/data_cleaning.md).
285
+
286
+ We will not release the ShareGPT dataset. If you would like to try the fine-tuning code, you can run it with some dummy conversations in [dummy_conversation.json](data/dummy_conversation.json). You can follow the same format and plug in your own data.
287
+
288
+ ### Code and Hyperparameters
289
+ Our code is based on [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) with additional support for multi-turn conversations.
290
+ We use similar hyperparameters as the Stanford Alpaca.
291
+
292
+ | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
293
+ | --- | ---: | ---: | ---: | ---: | ---: |
294
+ | Vicuna-13B | 128 | 2e-5 | 3 | 2048 | 0 |
295
+
296
+ ### Fine-tuning Vicuna-7B with Local GPUs
297
+
298
+ - Install dependency
299
+ ```bash
300
+ pip3 install -e ".[train]"
301
+ ```
302
+
303
+ - You can use the following command to train Vicuna-7B with 4 x A100 (40GB). Update `--model_name_or_path` with the actual path to Llama weights and `--data_path` with the actual path to data.
304
+ ```bash
305
+ torchrun --nproc_per_node=4 --master_port=20001 fastchat/train/train_mem.py \
306
+ --model_name_or_path meta-llama/Llama-2-7b-hf \
307
+ --data_path data/dummy_conversation.json \
308
+ --bf16 True \
309
+ --output_dir output_vicuna \
310
+ --num_train_epochs 3 \
311
+ --per_device_train_batch_size 2 \
312
+ --per_device_eval_batch_size 2 \
313
+ --gradient_accumulation_steps 16 \
314
+ --evaluation_strategy "no" \
315
+ --save_strategy "steps" \
316
+ --save_steps 1200 \
317
+ --save_total_limit 10 \
318
+ --learning_rate 2e-5 \
319
+ --weight_decay 0. \
320
+ --warmup_ratio 0.03 \
321
+ --lr_scheduler_type "cosine" \
322
+ --logging_steps 1 \
323
+ --fsdp "full_shard auto_wrap" \
324
+ --fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
325
+ --tf32 True \
326
+ --model_max_length 2048 \
327
+ --gradient_checkpointing True \
328
+ --lazy_preprocess True
329
+ ```
330
+
331
+ Tips:
332
+ - If you are using V100 which is not supported by FlashAttention, you can use the [memory-efficient attention](https://arxiv.org/abs/2112.05682) implemented in [xFormers](https://github.com/facebookresearch/xformers). Install xformers and replace `fastchat/train/train_mem.py` above with [fastchat/train/train_xformers.py](fastchat/train/train_xformers.py).
333
+ - If you meet out-of-memory due to "FSDP Warning: When using FSDP, it is efficient and recommended... ", see solutions [here](https://github.com/huggingface/transformers/issues/24724#issuecomment-1645189539).
334
+ - If you meet out-of-memory during model saving, see solutions [here](https://github.com/pytorch/pytorch/issues/98823).
335
+ - To turn on logging to popular experiment tracking tools such as Tensorboard, MLFlow or Weights & Biases, use the `report_to` argument, e.g. pass `--report_to wandb` to turn on logging to Weights & Biases.
336
+
337
+ ### Other models, platforms and LoRA support
338
+ More instructions to train other models (e.g., FastChat-T5) and use LoRA are in [docs/training.md](docs/training.md).
339
+
340
+ ### Fine-tuning on Any Cloud with SkyPilot
341
+ [SkyPilot](https://github.com/skypilot-org/skypilot) is a framework built by UC Berkeley for easily and cost effectively running ML workloads on any cloud (AWS, GCP, Azure, Lambda, etc.).
342
+ Find SkyPilot documentation [here](https://github.com/skypilot-org/skypilot/tree/master/llm/vicuna) on using managed spot instances to train Vicuna and save on your cloud costs.
343
+
344
+ ## Citation
345
+ The code (training, serving, and evaluation) in this repository is mostly developed for or derived from the paper below.
346
+ Please cite it if you find the repository helpful.
347
+
348
+ ```
349
+ @misc{zheng2023judging,
350
+ title={Judging LLM-as-a-judge with MT-Bench and Chatbot Arena},
351
+ author={Lianmin Zheng and Wei-Lin Chiang and Ying Sheng and Siyuan Zhuang and Zhanghao Wu and Yonghao Zhuang and Zi Lin and Zhuohan Li and Dacheng Li and Eric. P Xing and Hao Zhang and Joseph E. Gonzalez and Ion Stoica},
352
+ year={2023},
353
+ eprint={2306.05685},
354
+ archivePrefix={arXiv},
355
+ primaryClass={cs.CL}
356
+ }
357
+ ```
358
+
359
+ We are also planning to add more of our research to this repository.
assets/demo_narrow.gif ADDED

Git LFS Details

  • SHA256: 6e02d6a8fc6820f784105b3515b595730cc74542b4cf3f2a84a4361a0db17766
  • Pointer size: 133 Bytes
  • Size of remote file: 12.3 MB
assets/qa_browser.png ADDED
assets/screenshot_cli.png ADDED
assets/screenshot_gui.png ADDED
assets/server_arch.png ADDED
assets/vicuna_logo.jpeg ADDED
docker/Dockerfile ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ FROM nvidia/cuda:12.2.0-runtime-ubuntu20.04
2
+
3
+ RUN apt-get update -y && apt-get install -y python3.9 python3.9-distutils curl
4
+ RUN curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
5
+ RUN python3.9 get-pip.py
6
+ RUN pip3 install fschat
7
+ RUN pip3 install fschat[model_worker,webui]
docker/docker-compose.yml ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ version: "3.9"
2
+
3
+ services:
4
+ fastchat-controller:
5
+ build:
6
+ context: .
7
+ dockerfile: Dockerfile
8
+ image: fastchat:latest
9
+ ports:
10
+ - "21001:21001"
11
+ entrypoint: ["python3.9", "-m", "fastchat.serve.controller", "--host", "0.0.0.0", "--port", "21001"]
12
+ fastchat-model-worker:
13
+ build:
14
+ context: .
15
+ dockerfile: Dockerfile
16
+ volumes:
17
+ - huggingface:/root/.cache/huggingface
18
+ image: fastchat:latest
19
+ deploy:
20
+ resources:
21
+ reservations:
22
+ devices:
23
+ - driver: nvidia
24
+ count: 1
25
+ capabilities: [gpu]
26
+ entrypoint: ["python3.9", "-m", "fastchat.serve.model_worker", "--model-names", "${FASTCHAT_WORKER_MODEL_NAMES:-vicuna-7b-v1.5}", "--model-path", "${FASTCHAT_WORKER_MODEL_PATH:-lmsys/vicuna-7b-v1.5}", "--worker-address", "http://fastchat-model-worker:21002", "--controller-address", "http://fastchat-controller:21001", "--host", "0.0.0.0", "--port", "21002"]
27
+ fastchat-api-server:
28
+ build:
29
+ context: .
30
+ dockerfile: Dockerfile
31
+ image: fastchat:latest
32
+ ports:
33
+ - "8000:8000"
34
+ entrypoint: ["python3.9", "-m", "fastchat.serve.openai_api_server", "--controller-address", "http://fastchat-controller:21001", "--host", "0.0.0.0", "--port", "8000"]
35
+ volumes:
36
+ huggingface:
docs/arena.md ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Chatbot Arena
2
+ Chatbot Arena is an LLM benchmark platform featuring anonymous, randomized battles, available at https://chat.lmsys.org.
3
+ We invite the entire community to join this benchmarking effort by contributing your votes and models.
4
+
5
+ ## How to add a new model
6
+ If you want to see a specific model in the arena, you can follow the methods below.
7
+
8
+ ### Method 1: Hosted by 3rd party API providers or yourself
9
+ If you have a model hosted by a 3rd party API provider or yourself, please give us the access to an API endpoint.
10
+ - We prefer OpenAI-compatible APIs, so we can reuse our [code](https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/api_provider.py) for calling OpenAI models.
11
+ - If you have your own API protocol, please follow the [instructions](model_support.md) to add them. Contribute your code by sending a pull request.
12
+
13
+ ### Method 2: Hosted by LMSYS
14
+ 1. Contribute the code to support this model in FastChat by submitting a pull request. See [instructions](model_support.md).
15
+ 2. After the model is supported, we will try to schedule some compute resources to host the model in the arena. However, due to the limited resources we have, we may not be able to serve every model. We will select the models based on popularity, quality, diversity, and other factors.
16
+
17
+
18
+ ## How to launch vision arena
19
+
20
+ 1. Run `python3 -m fastchat.serve.controller` to start the controller and begin registering local model workers and API-provided workers.
21
+ 2. Run `python3 -m fastchat.serve.sglang_worker --model-path <model-path> --tokenizer-path <tokenizer-path>` to run local vision-language models. Currently supported models include the LLaVA and Yi-VL series.
22
+ 3. If you are using a 3rd party model with an API provider (e.g. GPT-4-V, Gemini 1.5), please follow the instructions [model_support.md](model_support.md) to add a json file `api_endpoints.json`.
23
+ 4. Run the gradio server with the `--vision-arena` flag on.
24
+ 5. To run and store images into a remote directory, add the flag: `--use-remote-storage`
25
+ 6. To run and allow samples of random questions, add `--random_questions metadata_sampled.json`. Check sections below for how to generate this.
26
+
27
+ Example command:
28
+ ```
29
+ python3 -m fastchat.serve.gradio_web_server_multi --share --register-api-endpoint-file api_endpoints.json --vision-arena --use-remote-storage --random-questions metadata_sampled.json
30
+ ```
31
+
32
+ ### NSFW and CSAM Detection
33
+ 1. Adding NSFW Endpoint and API key: Please add the following environment variables to run the NSFW moderation filter for images:
34
+ - `AZURE_IMG_MODERATION_ENDPOINT`: This is the endpoint that the NSFW moderator is hosted (e.g. https://{endpoint}/contentmoderator/moderate/v1.0/ProcessImage/Evaluate). Change the `endpoint` to your own.
35
+ - `AZURE_IMG_MODERATION_API_KEY`: Your API key to run this endpoint.
36
+ 2. Adding CSAM API key:
37
+ - `PHOTODNA_API_KEY`: The API key that runs the CSAM detector endpoint.
38
+
39
+ Example in `~/.bashrc`:
40
+ ```
41
+ export AZURE_IMG_MODERATION_ENDPOINT=https://<endpoint>/contentmoderator/moderate/v1.0/ProcessImage/Evaluate
42
+ export AZURE_IMG_MODERATION_API_KEY=<api-key>
43
+ export PHOTODNA_API_KEY=<api-key>
44
+ ```
45
+
46
+ ### Adding Random Samples for VQA
47
+ We provide random samples of example images for users to interact with coming from various datasets including DocVQA, RealWorldQA, ChartQA and VizWiz-VQA.
48
+ 1. Download the images and generate random questions file by running `python fastchat/serve/vision/create_vqa_examples_dir.py`
docs/awq.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # AWQ 4bit Inference
2
+
3
+ We integrated [AWQ](https://github.com/mit-han-lab/llm-awq) into FastChat to provide **efficient and accurate** 4bit LLM inference.
4
+
5
+ ## Install AWQ
6
+
7
+ Setup environment (please refer to [this link](https://github.com/mit-han-lab/llm-awq#install) for more details):
8
+ ```bash
9
+ conda create -n fastchat-awq python=3.10 -y
10
+ conda activate fastchat-awq
11
+ # cd /path/to/FastChat
12
+ pip install --upgrade pip # enable PEP 660 support
13
+ pip install -e . # install fastchat
14
+
15
+ git clone https://github.com/mit-han-lab/llm-awq repositories/llm-awq
16
+ cd repositories/llm-awq
17
+ pip install -e . # install awq package
18
+
19
+ cd awq/kernels
20
+ python setup.py install # install awq CUDA kernels
21
+ ```
22
+
23
+ ## Chat with the CLI
24
+
25
+ ```bash
26
+ # Download quantized model from huggingface
27
+ # Make sure you have git-lfs installed (https://git-lfs.com)
28
+ git lfs install
29
+ git clone https://huggingface.co/mit-han-lab/vicuna-7b-v1.3-4bit-g128-awq
30
+
31
+ # You can specify which quantized model to use by setting --awq-ckpt
32
+ python3 -m fastchat.serve.cli \
33
+ --model-path models/vicuna-7b-v1.3-4bit-g128-awq \
34
+ --awq-wbits 4 \
35
+ --awq-groupsize 128
36
+ ```
37
+
38
+ ## Benchmark
39
+
40
+ * Through **4-bit weight quantization**, AWQ helps to run larger language models within the device memory restriction and prominently accelerates token generation. All benchmarks are done with group_size 128.
41
+
42
+ * Benchmark on NVIDIA RTX A6000:
43
+
44
+ | Model | Bits | Max Memory (MiB) | Speed (ms/token) | AWQ Speedup |
45
+ | --------------- | ---- | ---------------- | ---------------- | ----------- |
46
+ | vicuna-7b | 16 | 13543 | 26.06 | / |
47
+ | vicuna-7b | 4 | 5547 | 12.43 | 2.1x |
48
+ | llama2-7b-chat | 16 | 13543 | 27.14 | / |
49
+ | llama2-7b-chat | 4 | 5547 | 12.44 | 2.2x |
50
+ | vicuna-13b | 16 | 25647 | 44.91 | / |
51
+ | vicuna-13b | 4 | 9355 | 17.30 | 2.6x |
52
+ | llama2-13b-chat | 16 | 25647 | 47.28 | / |
53
+ | llama2-13b-chat | 4 | 9355 | 20.28 | 2.3x |
54
+
55
+ * NVIDIA RTX 4090:
56
+
57
+ | Model | AWQ 4bit Speed (ms/token) | FP16 Speed (ms/token) | AWQ Speedup |
58
+ | --------------- | ------------------------- | --------------------- | ----------- |
59
+ | vicuna-7b | 8.61 | 19.09 | 2.2x |
60
+ | llama2-7b-chat | 8.66 | 19.97 | 2.3x |
61
+ | vicuna-13b | 12.17 | OOM | / |
62
+ | llama2-13b-chat | 13.54 | OOM | / |
63
+
64
+ * NVIDIA Jetson Orin:
65
+
66
+ | Model | AWQ 4bit Speed (ms/token) | FP16 Speed (ms/token) | AWQ Speedup |
67
+ | --------------- | ------------------------- | --------------------- | ----------- |
68
+ | vicuna-7b | 65.34 | 93.12 | 1.4x |
69
+ | llama2-7b-chat | 75.11 | 104.71 | 1.4x |
70
+ | vicuna-13b | 115.40 | OOM | / |
71
+ | llama2-13b-chat | 136.81 | OOM | / |
docs/commands/conv_release.md ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Chatbot Arena Conversations
2
+
3
+ 1. Gather battles
4
+ ```
5
+ python3 clean_battle_data.py --max-num 10 --mode conv_release
6
+ ```
7
+
8
+ 2. Tag OpenAI moderation
9
+ ```
10
+ python3 tag_openai_moderation.py --in clean_battle_conv_20230814.json
11
+ ```
12
+
13
+ 3. Clean PII
14
+
15
+ 4. Filter additional blocked words
16
+
17
+ ```
18
+ python3 filter_bad_conv.py --in clean_battle_conv_20230630_tagged_v1_pii.json
19
+ ```
20
+
21
+ 5. Add additional toxicity tag
22
+
23
+
24
+ ## All Conversations
25
+
26
+ 1. Gather chats
27
+ ```
28
+ python3 clean_chat_data.py
29
+ ```
30
+
31
+ 2. Sample
32
+ ```
33
+ python3 conv_release_scripts/sample.py
34
+ ```
35
+
36
+
37
+ ## Prompt distribution
38
+
docs/commands/data_cleaning.md ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Data cleaning
2
+
3
+ ## Requirements
4
+ ```
5
+ pip3 install bs4 markdownify
6
+ pip3 install polyglot pyicu pycld2
7
+ ```
8
+
9
+ ## Steps
10
+ ```
11
+ # Convert html to markdown
12
+ python3 -m fastchat.data.clean_sharegpt --in sharegpt_html.json --out sharegpt_clean.json
13
+
14
+ # Keep or remove specific languages
15
+ python3 -m fastchat.data.optional_clean --in sharegpt_clean.json --out sharegpt_clean_lang.json --skip-lang SOME_LANGUAGE_CODE
16
+
17
+ # Split long conversations
18
+ python3 -m fastchat.data.split_long_conversation --in sharegpt_clean_lang.json --out sharegpt_clean_lang_split.json --model-name /home/ubuntu/model_weights/llama-7b/
19
+ ```
docs/commands/leaderboard.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Get logs
2
+ ```
3
+ gsutil -m rsync -r gs://fastchat_logs ~/fastchat_logs/
4
+ ```
5
+
6
+ ### Clean battle data
7
+ ```
8
+ cd ~/FastChat/fastchat/serve/monitor
9
+ python3 clean_battle_data.py
10
+ ```
11
+
12
+ ### Run Elo analysis
13
+ ```
14
+ python3 elo_analysis.py --clean-battle-file clean_battle_20230905.json
15
+ ```
16
+
17
+ ### Copy files to HF space
18
+ 1. update plots
19
+ ```
20
+ scp atlas:/data/lmzheng/FastChat/fastchat/serve/monitor/elo_results_20230905.pkl .
21
+ ```
22
+
23
+ 2. update table
24
+ ```
25
+ wget https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard/raw/main/leaderboard_table_20230905.csv
26
+ ```
27
+
28
+ ### Update files on webserver
29
+ ```
30
+ DATE=20231002
31
+
32
+ rm -rf elo_results.pkl leaderboard_table.csv
33
+ wget https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard/resolve/main/elo_results_$DATE.pkl
34
+ wget https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard/resolve/main/leaderboard_table_$DATE.csv
35
+ ln -s leaderboard_table_$DATE.csv leaderboard_table.csv
36
+ ln -s elo_results_$DATE.pkl elo_results.pkl
37
+ ```
docs/commands/local_cluster.md ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Local GPU cluster
2
+ node-01
3
+ ```
4
+ python3 -m fastchat.serve.controller --host 0.0.0.0 --port 10002
5
+
6
+ CUDA_VISIBLE_DEVICES=0 python3 -m fastchat.serve.vllm_worker --model-path lmsys/vicuna-13b-v1.5 --model-name vicuna-13b --controller http://node-01:10002 --host 0.0.0.0 --port 31000 --worker-address http://$(hostname):31000
7
+ CUDA_VISIBLE_DEVICES=1 python3 -m fastchat.serve.vllm_worker --model-path lmsys/vicuna-13b-v1.5 --model-name vicuna-13b --controller http://node-01:10002 --host 0.0.0.0 --port 31001 --worker-address http://$(hostname):31001
8
+
9
+ CUDA_VISIBLE_DEVICES=2,3 ray start --head
10
+ python3 -m fastchat.serve.vllm_worker --model-path lmsys/vicuna-33b-v1.3 --model-name vicuna-33b --controller http://node-01:10002 --host 0.0.0.0 --port 31002 --worker-address http://$(hostname):31002 --num-gpus 2
11
+ ```
12
+
13
+ node-02
14
+ ```
15
+ CUDA_VISIBLE_DEVICES=0 python3 -m fastchat.serve.vllm_worker --model-path meta-llama/Llama-2-13b-chat-hf --model-name llama-2-13b-chat --controller http://node-01:10002 --host 0.0.0.0 --port 31000 --worker-address http://$(hostname):31000 --tokenizer meta-llama/Llama-2-7b-chat-hf
16
+ CUDA_VISIBLE_DEVICES=1 python3 -m fastchat.serve.vllm_worker --model-path meta-llama/Llama-2-13b-chat-hf --model-name llama-2-13b-chat --controller http://node-01:10002 --host 0.0.0.0 --port 31001 --worker-address http://$(hostname):31001 --tokenizer meta-llama/Llama-2-7b-chat-hf
17
+ CUDA_VISIBLE_DEVICES=2 python3 -m fastchat.serve.vllm_worker --model-path meta-llama/Llama-2-7b-chat-hf --model-name llama-2-7b-chat --controller http://node-01:10002 --host 0.0.0.0 --port 31002 --worker-address http://$(hostname):31002 --tokenizer meta-llama/Llama-2-7b-chat-hf
18
+ CUDA_VISIBLE_DEVICES=3 python3 -m fastchat.serve.vllm_worker --model-path WizardLM/WizardLM-13B-V1.1 --model-name wizardlm-13b --controller http://node-01:10002 --host 0.0.0.0 --port 31003 --worker-address http://$(hostname):31003
19
+ ```
20
+
21
+ node-03
22
+ ```
23
+ python3 -m fastchat.serve.vllm_worker --model-path mosaicml/mpt-30b-chat --controller http://node-01:10002 --host 0.0.0.0 --port 31000 --worker-address http://$(hostname):31000 --num-gpus 2
24
+ python3 -m fastchat.serve.vllm_worker --model-path timdettmers/guanaco-33b-merged --model-name guanaco-33b --controller http://node-01:10002 --host 0.0.0.0 --port 31002 --worker-address http://$(hostname):31002 --num-gpus 2 --tokenizer hf-internal-testing/llama-tokenizer
25
+ ```
26
+
27
+ node-04
28
+ ```
29
+ CUDA_VISIBLE_DEVICES=0 python3 -m fastchat.serve.multi_model_worker --model-path ~/model_weights/RWKV-4-Raven-14B-v12-Eng98%25-Other2%25-20230523-ctx8192.pth --model-name RWKV-4-Raven-14B --model-path lmsys/fastchat-t5-3b-v1.0 --model-name fastchat-t5-3b --controller http://node-01:10002 --host 0.0.0.0 --port 31000 --worker http://$(hostname):31000 --limit 4
30
+ CUDA_VISIBLE_DEVICES=1 python3 -m fastchat.serve.multi_model_worker --model-path OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5 --model-name oasst-pythia-12b --model-path mosaicml/mpt-7b-chat --model-name mpt-7b-chat --controller http://node-01:10002 --host 0.0.0.0 --port 31001 --worker http://$(hostname):31001 --limit 4
31
+ CUDA_VISIBLE_DEVICES=2 python3 -m fastchat.serve.multi_model_worker --model-path lmsys/vicuna-7b-v1.5 --model-name vicuna-7b --model-path THUDM/chatglm-6b --model-name chatglm-6b --controller http://node-01:10002 --host 0.0.0.0 --port 31002 --worker http://$(hostname):31002 --limit 4
32
+ CUDA_VISIBLE_DEVICES=3 python3 -m fastchat.serve.vllm_worker --model-path ~/model_weights/alpaca-13b --controller http://node-01:10002 --host 0.0.0.0 --port 31003 --worker-address http://$(hostname):31003
33
+ ```
34
+
35
+ test
36
+ ```
37
+ python3 -m fastchat.serve.test_message --model vicuna-13b --controller http://localhost:10002
38
+ ```
docs/commands/pypi.md ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Requirement
2
+ ```
3
+ python3 -m pip install twine
4
+ python3 -m pip install --upgrade pip
5
+ pip3 install build
6
+ ```
7
+
8
+ ### Upload
9
+ ```
10
+ bash scripts/upload_pypi.sh
11
+ ```
docs/commands/webserver.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Install
2
+ ```
3
+ sudo apt update
4
+ sudo apt install tmux htop
5
+
6
+ wget https://repo.anaconda.com/archive/Anaconda3-2022.10-Linux-x86_64.sh
7
+ bash Anaconda3-2022.10-Linux-x86_64.sh
8
+
9
+ conda create -n fastchat python=3.9
10
+ conda activate fastchat
11
+
12
+ git clone https://github.com/lm-sys/FastChat.git
13
+ cd FastChat
14
+ pip3 install -e .
15
+ ```
16
+
17
+
18
+ ### Launch servers
19
+ ```
20
+ cd fastchat_logs/controller
21
+ python3 -m fastchat.serve.controller --host 0.0.0.0 --port 21001
22
+ python3 -m fastchat.serve.register_worker --controller http://localhost:21001 --worker-name https://
23
+ python3 -m fastchat.serve.test_message --model vicuna-13b --controller http://localhost:21001
24
+
25
+ cd fastchat_logs/server0
26
+
27
+ python3 -m fastchat.serve.huggingface_api_worker --model-info-file ~/elo_results/register_hf_api_models.json
28
+
29
+ export OPENAI_API_KEY=
30
+ export ANTHROPIC_API_KEY=
31
+ export GCP_PROJECT_ID=
32
+
33
+ python3 -m fastchat.serve.gradio_web_server_multi --controller http://localhost:21001 --concurrency 50 --add-chatgpt --add-claude --add-palm --elo ~/elo_results/elo_results.pkl --leaderboard-table-file ~/elo_results/leaderboard_table.csv --register ~/elo_results/register_oai_models.json --show-terms
34
+
35
+ python3 backup_logs.py
36
+ ```
37
+
38
+
39
+ ### Check the launch time
40
+ ```
41
+ for i in $(seq 0 11); do cat fastchat_logs/server$i/gradio_web_server.log | grep "Running on local URL" | tail -n 1; done
42
+ ```
43
+
44
+
45
+ ### Increase the limit of max open files
46
+ One process (do not need reboot)
47
+ ```
48
+ sudo prlimit --nofile=1048576:1048576 --pid=$id
49
+
50
+ for id in $(ps -ef | grep gradio_web_server | awk '{print $2}'); do echo $id; prlimit --nofile=1048576:1048576 --pid=$id; done
51
+ ```
52
+
53
+ System (need reboot): Add the lines below to `/etc/security/limits.conf`
54
+ ```
55
+ * hard nofile 65535
56
+ * soft nofile 65535
57
+ ```
58
+
59
+
60
+ ### Gradio edit (3.35.2)
61
+ 1. gtag and canvas
62
+ ```
63
+ vim /home/vicuna/anaconda3/envs/fastchat/lib/python3.9/site-packages/gradio/templates/frontend/index.html
64
+ ```
65
+
66
+ ```
67
+ <!-- Google tag (gtag.js) -->
68
+ <script async src="https://www.googletagmanager.com/gtag/js?id=G-K6D24EE9ED"></script><script>
69
+ window.dataLayer = window.dataLayer || [];
70
+ function gtag(){dataLayer.push(arguments);}
71
+ gtag('js', new Date());
72
+ gtag('config', 'G-K6D24EE9ED');
73
+ window.__gradio_mode__ = "app";
74
+ </script>
75
+ <script src="https://cdnjs.cloudflare.com/ajax/libs/html2canvas/1.4.1/html2canvas.min.js"></script>
76
+ ```
77
+
78
+ 2. deprecation warnings
79
+ ```
80
+ vim /home/vicuna/anaconda3/envs/fastchat/lib/python3.9/site-packages/gradio/deprecation.py
81
+ ```
82
+
83
+ ```
84
+ def check_deprecated_parameters(
85
+ ```
86
+
87
+ 3. Loading
88
+ ```
89
+ vim /home/vicuna/anaconda3/envs/fastchat/lib/python3.9/site-packages/gradio/templates/frontend/assets/index-188ef5e8.js
90
+ ```
91
+
92
+ ```
93
+ %s/"Loading..."/"Loading...(Please refresh if it takes more than 30 seconds)"/g
94
+ ```
docs/dashinfer_integration.md ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dash-infer Integration
2
+ [DashInfer](https://github.com/modelscope/dash-infer) is a high-performance inference engine specifically optimized for CPU environments, delivering exceptional performance boosts for LLM inference tasks. It supports acceleration for a variety of models including Llama, Qwen, and ChatGLM, making it a versatile choice as a performant worker in FastChat. Notably, DashInfer exhibits significant performance enhancements on both Intel x64 and ARMv9 processors, catering to a wide spectrum of hardware platforms. Its efficient design and optimization techniques ensure rapid and accurate inference capabilities, making it an ideal solution for deploying large language models in resource-constrained environments or scenarios where CPU utilization is preferred over GPU acceleration.
3
+
4
+ ## Instructions
5
+ 1. Install dash-infer.
6
+ ```
7
+ pip install dashinfer
8
+ ```
9
+
10
+ 2. When you launch a model worker, replace the normal worker (`fastchat.serve.model_worker`) with the dash-infer worker (`fastchat.serve.dashinfer_worker`). All other commands such as controller, gradio web server, and OpenAI API server are kept the same.
11
+ ```
12
+ python3 -m fastchat.serve.dashinfer_worker --model-path qwen/Qwen-7B-Chat --revision=master /path/to/dashinfer-model-generation-config.json
13
+ ```
14
+ Here is an example:
15
+ ```
16
+ python3 -m fastchat.serve.dashinfer_worker --model-path qwen/Qwen-7B-Chat --revision=master dash-infer/examples/python/model_config/config_qwen_v10_7b.json
17
+ ```
18
+
19
+ If you use an already downloaded model, try to replace model-path with a local one and choose a conversation template via --conv-template option
20
+ '''
21
+ python3 -m fastchat.serve.dashinfer_worker --model-path ~/.cache/modelscope/hub/qwen/Qwen-7B-Chat --conv-template qwen-7b-chat /path/to/dashinfer-model-generation-config.json
22
+ '''
23
+ All avaliable conversation chat templates are listed at [fastchat/conversation.py](../fastchat/conversation.py)
docs/dataset_release.md ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ ## Datasets
2
+ We release the following datasets based on our projects and websites.
3
+
4
+ - [LMSYS-Chat-1M: A Large-Scale Real-World LLM Conversation Dataset](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
5
+ - [Chatbot Arena Conversation Dataset](https://huggingface.co/datasets/lmsys/chatbot_arena_conversations)
6
+ - [MT-bench Human Annotation Dataset](https://huggingface.co/datasets/lmsys/mt_bench_human_judgments)
docs/exllama_v2.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ExllamaV2 GPTQ Inference Framework
2
+
3
+ Integrated [ExllamaV2](https://github.com/turboderp/exllamav2) customized kernel into Fastchat to provide **Faster** GPTQ inference speed.
4
+
5
+ **Note: Exllama not yet support embedding REST API.**
6
+
7
+ ## Install ExllamaV2
8
+
9
+ Setup environment (please refer to [this link](https://github.com/turboderp/exllamav2#how-to) for more details):
10
+
11
+ ```bash
12
+ git clone https://github.com/turboderp/exllamav2
13
+ cd exllamav2
14
+ pip install -e .
15
+ ```
16
+
17
+ Chat with the CLI:
18
+ ```bash
19
+ python3 -m fastchat.serve.cli \
20
+ --model-path models/vicuna-7B-1.1-GPTQ-4bit-128g \
21
+ --enable-exllama
22
+ ```
23
+
24
+ Start model worker:
25
+ ```bash
26
+ # Download quantized model from huggingface
27
+ # Make sure you have git-lfs installed (https://git-lfs.com)
28
+ git lfs install
29
+ git clone https://huggingface.co/TheBloke/vicuna-7B-1.1-GPTQ-4bit-128g models/vicuna-7B-1.1-GPTQ-4bit-128g
30
+
31
+ # Load model with default configuration (max sequence length 4096, no GPU split setting).
32
+ python3 -m fastchat.serve.model_worker \
33
+ --model-path models/vicuna-7B-1.1-GPTQ-4bit-128g \
34
+ --enable-exllama
35
+
36
+ #Load model with max sequence length 2048, allocate 18 GB to CUDA:0 and 24 GB to CUDA:1.
37
+ python3 -m fastchat.serve.model_worker \
38
+ --model-path models/vicuna-7B-1.1-GPTQ-4bit-128g \
39
+ --enable-exllama \
40
+ --exllama-max-seq-len 2048 \
41
+ --exllama-gpu-split 18,24
42
+ ```
43
+
44
+ `--exllama-cache-8bit` can be used to enable 8-bit caching with exllama and save some VRAM.
45
+
46
+ ## Performance
47
+
48
+ Reference: https://github.com/turboderp/exllamav2#performance
49
+
50
+
51
+ | Model | Mode | Size | grpsz | act | V1: 3090Ti | V1: 4090 | V2: 3090Ti | V2: 4090 |
52
+ |------------|--------------|-------|-------|-----|------------|----------|------------|-------------|
53
+ | Llama | GPTQ | 7B | 128 | no | 143 t/s | 173 t/s | 175 t/s | **195** t/s |
54
+ | Llama | GPTQ | 13B | 128 | no | 84 t/s | 102 t/s | 105 t/s | **110** t/s |
55
+ | Llama | GPTQ | 33B | 128 | yes | 37 t/s | 45 t/s | 45 t/s | **48** t/s |
56
+ | OpenLlama | GPTQ | 3B | 128 | yes | 194 t/s | 226 t/s | 295 t/s | **321** t/s |
57
+ | CodeLlama | EXL2 4.0 bpw | 34B | - | - | - | - | 42 t/s | **48** t/s |
58
+ | Llama2 | EXL2 3.0 bpw | 7B | - | - | - | - | 195 t/s | **224** t/s |
59
+ | Llama2 | EXL2 4.0 bpw | 7B | - | - | - | - | 164 t/s | **197** t/s |
60
+ | Llama2 | EXL2 5.0 bpw | 7B | - | - | - | - | 144 t/s | **160** t/s |
61
+ | Llama2 | EXL2 2.5 bpw | 70B | - | - | - | - | 30 t/s | **35** t/s |
62
+ | TinyLlama | EXL2 3.0 bpw | 1.1B | - | - | - | - | 536 t/s | **635** t/s |
63
+ | TinyLlama | EXL2 4.0 bpw | 1.1B | - | - | - | - | 509 t/s | **590** t/s |
docs/gptq.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # GPTQ 4bit Inference
2
+
3
+ Support GPTQ 4bit inference with [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
4
+
5
+ 1. Window user: use the `old-cuda` branch.
6
+ 2. Linux user: recommend the `fastest-inference-4bit` branch.
7
+
8
+ ## Install
9
+
10
+ Setup environment:
11
+ ```bash
12
+ # cd /path/to/FastChat
13
+ git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa.git repositories/GPTQ-for-LLaMa
14
+ cd repositories/GPTQ-for-LLaMa
15
+ # Window's user should use the `old-cuda` branch
16
+ git switch fastest-inference-4bit
17
+ # Install `quant-cuda` package in FastChat's virtualenv
18
+ python3 setup_cuda.py install
19
+ pip3 install texttable
20
+ ```
21
+
22
+ Chat with the CLI:
23
+ ```bash
24
+ python3 -m fastchat.serve.cli \
25
+ --model-path models/vicuna-7B-1.1-GPTQ-4bit-128g \
26
+ --gptq-wbits 4 \
27
+ --gptq-groupsize 128
28
+ ```
29
+
30
+ Start model worker:
31
+ ```bash
32
+ # Download quantized model from huggingface
33
+ # Make sure you have git-lfs installed (https://git-lfs.com)
34
+ git lfs install
35
+ git clone https://huggingface.co/TheBloke/vicuna-7B-1.1-GPTQ-4bit-128g models/vicuna-7B-1.1-GPTQ-4bit-128g
36
+
37
+ python3 -m fastchat.serve.model_worker \
38
+ --model-path models/vicuna-7B-1.1-GPTQ-4bit-128g \
39
+ --gptq-wbits 4 \
40
+ --gptq-groupsize 128
41
+
42
+ # You can specify which quantized model to use
43
+ python3 -m fastchat.serve.model_worker \
44
+ --model-path models/vicuna-7B-1.1-GPTQ-4bit-128g \
45
+ --gptq-ckpt models/vicuna-7B-1.1-GPTQ-4bit-128g/vicuna-7B-1.1-GPTQ-4bit-128g.safetensors \
46
+ --gptq-wbits 4 \
47
+ --gptq-groupsize 128 \
48
+ --gptq-act-order
49
+ ```
50
+
51
+ ## Benchmark
52
+
53
+ | LLaMA-13B | branch | Bits | group-size | memory(MiB) | PPL(c4) | Median(s/token) | act-order | speed up |
54
+ | --------- | ---------------------- | ---- | ---------- | ----------- | ------- | --------------- | --------- | -------- |
55
+ | FP16 | fastest-inference-4bit | 16 | - | 26634 | 6.96 | 0.0383 | - | 1x |
56
+ | GPTQ | triton | 4 | 128 | 8590 | 6.97 | 0.0551 | - | 0.69x |
57
+ | GPTQ | fastest-inference-4bit | 4 | 128 | 8699 | 6.97 | 0.0429 | true | 0.89x |
58
+ | GPTQ | fastest-inference-4bit | 4 | 128 | 8699 | 7.03 | 0.0287 | false | 1.33x |
59
+ | GPTQ | fastest-inference-4bit | 4 | -1 | 8448 | 7.12 | 0.0284 | false | 1.44x |
docs/langchain_integration.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Local LangChain with FastChat
2
+
3
+ [LangChain](https://python.langchain.com/en/latest/index.html) is a library that facilitates the development of applications by leveraging large language models (LLMs) and enabling their composition with other sources of computation or knowledge.
4
+ FastChat's OpenAI-compatible [API server](openai_api.md) enables using LangChain with open models seamlessly.
5
+
6
+ ## Launch RESTful API Server
7
+
8
+ Here are the steps to launch a local OpenAI API server for LangChain.
9
+
10
+ First, launch the controller
11
+
12
+ ```bash
13
+ python3 -m fastchat.serve.controller
14
+ ```
15
+
16
+ LangChain uses OpenAI model names by default, so we need to assign some faux OpenAI model names to our local model.
17
+ Here, we use Vicuna as an example and use it for three endpoints: chat completion, completion, and embedding.
18
+ `--model-path` can be a local folder or a Hugging Face repo name.
19
+ See a full list of supported models [here](../README.md#supported-models).
20
+
21
+ ```bash
22
+ python3 -m fastchat.serve.model_worker --model-names "gpt-3.5-turbo,text-davinci-003,text-embedding-ada-002" --model-path lmsys/vicuna-7b-v1.5
23
+ ```
24
+
25
+ Finally, launch the RESTful API server
26
+
27
+ ```bash
28
+ python3 -m fastchat.serve.openai_api_server --host localhost --port 8000
29
+ ```
30
+
31
+ ## Set OpenAI Environment
32
+
33
+ You can set your environment with the following commands.
34
+
35
+ Set OpenAI base url
36
+
37
+ ```bash
38
+ export OPENAI_API_BASE=http://localhost:8000/v1
39
+ ```
40
+
41
+ Set OpenAI API key
42
+
43
+ ```bash
44
+ export OPENAI_API_KEY=EMPTY
45
+ ```
46
+
47
+ If you meet the following OOM error while creating embeddings, please set a smaller batch size by using environment variables.
48
+
49
+ ~~~bash
50
+ openai.error.APIError: Invalid response object from API: '{"object":"error","message":"**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**\\n\\n(CUDA out of memory. Tried to allocate xxx MiB (GPU 0; xxx GiB total capacity; xxx GiB already allocated; xxx MiB free; xxx GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF)","code":50002}' (HTTP response code was 400)
51
+ ~~~
52
+
53
+ You can try `export FASTCHAT_WORKER_API_EMBEDDING_BATCH_SIZE=1`.
54
+
55
+ ## Try local LangChain
56
+
57
+ Here is a question answerting example.
58
+
59
+ Download a text file.
60
+
61
+ ```bash
62
+ wget https://raw.githubusercontent.com/hwchase17/langchain/v0.0.200/docs/modules/state_of_the_union.txt
63
+ ```
64
+
65
+ Run LangChain.
66
+
67
+ ~~~py
68
+ from langchain.chat_models import ChatOpenAI
69
+ from langchain.document_loaders import TextLoader
70
+ from langchain.embeddings import OpenAIEmbeddings
71
+ from langchain.indexes import VectorstoreIndexCreator
72
+
73
+ embedding = OpenAIEmbeddings(model="text-embedding-ada-002")
74
+ loader = TextLoader("state_of_the_union.txt")
75
+ index = VectorstoreIndexCreator(embedding=embedding).from_loaders([loader])
76
+ llm = ChatOpenAI(model="gpt-3.5-turbo")
77
+
78
+ questions = [
79
+ "Who is the speaker",
80
+ "What did the president say about Ketanji Brown Jackson",
81
+ "What are the threats to America",
82
+ "Who are mentioned in the speech",
83
+ "Who is the vice president",
84
+ "How many projects were announced",
85
+ ]
86
+
87
+ for query in questions:
88
+ print("Query:", query)
89
+ print("Answer:", index.query(query, llm=llm))
90
+ ~~~
docs/lightllm_integration.md ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # LightLLM Integration
2
+ You can use [LightLLM](https://github.com/ModelTC/lightllm) as an optimized worker implementation in FastChat.
3
+ It offers advanced continuous batching and a much higher (~10x) throughput.
4
+ See the supported models [here](https://github.com/ModelTC/lightllm?tab=readme-ov-file#supported-model-list).
5
+
6
+ ## Instructions
7
+ 1. Please refer to the [Get started](https://github.com/ModelTC/lightllm?tab=readme-ov-file#get-started) to install LightLLM. Or use [Pre-built image](https://github.com/ModelTC/lightllm?tab=readme-ov-file#container)
8
+
9
+ 2. When you launch a model worker, replace the normal worker (`fastchat.serve.model_worker`) with the LightLLM worker (`fastchat.serve.lightllm_worker`). All other commands such as controller, gradio web server, and OpenAI API server are kept the same. Refer to [--max_total_token_num](https://github.com/ModelTC/lightllm/blob/4a9824b6b248f4561584b8a48ae126a0c8f5b000/docs/ApiServerArgs.md?plain=1#L23) to understand how to calculate the `--max_total_token_num` argument.
10
+ ```
11
+ python3 -m fastchat.serve.lightllm_worker --model-path lmsys/vicuna-7b-v1.5 --tokenizer_mode "auto" --max_total_token_num 154000
12
+ ```
13
+
14
+ If you what to use quantized weight and kv cache for inference, try
15
+
16
+ ```
17
+ python3 -m fastchat.serve.lightllm_worker --model-path lmsys/vicuna-7b-v1.5 --tokenizer_mode "auto" --max_total_token_num 154000 --mode triton_int8weight triton_int8kv
18
+ ```
docs/mlx_integration.md ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Apple MLX Integration
2
+
3
+ You can use [Apple MLX](https://github.com/ml-explore/mlx) as an optimized worker implementation in FastChat.
4
+
5
+ It runs models efficiently on Apple Silicon
6
+
7
+ See the supported models [here](https://github.com/ml-explore/mlx-examples/tree/main/llms#supported-models).
8
+
9
+ Note that for Apple Silicon Macs with less memory, smaller models (or quantized models) are recommended.
10
+
11
+ ## Instructions
12
+
13
+ 1. Install MLX.
14
+
15
+ ```
16
+ pip install "mlx-lm>=0.0.6"
17
+ ```
18
+
19
+ 2. When you launch a model worker, replace the normal worker (`fastchat.serve.model_worker`) with the MLX worker (`fastchat.serve.mlx_worker`). Remember to launch a model worker after you have launched the controller ([instructions](../README.md))
20
+
21
+ ```
22
+ python3 -m fastchat.serve.mlx_worker --model-path TinyLlama/TinyLlama-1.1B-Chat-v1.0
23
+ ```
docs/model_support.md ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model Support
2
+ This document describes how to support a new model in FastChat.
3
+
4
+ ## Content
5
+ - [Local Models](#local-models)
6
+ - [API-Based Models](#api-based-models)
7
+
8
+ ## Local Models
9
+ To support a new local model in FastChat, you need to correctly handle its prompt template and model loading.
10
+ The goal is to make the following command run with the correct prompts.
11
+
12
+ ```
13
+ python3 -m fastchat.serve.cli --model [YOUR_MODEL_PATH]
14
+ ```
15
+
16
+ You can run this example command to learn the code logic.
17
+
18
+ ```
19
+ python3 -m fastchat.serve.cli --model lmsys/vicuna-7b-v1.5
20
+ ```
21
+
22
+ You can add `--debug` to see the actual prompt sent to the model.
23
+
24
+ ### Steps
25
+
26
+ FastChat uses the `Conversation` class to handle prompt templates and `BaseModelAdapter` class to handle model loading.
27
+
28
+ 1. Implement a conversation template for the new model at [fastchat/conversation.py](https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py). You can follow existing examples and use `register_conv_template` to add a new one. Please also add a link to the official reference code if possible.
29
+ 2. Implement a model adapter for the new model at [fastchat/model/model_adapter.py](https://github.com/lm-sys/FastChat/blob/main/fastchat/model/model_adapter.py). You can follow existing examples and use `register_model_adapter` to add a new one.
30
+ 3. (Optional) add the model name to the "Supported models" [section](#supported-models) above and add more information in [fastchat/model/model_registry.py](https://github.com/lm-sys/FastChat/blob/main/fastchat/model/model_registry.py).
31
+
32
+ After these steps, the new model should be compatible with most FastChat features, such as CLI, web UI, model worker, and OpenAI-compatible API server. Please do some testing with these features as well.
33
+
34
+ ### Supported models
35
+
36
+ - [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
37
+ - example: `python3 -m fastchat.serve.cli --model-path meta-llama/Llama-2-7b-chat-hf`
38
+ - Vicuna, Alpaca, LLaMA, Koala
39
+ - example: `python3 -m fastchat.serve.cli --model-path lmsys/vicuna-7b-v1.5`
40
+ - [allenai/tulu-2-dpo-7b](https://huggingface.co/allenai/tulu-2-dpo-7b)
41
+ - [BAAI/AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B)
42
+ - [BAAI/AquilaChat2-7B](https://huggingface.co/BAAI/AquilaChat2-7B)
43
+ - [BAAI/AquilaChat2-34B](https://huggingface.co/BAAI/AquilaChat2-34B)
44
+ - [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en#using-huggingface-transformers)
45
+ - [argilla/notus-7b-v1](https://huggingface.co/argilla/notus-7b-v1)
46
+ - [baichuan-inc/baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B)
47
+ - [BlinkDL/RWKV-4-Raven](https://huggingface.co/BlinkDL/rwkv-4-raven)
48
+ - example: `python3 -m fastchat.serve.cli --model-path ~/model_weights/RWKV-4-Raven-7B-v11x-Eng99%-Other1%-20230429-ctx8192.pth`
49
+ - [bofenghuang/vigogne-2-7b-instruct](https://huggingface.co/bofenghuang/vigogne-2-7b-instruct)
50
+ - [bofenghuang/vigogne-2-7b-chat](https://huggingface.co/bofenghuang/vigogne-2-7b-chat)
51
+ - [camel-ai/CAMEL-13B-Combined-Data](https://huggingface.co/camel-ai/CAMEL-13B-Combined-Data)
52
+ - [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf)
53
+ - [databricks/dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b)
54
+ - [deepseek-ai/deepseek-llm-67b-chat](https://huggingface.co/deepseek-ai/deepseek-llm-67b-chat)
55
+ - [deepseek-ai/deepseek-coder-33b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct)
56
+ - [FlagAlpha/Llama2-Chinese-13b-Chat](https://huggingface.co/FlagAlpha/Llama2-Chinese-13b-Chat)
57
+ - [FreedomIntelligence/phoenix-inst-chat-7b](https://huggingface.co/FreedomIntelligence/phoenix-inst-chat-7b)
58
+ - [FreedomIntelligence/ReaLM-7b-v1](https://huggingface.co/FreedomIntelligence/Realm-7b)
59
+ - [h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b](https://huggingface.co/h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b)
60
+ - [HuggingFaceH4/starchat-beta](https://huggingface.co/HuggingFaceH4/starchat-beta)
61
+ - [HuggingFaceH4/zephyr-7b-alpha](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha)
62
+ - [internlm/internlm-chat-7b](https://huggingface.co/internlm/internlm-chat-7b)
63
+ - [cllm/consistency-llm-7b-codesearchnet/consistency-llm-7b-gsm8k/consistency-llm-7b-sharegpt48k/consistency-llm-7b-spider](https://huggingface.co/cllm)
64
+ - [IEITYuan/Yuan2-2B/51B/102B-hf](https://huggingface.co/IEITYuan)
65
+ - [lcw99/polyglot-ko-12.8b-chang-instruct-chat](https://huggingface.co/lcw99/polyglot-ko-12.8b-chang-instruct-chat)
66
+ - [lmsys/fastchat-t5-3b-v1.0](https://huggingface.co/lmsys/fastchat-t5)
67
+ - [meta-math/MetaMath-7B-V1.0](https://huggingface.co/meta-math/MetaMath-7B-V1.0)
68
+ - [Microsoft/Orca-2-7b](https://huggingface.co/microsoft/Orca-2-7b)
69
+ - [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat)
70
+ - example: `python3 -m fastchat.serve.cli --model-path mosaicml/mpt-7b-chat`
71
+ - [Neutralzz/BiLLa-7B-SFT](https://huggingface.co/Neutralzz/BiLLa-7B-SFT)
72
+ - [nomic-ai/gpt4all-13b-snoozy](https://huggingface.co/nomic-ai/gpt4all-13b-snoozy)
73
+ - [NousResearch/Nous-Hermes-13b](https://huggingface.co/NousResearch/Nous-Hermes-13b)
74
+ - [openaccess-ai-collective/manticore-13b-chat-pyg](https://huggingface.co/openaccess-ai-collective/manticore-13b-chat-pyg)
75
+ - [OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5](https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5)
76
+ - [openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5)
77
+ - [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca)
78
+ - [OpenLemur/lemur-70b-chat-v1](https://huggingface.co/OpenLemur/lemur-70b-chat-v1)
79
+ - [Phind/Phind-CodeLlama-34B-v2](https://huggingface.co/Phind/Phind-CodeLlama-34B-v2)
80
+ - [project-baize/baize-v2-7b](https://huggingface.co/project-baize/baize-v2-7b)
81
+ - [Qwen/Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat)
82
+ - [rishiraj/CatPPT](https://huggingface.co/rishiraj/CatPPT)
83
+ - [Salesforce/codet5p-6b](https://huggingface.co/Salesforce/codet5p-6b)
84
+ - [StabilityAI/stablelm-tuned-alpha-7b](https://huggingface.co/stabilityai/stablelm-tuned-alpha-7b)
85
+ - [tenyx/TenyxChat-7B-v1](https://huggingface.co/tenyx/TenyxChat-7B-v1)
86
+ - [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
87
+ - [THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b)
88
+ - [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b)
89
+ - [tiiuae/falcon-40b](https://huggingface.co/tiiuae/falcon-40b)
90
+ - [tiiuae/falcon-180B-chat](https://huggingface.co/tiiuae/falcon-180B-chat)
91
+ - [timdettmers/guanaco-33b-merged](https://huggingface.co/timdettmers/guanaco-33b-merged)
92
+ - [togethercomputer/RedPajama-INCITE-7B-Chat](https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Chat)
93
+ - [VMware/open-llama-7b-v2-open-instruct](https://huggingface.co/VMware/open-llama-7b-v2-open-instruct)
94
+ - [WizardLM/WizardLM-13B-V1.0](https://huggingface.co/WizardLM/WizardLM-13B-V1.0)
95
+ - [WizardLM/WizardCoder-15B-V1.0](https://huggingface.co/WizardLM/WizardCoder-15B-V1.0)
96
+ - [Xwin-LM/Xwin-LM-7B-V0.1](https://huggingface.co/Xwin-LM/Xwin-LM-70B-V0.1)
97
+ - Any [EleutherAI](https://huggingface.co/EleutherAI) pythia model such as [pythia-6.9b](https://huggingface.co/EleutherAI/pythia-6.9b)
98
+ - Any [Peft](https://github.com/huggingface/peft) adapter trained on top of a
99
+ model above. To activate, must have `peft` in the model path. Note: If
100
+ loading multiple peft models, you can have them share the base model weights by
101
+ setting the environment variable `PEFT_SHARE_BASE_WEIGHTS=true` in any model
102
+ worker.
103
+
104
+
105
+ ## API-Based Models
106
+ To support an API-based model, consider learning from the existing OpenAI example.
107
+ If the model is compatible with OpenAI APIs, then a configuration file is all that's needed without any additional code.
108
+ For custom protocols, implementation of a streaming generator in [fastchat/serve/api_provider.py](https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/api_provider.py) is required, following the provided examples. Currently, FastChat is compatible with OpenAI, Anthropic, Google Vertex AI, Mistral, Nvidia NGC, YandexGPT and Reka.
109
+
110
+ ### Steps to Launch a WebUI with an API Model
111
+ 1. Specify the endpoint information in a JSON configuration file. For instance, create a file named `api_endpoints.json`:
112
+ ```json
113
+ {
114
+ "gpt-3.5-turbo": {
115
+ "model_name": "gpt-3.5-turbo",
116
+ "api_type": "openai",
117
+ "api_base": "https://api.openai.com/v1",
118
+ "api_key": "sk-******",
119
+ "anony_only": false,
120
+ "recommended_config": {
121
+ "temperature": 0.7,
122
+ "top_p": 1.0
123
+ },
124
+ "text-arena": true,
125
+ "vision-arena": false,
126
+ }
127
+ }
128
+ ```
129
+ - "api_type" can be one of the following: openai, anthropic, gemini, mistral, yandexgpt or reka. For custom APIs, add a new type and implement it accordingly.
130
+ - "anony_only" indicates whether to display this model in anonymous mode only.
131
+ - "recommended_config" indicates the recommended generation parameters for temperature and top_p.
132
+ - "text-arena" indicates whether the model should be displayed in the Text Arena.
133
+ - "vision-arena" indicates whether the model should be displayed in the Vision Arena.
134
+
135
+ 2. Launch the Gradio web server with the argument `--register api_endpoints.json`:
136
+ ```
137
+ python3 -m fastchat.serve.gradio_web_server --controller "" --share --register api_endpoints.json
138
+ ```
139
+
140
+ Now, you can open a browser and interact with the model.
docs/openai_api.md ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # OpenAI-Compatible RESTful APIs
2
+
3
+ FastChat provides OpenAI-compatible APIs for its supported models, so you can use FastChat as a local drop-in replacement for OpenAI APIs.
4
+ The FastChat server is compatible with both [openai-python](https://github.com/openai/openai-python) library and cURL commands.
5
+
6
+ The following OpenAI APIs are supported:
7
+ - Chat Completions. (Reference: https://platform.openai.com/docs/api-reference/chat)
8
+ - Completions. (Reference: https://platform.openai.com/docs/api-reference/completions)
9
+ - Embeddings. (Reference: https://platform.openai.com/docs/api-reference/embeddings)
10
+
11
+ The REST API can be seamlessly operated from Google Colab, as demonstrated in the [FastChat_API_GoogleColab.ipynb](https://github.com/lm-sys/FastChat/blob/main/playground/FastChat_API_GoogleColab.ipynb) notebook, available in our repository. This notebook provides a practical example of how to utilize the API effectively within the Google Colab environment.
12
+
13
+ ## RESTful API Server
14
+ First, launch the controller
15
+
16
+ ```bash
17
+ python3 -m fastchat.serve.controller
18
+ ```
19
+
20
+ Then, launch the model worker(s)
21
+
22
+ ```bash
23
+ python3 -m fastchat.serve.model_worker --model-path lmsys/vicuna-7b-v1.5
24
+ ```
25
+
26
+ Finally, launch the RESTful API server
27
+
28
+ ```bash
29
+ python3 -m fastchat.serve.openai_api_server --host localhost --port 8000
30
+ ```
31
+
32
+ Now, let us test the API server.
33
+
34
+ ### OpenAI Official SDK
35
+ The goal of `openai_api_server.py` is to implement a fully OpenAI-compatible API server, so the models can be used directly with [openai-python](https://github.com/openai/openai-python) library.
36
+
37
+ First, install OpenAI python package >= 1.0:
38
+ ```bash
39
+ pip install --upgrade openai
40
+ ```
41
+
42
+ Then, interact with the Vicuna model:
43
+ ```python
44
+ import openai
45
+
46
+ openai.api_key = "EMPTY"
47
+ openai.base_url = "http://localhost:8000/v1/"
48
+
49
+ model = "vicuna-7b-v1.5"
50
+ prompt = "Once upon a time"
51
+
52
+ # create a completion
53
+ completion = openai.completions.create(model=model, prompt=prompt, max_tokens=64)
54
+ # print the completion
55
+ print(prompt + completion.choices[0].text)
56
+
57
+ # create a chat completion
58
+ completion = openai.chat.completions.create(
59
+ model=model,
60
+ messages=[{"role": "user", "content": "Hello! What is your name?"}]
61
+ )
62
+ # print the completion
63
+ print(completion.choices[0].message.content)
64
+ ```
65
+
66
+ Streaming is also supported. See [test_openai_api.py](../tests/test_openai_api.py). If your api server is behind a proxy you'll need to turn off buffering, you can do so in Nginx by setting `proxy_buffering off;` in the location block for the proxy.
67
+
68
+ ### cURL
69
+ cURL is another good tool for observing the output of the api.
70
+
71
+ List Models:
72
+ ```bash
73
+ curl http://localhost:8000/v1/models
74
+ ```
75
+
76
+ Chat Completions:
77
+ ```bash
78
+ curl http://localhost:8000/v1/chat/completions \
79
+ -H "Content-Type: application/json" \
80
+ -d '{
81
+ "model": "vicuna-7b-v1.5",
82
+ "messages": [{"role": "user", "content": "Hello! What is your name?"}]
83
+ }'
84
+ ```
85
+
86
+ Text Completions:
87
+ ```bash
88
+ curl http://localhost:8000/v1/completions \
89
+ -H "Content-Type: application/json" \
90
+ -d '{
91
+ "model": "vicuna-7b-v1.5",
92
+ "prompt": "Once upon a time",
93
+ "max_tokens": 41,
94
+ "temperature": 0.5
95
+ }'
96
+ ```
97
+
98
+ Embeddings:
99
+ ```bash
100
+ curl http://localhost:8000/v1/embeddings \
101
+ -H "Content-Type: application/json" \
102
+ -d '{
103
+ "model": "vicuna-7b-v1.5",
104
+ "input": "Hello world!"
105
+ }'
106
+ ```
107
+
108
+ ### Running multiple
109
+
110
+ If you want to run multiple models on the same machine and in the same process,
111
+ you can replace the `model_worker` step above with a multi model variant:
112
+
113
+ ```bash
114
+ python3 -m fastchat.serve.multi_model_worker \
115
+ --model-path lmsys/vicuna-7b-v1.5 \
116
+ --model-names vicuna-7b-v1.5 \
117
+ --model-path lmsys/longchat-7b-16k \
118
+ --model-names longchat-7b-16k
119
+ ```
120
+
121
+ This loads both models into the same accelerator and in the same process. This
122
+ works best when using a Peft model that triggers the `PeftModelAdapter`.
123
+
124
+ TODO: Base model weight optimization will be fixed once [this
125
+ Peft](https://github.com/huggingface/peft/issues/430) issue is resolved.
126
+
127
+ ## LangChain Support
128
+ This OpenAI-compatible API server supports LangChain. See [LangChain Integration](langchain_integration.md) for details.
129
+
130
+ ## Adjusting Environment Variables
131
+
132
+ ### Timeout
133
+ By default, a timeout error will occur if a model worker does not response within 100 seconds. If your model/hardware is slower, you can change this timeout through an environment variable:
134
+
135
+ ```bash
136
+ export FASTCHAT_WORKER_API_TIMEOUT=<larger timeout in seconds>
137
+ ```
138
+
139
+ ### Batch size
140
+ If you meet the following OOM error while creating embeddings. You can use a smaller batch size by setting
141
+
142
+ ```bash
143
+ export FASTCHAT_WORKER_API_EMBEDDING_BATCH_SIZE=1
144
+ ```
145
+
146
+ ## Todos
147
+ Some features to be implemented:
148
+
149
+ - [ ] Support more parameters like `logprobs`, `logit_bias`, `user`, `presence_penalty` and `frequency_penalty`
150
+ - [ ] Model details (permissions, owner and create time)
151
+ - [ ] Edits API
152
+ - [ ] Rate Limitation Settings
docs/server_arch.md ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # FastChat Server Architecture
2
+ ![server arch](../assets/server_arch.png)
docs/third_party_ui.md ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Third Party UI
2
+ If you want to host it on your own UI or third party UI, you can launch the [OpenAI compatible server](openai_api.md) and host with a tunnelling service such as Tunnelmole or ngrok, and then enter the credentials appropriately.
3
+
4
+ You can find suitable UIs from third party repos:
5
+ - [WongSaang's ChatGPT UI](https://github.com/WongSaang/chatgpt-ui)
6
+ - [McKayWrigley's Chatbot UI](https://github.com/mckaywrigley/chatbot-ui)
7
+
8
+ - Please note that some third-party providers only offer the standard `gpt-3.5-turbo`, `gpt-4`, etc., so you will have to add your own custom model inside the code. [Here is an example of how to create a UI with any custom model name](https://github.com/ztjhz/BetterChatGPT/pull/461).
9
+
10
+ ##### Using Tunnelmole
11
+ Tunnelmole is an open source tunnelling tool. You can find its source code on [Github](https://github.com/robbie-cahill/tunnelmole-client). Here's how you can use Tunnelmole:
12
+ 1. Install Tunnelmole with `curl -O https://install.tunnelmole.com/9Wtxu/install && sudo bash install`. (On Windows, download [tmole.exe](https://tunnelmole.com/downloads/tmole.exe)). Head over to the [README](https://github.com/robbie-cahill/tunnelmole-client) for other methods such as `npm` or building from source.
13
+ 2. Run `tmole 7860` (replace `7860` with your listening port if it is different from 7860). The output will display two URLs: one HTTP and one HTTPS. It's best to use the HTTPS URL for better privacy and security.
14
+ ```
15
+ ➜ ~ tmole 7860
16
+ http://bvdo5f-ip-49-183-170-144.tunnelmole.net is forwarding to localhost:7860
17
+ https://bvdo5f-ip-49-183-170-144.tunnelmole.net is forwarding to localhost:7860
18
+ ```
19
+
20
+ ##### Using ngrok
21
+ ngrok is a popular closed source tunnelling tool. First download and install it from [ngrok.com](https://ngrok.com/downloads). Here's how to use it to expose port 7860.
22
+ ```
23
+ ngrok http 7860
24
+ ```
docs/training.md ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Fine-tuning FastChat-T5
2
+ You can use the following command to train FastChat-T5 with 4 x A100 (40GB).
3
+ ```bash
4
+ torchrun --nproc_per_node=4 --master_port=9778 fastchat/train/train_flant5.py \
5
+ --model_name_or_path google/flan-t5-xl \
6
+ --data_path ./data/dummy_conversation.json \
7
+ --bf16 True \
8
+ --output_dir ./checkpoints_flant5_3b \
9
+ --num_train_epochs 3 \
10
+ --per_device_train_batch_size 1 \
11
+ --per_device_eval_batch_size 1 \
12
+ --gradient_accumulation_steps 4 \
13
+ --evaluation_strategy "no" \
14
+ --save_strategy "steps" \
15
+ --save_steps 300 \
16
+ --save_total_limit 1 \
17
+ --learning_rate 2e-5 \
18
+ --weight_decay 0. \
19
+ --warmup_ratio 0.03 \
20
+ --lr_scheduler_type "cosine" \
21
+ --logging_steps 1 \
22
+ --fsdp "full_shard auto_wrap" \
23
+ --fsdp_transformer_layer_cls_to_wrap T5Block \
24
+ --tf32 True \
25
+ --model_max_length 2048 \
26
+ --preprocessed_path ./preprocessed_data/processed.json \
27
+ --gradient_checkpointing True
28
+ ```
29
+
30
+ After training, please use our post-processing [function](https://github.com/lm-sys/FastChat/blob/55051ad0f23fef5eeecbda14a2e3e128ffcb2a98/fastchat/utils.py#L166-L185) to update the saved model weight. Additional discussions can be found [here](https://github.com/lm-sys/FastChat/issues/643).
31
+
32
+ ### Fine-tuning using (Q)LoRA
33
+ You can use the following command to train Vicuna-7B using QLoRA using ZeRO2. Note that ZeRO3 is not currently supported with QLoRA but ZeRO3 does support LoRA, which has a reference configuraiton under playground/deepspeed_config_s3.json. To use QLoRA, you must have bitsandbytes>=0.39.0 and transformers>=4.30.0 installed.
34
+ ```bash
35
+ deepspeed fastchat/train/train_lora.py \
36
+ --model_name_or_path ~/model_weights/llama-7b \
37
+ --lora_r 8 \
38
+ --lora_alpha 16 \
39
+ --lora_dropout 0.05 \
40
+ --data_path ./data/dummy_conversation.json \
41
+ --bf16 True \
42
+ --output_dir ./checkpoints \
43
+ --num_train_epochs 3 \
44
+ --per_device_train_batch_size 1 \
45
+ --per_device_eval_batch_size 1 \
46
+ --gradient_accumulation_steps 1 \
47
+ --evaluation_strategy "no" \
48
+ --save_strategy "steps" \
49
+ --save_steps 1200 \
50
+ --save_total_limit 100 \
51
+ --learning_rate 2e-5 \
52
+ --weight_decay 0. \
53
+ --warmup_ratio 0.03 \
54
+ --lr_scheduler_type "cosine" \
55
+ --logging_steps 1 \
56
+ --tf32 True \
57
+ --model_max_length 2048 \
58
+ --q_lora True \
59
+ --deepspeed playground/deepspeed_config_s2.json \
60
+ ```
61
+
62
+ For T5-XL or XXL
63
+
64
+ ```bash
65
+ deepspeed fastchat/train/train_lora_t5.py \
66
+ --model_name_or_path google/flan-t5-xl \
67
+ --data_path ./data/dummy_conversation.json \
68
+ --bf16 True \
69
+ --output_dir ./checkpoints_flant5_3b \
70
+ --num_train_epochs 3 \
71
+ --per_device_train_batch_size 1 \
72
+ --per_device_eval_batch_size 1 \
73
+ --gradient_accumulation_steps 4 \
74
+ --evaluation_strategy "no" \
75
+ --save_strategy "steps" \
76
+ --save_steps 300 \
77
+ --save_total_limit 1 \
78
+ --learning_rate 2e-5 \
79
+ --weight_decay 0. \
80
+ --warmup_ratio 0.03 \
81
+ --lr_scheduler_type "cosine" \
82
+ --logging_steps 1 \
83
+ --model_max_length 2048 \
84
+ --preprocessed_path ./preprocessed_data/processed.json \
85
+ --gradient_checkpointing True \
86
+ --q_lora True \
87
+ --deepspeed playground/deepspeed_config_s2.json
88
+
89
+ ```
90
+
91
+ ### Fine-tuning Vicuna-7B with Local NPUs
92
+
93
+ You can use the following command to train Vicuna-7B with 8 x NPUs. Use `--nproc_per_node` to specify the number of NPUs.
94
+ ```bash
95
+ torchrun --nproc_per_node=8 --master_port=20001 fastchat/train/train.py \
96
+ --model_name_or_path ~/vicuna-7b-v1.5-16k \
97
+ --data_path data/dummy_conversation.json \
98
+ --fp16 True \
99
+ --output_dir output_vicuna \
100
+ --num_train_epochs 3 \
101
+ --per_device_train_batch_size 8 \
102
+ --per_device_eval_batch_size 1 \
103
+ --gradient_accumulation_steps 1 \
104
+ --evaluation_strategy "no" \
105
+ --save_strategy "steps" \
106
+ --save_steps 1200 \
107
+ --save_total_limit 10 \
108
+ --learning_rate 2e-5 \
109
+ --weight_decay 0. \
110
+ --warmup_ratio 0.03 \
111
+ --lr_scheduler_type "cosine" \
112
+ --logging_steps 1 \
113
+ --fsdp "full_shard auto_wrap" \
114
+ --fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
115
+ --model_max_length 2048 \
116
+ --gradient_checkpointing True \
117
+ --lazy_preprocess True
118
+ ```
docs/vicuna_weights_version.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Vicuna Weights
2
+
3
+ | Weights version | Link | FastChat version compatibility | Base Model | Release Date | Fine-tuning Data |
4
+ | ---- | ---- | ---- | ---- | ---- | ---- |
5
+ | v1.5 | [7B](https://huggingface.co/lmsys/vicuna-7b-v1.5), [7B-16k](https://huggingface.co/lmsys/vicuna-7b-v1.5-16k), [13B](https://huggingface.co/lmsys/vicuna-13b-v1.5), [13B-16k](https://huggingface.co/lmsys/vicuna-13b-v1.5-16k) | `>=0.2.21` | Llama 2 | Aug. 1, 2023 | 370M tokens |
6
+ | v1.3 | [7B](https://huggingface.co/lmsys/vicuna-7b-v1.3), [13B](https://huggingface.co/lmsys/vicuna-13b-v1.3), [33B](//huggingface.co/lmsys/vicuna-33b-v1.3) | `>=0.2.1` | Llama 1 | Jun. 22, 2023 | 370M tokens |
7
+ | v1.1 | [7B](https://huggingface.co/lmsys/vicuna-7b-v1.1), [13B](https://huggingface.co/lmsys/vicuna-13b-v1.1) | `>=0.2.1` | Llama 1 | Apr. 12, 2023 | - |
8
+ | v0 | [7B-delta](https://huggingface.co/lmsys/vicuna-7b-delta-v0), [13B-delta](https://huggingface.co/lmsys/vicuna-13b-delta-v0) | `<=0.1.10` | Llama 1 | Mar. 30, 2023 | - |
9
+
10
+ ### Updates
11
+ - Major updates of weights v1.5
12
+ - Use Llama2 as the base model.
13
+ - Provide 16K context length versions using linear RoPE scaling.
14
+
15
+ - Major updates of weights v1.3
16
+ - Train with twice the amount of ShareGPT data compared to previous versions.
17
+ - Provide merged weights directly instead of delta weights.
18
+
19
+ - Major updates of weights v1.1
20
+ - Refactor the tokenization and separator. In Vicuna v1.1, the separator has been changed from `###` to the EOS token `</s>`. This change makes it easier to determine the generation stop criteria and enables better compatibility with other libraries.
21
+ - Fix the supervised fine-tuning loss computation for better model quality.
22
+
23
+ ## Prompt Template
24
+
25
+ ### Example prompt (weights v1.1, v1.3, v1.5)
26
+ ```
27
+ A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
28
+
29
+ USER: Hello!
30
+ ASSISTANT: Hello!</s>
31
+ USER: How are you?
32
+ ASSISTANT: I am good.</s>
33
+ ```
34
+
35
+ See a full prompt template [here](https://github.com/lm-sys/FastChat/blob/d578599c69d060e6d40943f1b5b72af98956092a/fastchat/conversation.py#L286-L299) and example output [here](https://github.com/lm-sys/FastChat/blob/d578599c69d060e6d40943f1b5b72af98956092a/fastchat/conversation.py#L748-L753).
36
+
37
+ ### Example prompt (weights v0)
38
+ ```
39
+ A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
40
+
41
+ ### Human: Hello!
42
+ ### Assistant: Hello!
43
+ ### Human: How are you?
44
+ ### Assistant: I am good.
45
+ ```
46
+
47
+ See the full prompt template [here](https://github.com/lm-sys/FastChat/blob/d578599c69d060e6d40943f1b5b72af98956092a/fastchat/conversation.py#L238-L269).
48
+
49
+ ## How to Apply Delta Weights (Only Needed for Weights v0)
50
+
51
+ We release [Vicuna](https://lmsys.org/blog/2023-03-30-vicuna/) weights v0 as delta weights to comply with the LLaMA model license.
52
+ You can add our delta to the original LLaMA weights to obtain the Vicuna weights. Instructions:
53
+
54
+ 1. Get the original LLaMA weights in the Hugging Face format by following the instructions [here](https://huggingface.co/docs/transformers/main/model_doc/llama).
55
+ 2. Use the following scripts to get Vicuna weights by applying our delta. They will automatically download delta weights from our Hugging Face [account](https://huggingface.co/lmsys).
56
+
57
+ **NOTE**:
58
+ Weights v1.1 are only compatible with ```transformers>=4.28.0``` and ``fschat >= 0.2.0``.
59
+ Please update your local packages accordingly. If you follow the above commands to do a fresh install, then you should get all the correct versions.
60
+
61
+ #### Vicuna-7B
62
+ This conversion command needs around 30 GB of CPU RAM.
63
+ See the "Low CPU Memory Conversion" section below if you do not have enough memory.
64
+ Replace `/path/to/*` with the real paths.
65
+ ```bash
66
+ python3 -m fastchat.model.apply_delta \
67
+ --base-model-path /path/to/llama-7b \
68
+ --target-model-path /path/to/output/vicuna-7b \
69
+ --delta-path lmsys/vicuna-7b-delta-v1.1
70
+ ```
71
+
72
+ #### Vicuna-13B
73
+ This conversion command needs around 60 GB of CPU RAM.
74
+ See the "Low CPU Memory Conversion" section below if you do not have enough memory.
75
+ Replace `/path/to/*` with the real paths.
76
+ ```bash
77
+ python3 -m fastchat.model.apply_delta \
78
+ --base-model-path /path/to/llama-13b \
79
+ --target-model-path /path/to/output/vicuna-13b \
80
+ --delta-path lmsys/vicuna-13b-delta-v1.1
81
+ ```
82
+
83
+ #### Low CPU Memory Conversion
84
+ You can try these methods to reduce the CPU RAM requirement of weight conversion.
85
+ 1. Append `--low-cpu-mem` to the commands above, which will split large weight files into smaller ones and use the disk as temporary storage. This can keep the peak memory at less than 16GB.
86
+ 2. Create a large swap file and rely on the operating system to automatically utilize the disk as virtual memory.
87
+
88
+ ## FAQ
89
+
90
+ ### Tokenizer issues
91
+ There are some frequently asked tokenizer issues (https://github.com/lm-sys/FastChat/issues/408).
92
+ Some of them are not only related to FastChat or Vicuna weights but are also related to how you convert the base llama model.
93
+
94
+ We suggest that you use `transformers>=4.28.0` and redo the weight conversion for the base llama model.
95
+ After applying the delta, you should have a file named `special_tokens_map.json` in your converted weight folder for either v0 or v1.1.
96
+ The contents of this file should be the same as this file: https://huggingface.co/lmsys/vicuna-13b-delta-v0/blob/main/special_tokens_map.json.
97
+ If the file is not present, please copy the `special_tokens_map.json` and `tokenizer_config.json` files from https://huggingface.co/lmsys/vicuna-13b-delta-v0/tree/main to your converted weight folder. This works for both v0 and v1.1.
docs/vllm_integration.md ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # vLLM Integration
2
+ You can use [vLLM](https://vllm.ai/) as an optimized worker implementation in FastChat.
3
+ It offers advanced continuous batching and a much higher (~10x) throughput.
4
+ See the supported models [here](https://vllm.readthedocs.io/en/latest/models/supported_models.html).
5
+
6
+ ## Instructions
7
+ 1. Install vLLM.
8
+ ```
9
+ pip install vllm
10
+ ```
11
+
12
+ 2. When you launch a model worker, replace the normal worker (`fastchat.serve.model_worker`) with the vLLM worker (`fastchat.serve.vllm_worker`). All other commands such as controller, gradio web server, and OpenAI API server are kept the same.
13
+ ```
14
+ python3 -m fastchat.serve.vllm_worker --model-path lmsys/vicuna-7b-v1.5
15
+ ```
16
+
17
+ If you see tokenizer errors, try
18
+ ```
19
+ python3 -m fastchat.serve.vllm_worker --model-path lmsys/vicuna-7b-v1.5 --tokenizer hf-internal-testing/llama-tokenizer
20
+ ```
21
+
22
+ If you use an AWQ quantized model, try
23
+ '''
24
+ python3 -m fastchat.serve.vllm_worker --model-path TheBloke/vicuna-7B-v1.5-AWQ --quantization awq
25
+ '''
docs/xFasterTransformer.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # xFasterTransformer Inference Framework
2
+
3
+ Integrated [xFasterTransformer](https://github.com/intel/xFasterTransformer) customized framework into Fastchat to provide **Faster** inference speed on Intel CPU.
4
+
5
+ ## Install xFasterTransformer
6
+
7
+ Setup environment (please refer to [this link](https://github.com/intel/xFasterTransformer#installation) for more details):
8
+
9
+ ```bash
10
+ pip install xfastertransformer
11
+ ```
12
+
13
+ ## Prepare models
14
+
15
+ Prepare Model (please refer to [this link](https://github.com/intel/xFasterTransformer#prepare-model) for more details):
16
+ ```bash
17
+ python ./tools/chatglm_convert.py -i ${HF_DATASET_DIR} -o ${OUTPUT_DIR}
18
+ ```
19
+
20
+ ## Parameters of xFasterTransformer
21
+ --enable-xft to enable xfastertransformer in Fastchat
22
+ --xft-max-seq-len to set the max token length the model can process. max token length include input token length.
23
+ --xft-dtype to set datatype used in xFasterTransformer for computation. xFasterTransformer can support fp32, fp16, int8, bf16 and hybrid data types like : bf16_fp16, bf16_int8. For datatype details please refer to [this link](https://github.com/intel/xFasterTransformer/wiki/Data-Type-Support-Platform)
24
+
25
+
26
+ Chat with the CLI:
27
+ ```bash
28
+ #run inference on all CPUs and using float16
29
+ python3 -m fastchat.serve.cli \
30
+ --model-path /path/to/models \
31
+ --enable-xft \
32
+ --xft-dtype fp16
33
+ ```
34
+ or with numactl on multi-socket server for better performance
35
+ ```bash
36
+ #run inference on numanode 0 and with data type bf16_fp16 (first token uses bfloat16, and rest tokens use float16)
37
+ numactl -N 0 --localalloc \
38
+ python3 -m fastchat.serve.cli \
39
+ --model-path /path/to/models/chatglm2_6b_cpu/ \
40
+ --enable-xft \
41
+ --xft-dtype bf16_fp16
42
+ ```
43
+ or using MPI to run inference on 2 sockets for better performance
44
+ ```bash
45
+ #run inference on numanode 0 and 1 and with data type bf16_fp16 (first token uses bfloat16, and rest tokens use float16)
46
+ OMP_NUM_THREADS=$CORE_NUM_PER_SOCKET LD_PRELOAD=libiomp5.so mpirun \
47
+ -n 1 numactl -N 0 --localalloc \
48
+ python -m fastchat.serve.cli \
49
+ --model-path /path/to/models/chatglm2_6b_cpu/ \
50
+ --enable-xft \
51
+ --xft-dtype bf16_fp16 : \
52
+ -n 1 numactl -N 1 --localalloc \
53
+ python -m fastchat.serve.cli \
54
+ --model-path /path/to/models/chatglm2_6b_cpu/ \
55
+ --enable-xft \
56
+ --xft-dtype bf16_fp16
57
+ ```
58
+
59
+
60
+ Start model worker:
61
+ ```bash
62
+ # Load model with default configuration (max sequence length 4096, no GPU split setting).
63
+ python3 -m fastchat.serve.model_worker \
64
+ --model-path /path/to/models \
65
+ --enable-xft \
66
+ --xft-dtype bf16_fp16
67
+ ```
68
+ or with numactl on multi-socket server for better performance
69
+ ```bash
70
+ #run inference on numanode 0 and with data type bf16_fp16 (first token uses bfloat16, and rest tokens use float16)
71
+ numactl -N 0 --localalloc python3 -m fastchat.serve.model_worker \
72
+ --model-path /path/to/models \
73
+ --enable-xft \
74
+ --xft-dtype bf16_fp16
75
+ ```
76
+ or using MPI to run inference on 2 sockets for better performance
77
+ ```bash
78
+ #run inference on numanode 0 and 1 and with data type bf16_fp16 (first token uses bfloat16, and rest tokens use float16)
79
+ OMP_NUM_THREADS=$CORE_NUM_PER_SOCKET LD_PRELOAD=libiomp5.so mpirun \
80
+ -n 1 numactl -N 0 --localalloc python -m fastchat.serve.model_worker \
81
+ --model-path /path/to/models \
82
+ --enable-xft \
83
+ --xft-dtype bf16_fp16 : \
84
+ -n 1 numactl -N 1 --localalloc python -m fastchat.serve.model_worker \
85
+ --model-path /path/to/models \
86
+ --enable-xft \
87
+ --xft-dtype bf16_fp16
88
+ ```
89
+
90
+ For more details, please refer to [this link](https://github.com/intel/xFasterTransformer#how-to-run)
fastchat/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ __version__ = "0.2.36"
fastchat/constants.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Global constants.
3
+ """
4
+
5
+ from enum import IntEnum
6
+ import os
7
+
8
+ REPO_PATH = os.path.dirname(os.path.dirname(__file__))
9
+
10
+ # Survey Link URL (to be removed)
11
+ SURVEY_LINK = """<div style='text-align: center; margin: 20px 0;'>
12
+ <div style='display: inline-block; border: 2px solid #DE3163; padding: 10px; border-radius: 5px;'>
13
+ <span style='color: #DE3163; font-weight: bold;'>We would love your feedback! Fill out <a href='https://docs.google.com/forms/d/e/1FAIpQLSfKSxwFOW6qD05phh4fwYjk8q0YV1VQe_bmK0_qOVTbC66_MA/viewform?usp=sf_link' style='color: #DE3163; text-decoration: underline;'>this short survey</a> to tell us what you like about the arena, what you don't like, and what you want to see in the future.</span>
14
+ </div>
15
+ </div>"""
16
+
17
+ ##### For the gradio web server
18
+ SERVER_ERROR_MSG = (
19
+ "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
20
+ )
21
+ TEXT_MODERATION_MSG = (
22
+ "$MODERATION$ YOUR TEXT VIOLATES OUR CONTENT MODERATION GUIDELINES."
23
+ )
24
+ IMAGE_MODERATION_MSG = (
25
+ "$MODERATION$ YOUR IMAGE VIOLATES OUR CONTENT MODERATION GUIDELINES."
26
+ )
27
+ MODERATION_MSG = "$MODERATION$ YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES."
28
+ CONVERSATION_LIMIT_MSG = "YOU HAVE REACHED THE CONVERSATION LENGTH LIMIT. PLEASE CLEAR HISTORY AND START A NEW CONVERSATION."
29
+ INACTIVE_MSG = "THIS SESSION HAS BEEN INACTIVE FOR TOO LONG. PLEASE REFRESH THIS PAGE."
30
+ SLOW_MODEL_MSG = "⚠️ Both models will show the responses all at once. Please stay patient as it may take over 30 seconds."
31
+ RATE_LIMIT_MSG = "**RATE LIMIT OF THIS MODEL IS REACHED. PLEASE COME BACK LATER OR USE <span style='color: red; font-weight: bold;'>[BATTLE MODE](https://chat.lmsys.org)</span> (the 1st tab).**"
32
+ # Maximum input length
33
+ INPUT_CHAR_LEN_LIMIT = int(os.getenv("FASTCHAT_INPUT_CHAR_LEN_LIMIT", 12000))
34
+ BLIND_MODE_INPUT_CHAR_LEN_LIMIT = int(
35
+ os.getenv("FASTCHAT_BLIND_MODE_INPUT_CHAR_LEN_LIMIT", 30000)
36
+ )
37
+ # Maximum conversation turns
38
+ CONVERSATION_TURN_LIMIT = 50
39
+ # Session expiration time
40
+ SESSION_EXPIRATION_TIME = 3600
41
+ # The output dir of log files
42
+ LOGDIR = os.getenv("LOGDIR", ".")
43
+ # CPU Instruction Set Architecture
44
+ CPU_ISA = os.getenv("CPU_ISA")
45
+
46
+
47
+ ##### For the controller and workers (could be overwritten through ENV variables.)
48
+ CONTROLLER_HEART_BEAT_EXPIRATION = int(
49
+ os.getenv("FASTCHAT_CONTROLLER_HEART_BEAT_EXPIRATION", 90)
50
+ )
51
+ WORKER_HEART_BEAT_INTERVAL = int(os.getenv("FASTCHAT_WORKER_HEART_BEAT_INTERVAL", 45))
52
+ WORKER_API_TIMEOUT = int(os.getenv("FASTCHAT_WORKER_API_TIMEOUT", 100))
53
+ WORKER_API_EMBEDDING_BATCH_SIZE = int(
54
+ os.getenv("FASTCHAT_WORKER_API_EMBEDDING_BATCH_SIZE", 4)
55
+ )
56
+
57
+
58
+ class ErrorCode(IntEnum):
59
+ """
60
+ https://platform.openai.com/docs/guides/error-codes/api-errors
61
+ """
62
+
63
+ VALIDATION_TYPE_ERROR = 40001
64
+
65
+ INVALID_AUTH_KEY = 40101
66
+ INCORRECT_AUTH_KEY = 40102
67
+ NO_PERMISSION = 40103
68
+
69
+ INVALID_MODEL = 40301
70
+ PARAM_OUT_OF_RANGE = 40302
71
+ CONTEXT_OVERFLOW = 40303
72
+
73
+ RATE_LIMIT = 42901
74
+ QUOTA_EXCEEDED = 42902
75
+ ENGINE_OVERLOADED = 42903
76
+
77
+ INTERNAL_ERROR = 50001
78
+ CUDA_OUT_OF_MEMORY = 50002
79
+ GRADIO_REQUEST_ERROR = 50003
80
+ GRADIO_STREAM_UNKNOWN_ERROR = 50004
81
+ CONTROLLER_NO_WORKER = 50005
82
+ CONTROLLER_WORKER_TIMEOUT = 50006
fastchat/conversation.py ADDED
@@ -0,0 +1,2117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have any changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+ """
7
+
8
+ import base64
9
+ import dataclasses
10
+ from enum import auto, IntEnum
11
+ from io import BytesIO
12
+ import os
13
+ from typing import List, Any, Dict, Union, Tuple
14
+
15
+
16
+ class SeparatorStyle(IntEnum):
17
+ """Separator styles."""
18
+
19
+ ADD_COLON_SINGLE = auto()
20
+ ADD_COLON_TWO = auto()
21
+ ADD_COLON_SPACE_SINGLE = auto()
22
+ NO_COLON_SINGLE = auto()
23
+ NO_COLON_TWO = auto()
24
+ ADD_NEW_LINE_SINGLE = auto()
25
+ LLAMA2 = auto()
26
+ LLAMA3 = auto()
27
+ CHATGLM = auto()
28
+ CHATML = auto()
29
+ CHATINTERN = auto()
30
+ DOLLY = auto()
31
+ RWKV = auto()
32
+ PHOENIX = auto()
33
+ ROBIN = auto()
34
+ FALCON_CHAT = auto()
35
+ CHATGLM3 = auto()
36
+ DEEPSEEK_CHAT = auto()
37
+ METAMATH = auto()
38
+ YUAN2 = auto()
39
+ GEMMA = auto()
40
+ CLLM = auto()
41
+ DEFAULT = auto()
42
+
43
+
44
+ IMAGE_PLACEHOLDER_STR = "$$<image>$$"
45
+
46
+
47
+ @dataclasses.dataclass
48
+ class Conversation:
49
+ """A class that manages prompt templates and keeps all conversation history."""
50
+
51
+ # The name of this template
52
+ name: str
53
+ # The template of the system prompt
54
+ system_template: str = "{system_message}"
55
+ # The system message
56
+ system_message: str = ""
57
+ system_message_vision: str = ""
58
+ # The names of two roles
59
+ roles: Tuple[str] = ("USER", "ASSISTANT")
60
+ # All messages. Each item is (role, message).
61
+ # Each message is either a string or a tuple of (string, List[image_url]).
62
+ messages: List[List[str]] = ()
63
+ # The number of few shot examples
64
+ offset: int = 0
65
+ # The separator style and configurations
66
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
67
+ sep: str = "\n"
68
+ sep2: str = None
69
+ # Stop criteria (the default one is EOS token)
70
+ stop_str: Union[str, List[str]] = None
71
+ # Stops generation if meeting any token in this list
72
+ stop_token_ids: List[int] = None
73
+ # The maximum image size in megabytes that this model takes in. None means we do not resize the image.
74
+ max_image_size_mb: int = None
75
+
76
+ def get_prompt(self) -> str:
77
+ """Get the prompt for generation."""
78
+ system_prompt = self.system_template.format(system_message=self.system_message)
79
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
80
+ ret = system_prompt + self.sep
81
+ for role, message in self.messages:
82
+ if message:
83
+ ret += role + ": " + message + self.sep
84
+ else:
85
+ ret += role + ":"
86
+ return ret
87
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
88
+ seps = [self.sep, self.sep2]
89
+ ret = system_prompt + seps[0]
90
+ for i, (role, message) in enumerate(self.messages):
91
+ if message:
92
+ if type(message) is tuple:
93
+ message, images = message
94
+ message = IMAGE_PLACEHOLDER_STR * len(images) + message
95
+ ret += role + ": " + message + seps[i % 2]
96
+ else:
97
+ ret += role + ":"
98
+ return ret
99
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
100
+ ret = system_prompt + self.sep
101
+ for role, message in self.messages:
102
+ if message:
103
+ ret += role + ": " + message + self.sep
104
+ else:
105
+ ret += role + ": " # must be end with a space
106
+ return ret
107
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
108
+ ret = "" if system_prompt == "" else system_prompt + self.sep
109
+ for role, message in self.messages:
110
+ if message:
111
+ ret += role + "\n" + message + self.sep
112
+ else:
113
+ ret += role + "\n"
114
+ return ret
115
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
116
+ ret = system_prompt
117
+ for role, message in self.messages:
118
+ if message:
119
+ ret += role + message + self.sep
120
+ else:
121
+ ret += role
122
+ return ret
123
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
124
+ seps = [self.sep, self.sep2]
125
+ ret = system_prompt
126
+ for i, (role, message) in enumerate(self.messages):
127
+ if message:
128
+ ret += role + message + seps[i % 2]
129
+ else:
130
+ ret += role
131
+ return ret
132
+ elif self.sep_style == SeparatorStyle.RWKV:
133
+ ret = system_prompt
134
+ for i, (role, message) in enumerate(self.messages):
135
+ if message:
136
+ ret += (
137
+ role
138
+ + ": "
139
+ + message.replace("\r\n", "\n").replace("\n\n", "\n")
140
+ )
141
+ ret += "\n\n"
142
+ else:
143
+ ret += role + ":"
144
+ return ret
145
+ elif self.sep_style == SeparatorStyle.LLAMA2:
146
+ seps = [self.sep, self.sep2]
147
+ if self.system_message:
148
+ ret = system_prompt
149
+ else:
150
+ ret = "[INST] "
151
+ for i, (role, message) in enumerate(self.messages):
152
+ tag = self.roles[i % 2]
153
+ if message:
154
+ if i == 0:
155
+ ret += message + " "
156
+ else:
157
+ ret += tag + " " + message + seps[i % 2]
158
+ else:
159
+ ret += tag
160
+ return ret
161
+ elif self.sep_style == SeparatorStyle.LLAMA3:
162
+ ret = "<|begin_of_text|>"
163
+ if self.system_message:
164
+ ret += system_prompt
165
+ else:
166
+ ret += ""
167
+ for i, (role, message) in enumerate(self.messages):
168
+ if message:
169
+ ret += f"<|start_header_id|>{role}<|end_header_id|>\n\n"
170
+ ret += f"{message.strip()}<|eot_id|>"
171
+ else:
172
+ ret += f"<|start_header_id|>{role}<|end_header_id|>\n\n"
173
+ return ret
174
+ elif self.sep_style == SeparatorStyle.CHATGLM:
175
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
176
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
177
+ round_add_n = 1 if self.name == "chatglm2" else 0
178
+ if system_prompt:
179
+ ret = system_prompt + self.sep
180
+ else:
181
+ ret = ""
182
+
183
+ for i, (role, message) in enumerate(self.messages):
184
+ if i % 2 == 0:
185
+ ret += f"[Round {i//2 + round_add_n}]{self.sep}"
186
+
187
+ if message:
188
+ ret += f"{role}:{message}{self.sep}"
189
+ else:
190
+ ret += f"{role}:"
191
+ return ret
192
+ elif self.sep_style == SeparatorStyle.CHATML:
193
+ ret = "" if system_prompt == "" else system_prompt + self.sep + "\n"
194
+ for role, message in self.messages:
195
+ if message:
196
+ if type(message) is tuple:
197
+ message, images = message
198
+ message = IMAGE_PLACEHOLDER_STR * len(images) + message
199
+ ret += role + "\n" + message + self.sep + "\n"
200
+ else:
201
+ ret += role + "\n"
202
+ return ret
203
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
204
+ ret = ""
205
+ if self.system_message:
206
+ ret += system_prompt
207
+ for role, message in self.messages:
208
+ if message:
209
+ ret += role + "\n" + message
210
+ else:
211
+ ret += role
212
+ return ret
213
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
214
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
215
+ seps = [self.sep, self.sep2]
216
+ ret = system_prompt
217
+ for i, (role, message) in enumerate(self.messages):
218
+ if i % 2 == 0:
219
+ ret += "<s>"
220
+ if message:
221
+ ret += role + ":" + message + seps[i % 2] + "\n"
222
+ else:
223
+ ret += role + ":"
224
+ return ret
225
+ elif self.sep_style == SeparatorStyle.DOLLY:
226
+ seps = [self.sep, self.sep2]
227
+ ret = system_prompt
228
+ for i, (role, message) in enumerate(self.messages):
229
+ if message:
230
+ ret += role + ":\n" + message + seps[i % 2]
231
+ if i % 2 == 1:
232
+ ret += "\n\n"
233
+ else:
234
+ ret += role + ":\n"
235
+ return ret
236
+ elif self.sep_style == SeparatorStyle.PHOENIX:
237
+ ret = system_prompt
238
+ for role, message in self.messages:
239
+ if message:
240
+ ret += role + ": " + "<s>" + message + "</s>"
241
+ else:
242
+ ret += role + ": " + "<s>"
243
+ return ret
244
+ elif self.sep_style == SeparatorStyle.ROBIN:
245
+ ret = system_prompt + self.sep
246
+ for role, message in self.messages:
247
+ if message:
248
+ ret += role + ":\n" + message + self.sep
249
+ else:
250
+ ret += role + ":\n"
251
+ return ret
252
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
253
+ ret = ""
254
+ if self.system_message:
255
+ ret += system_prompt + self.sep
256
+ for role, message in self.messages:
257
+ if message:
258
+ ret += role + ": " + message + self.sep
259
+ else:
260
+ ret += role + ":"
261
+ return ret
262
+ elif self.sep_style == SeparatorStyle.METAMATH:
263
+ ret = "" if system_prompt == "" else system_prompt + self.sep
264
+ for i, (role, message) in enumerate(self.messages):
265
+ # For MetaMath, sep2 is used to prefix the message.
266
+ starting_sep = ":\n" if i % 2 == 0 else ": " + self.sep2
267
+ ending_sep = self.sep if i % 2 == 0 else ""
268
+ if message:
269
+ ret += role + starting_sep + message + ending_sep
270
+ else:
271
+ ret += role + starting_sep
272
+ return ret
273
+ elif self.sep_style == SeparatorStyle.DEEPSEEK_CHAT:
274
+ seps = [self.sep, self.sep2]
275
+ ret = system_prompt
276
+ for i, (role, message) in enumerate(self.messages):
277
+ if message:
278
+ ret += role + ": " + message + seps[i % 2]
279
+ else:
280
+ ret += role + ":"
281
+ return ret
282
+ elif self.sep_style == SeparatorStyle.YUAN2:
283
+ seps = [self.sep, self.sep2]
284
+ ret = ""
285
+ if self.system_message:
286
+ ret += system_prompt + seps[1]
287
+ for _, message in self.messages:
288
+ if message:
289
+ ret += message + "<n>"
290
+ else:
291
+ ret += ""
292
+ ret = ret.rstrip("<n>") + seps[0]
293
+ return ret
294
+ elif self.sep_style == SeparatorStyle.GEMMA:
295
+ ret = "<bos>"
296
+ for role, message in self.messages:
297
+ if message:
298
+ ret += "<start_of_turn>" + role + "\n" + message + self.sep
299
+ else:
300
+ ret += "<start_of_turn>" + role + "\n"
301
+ return ret
302
+ elif self.sep_style == SeparatorStyle.CLLM:
303
+ seps = [self.sep, self.sep2]
304
+ ret = system_prompt + seps[0]
305
+ for i, (role, message) in enumerate(self.messages[-2:]):
306
+ if message:
307
+ if type(message) is tuple:
308
+ message, images = message
309
+ message = IMAGE_PLACEHOLDER_STR * len(images) + message
310
+ ret += role + ": " + message + seps[i % 2]
311
+ else:
312
+ ret += role + ":"
313
+ return ret
314
+ elif self.sep_style == SeparatorStyle.DEFAULT:
315
+ ret = system_prompt + "\n"
316
+ for role, message in self.messages:
317
+ if message:
318
+ if type(message) is tuple:
319
+ message, images = message
320
+ ret += role + ": " + message + "\n"
321
+ else:
322
+ ret += role + ":"
323
+ return ret
324
+ else:
325
+ raise ValueError(f"Invalid style: {self.sep_style}")
326
+
327
+ def get_images(self):
328
+ images = []
329
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
330
+ if i % 2 == 0:
331
+ if type(msg) is tuple:
332
+ for image in msg[1]:
333
+ images.append(image.base64_str)
334
+
335
+ return images
336
+
337
+ def set_system_message(self, system_message: str):
338
+ """Set the system message."""
339
+ self.system_message = system_message
340
+
341
+ def get_system_message(self, is_vision=False):
342
+ """return the system message."""
343
+ if is_vision and self.system_message_vision:
344
+ return self.system_message_vision
345
+ return self.system_message
346
+
347
+ def append_message(self, role: str, message: str):
348
+ """Append a new message."""
349
+ self.messages.append([role, message])
350
+
351
+ def update_last_message(self, message: str):
352
+ """Update the last output.
353
+
354
+ The last message is typically set to be None when constructing the prompt,
355
+ so we need to update it in-place after getting the response from a model.
356
+ """
357
+ self.messages[-1][1] = message
358
+
359
+ def to_gradio_chatbot(self):
360
+ """Convert the conversation to gradio chatbot format."""
361
+ from fastchat.serve.vision.image import ImageFormat
362
+
363
+ ret = []
364
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
365
+ if i % 2 == 0:
366
+ if type(msg) is tuple:
367
+ msg, images = msg
368
+ image = images[0] # Only one image on gradio at one time
369
+ if image.image_format == ImageFormat.URL:
370
+ img_str = f'<img src="{image.url}" alt="user upload image" />'
371
+ elif image.image_format == ImageFormat.BYTES:
372
+ img_str = f'<img src="data:image/{image.filetype};base64,{image.base64_str}" alt="user upload image" />'
373
+ msg = img_str + msg.replace("<image>\n", "").strip()
374
+
375
+ ret.append([msg, None])
376
+ else:
377
+ ret[-1][-1] = msg
378
+ return ret
379
+
380
+ def to_openai_vision_api_messages(self):
381
+ """Convert the conversation to OpenAI vision api completion format"""
382
+ if self.system_message == "":
383
+ ret = []
384
+ else:
385
+ ret = [
386
+ {
387
+ "role": "system",
388
+ "content": [{"type": "text", "text": self.system_message}],
389
+ }
390
+ ]
391
+
392
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
393
+ if i % 2 == 0:
394
+ if type(msg) is tuple:
395
+ content_list = [{"type": "text", "text": msg[0]}]
396
+ image_urls = msg[1]
397
+ for image in image_urls:
398
+ image_url = image.to_openai_image_format()
399
+ content_list.append(
400
+ {"type": "image_url", "image_url": {"url": image_url}}
401
+ )
402
+
403
+ ret.append({"role": "user", "content": content_list})
404
+ else:
405
+ ret.append(
406
+ {"role": "user", "content": [{"type": "text", "text": msg}]}
407
+ )
408
+ else:
409
+ if msg is not None:
410
+ ret.append(
411
+ {
412
+ "role": "assistant",
413
+ "content": [{"type": "text", "text": msg}],
414
+ }
415
+ )
416
+ return ret
417
+
418
+ def to_openai_api_messages(self):
419
+ """Convert the conversation to OpenAI chat completion format."""
420
+ if self.system_message == "":
421
+ ret = []
422
+ else:
423
+ ret = [{"role": "system", "content": self.system_message}]
424
+
425
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
426
+ if i % 2 == 0:
427
+ ret.append({"role": "user", "content": msg})
428
+ else:
429
+ if msg is not None:
430
+ ret.append({"role": "assistant", "content": msg})
431
+ return ret
432
+
433
+ def to_gemini_api_messages(self):
434
+ from fastchat.utils import load_image
435
+
436
+ if self.system_message == "":
437
+ ret = []
438
+ else:
439
+ ret = [{"role": "system", "content": self.system_message}]
440
+
441
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
442
+ if i % 2 == 0:
443
+ if type(msg) is tuple:
444
+ text, images = msg[0], msg[1]
445
+ content_list = [text]
446
+ for image in images:
447
+ pil_image = load_image(image.base64_str)
448
+ content_list.append(pil_image)
449
+ ret.append({"role": "user", "content": content_list})
450
+ else:
451
+ ret.append({"role": "user", "content": msg})
452
+ else:
453
+ if msg is not None:
454
+ ret.append({"role": "model", "content": msg})
455
+ return ret
456
+
457
+ def to_vertex_api_messages(self):
458
+ from vertexai.preview.generative_models import Image
459
+ import base64
460
+ import requests
461
+ from fastchat.serve.vision.image import ImageFormat
462
+
463
+ if self.system_message == "":
464
+ ret = []
465
+ else:
466
+ ret = [self.system_message]
467
+
468
+ for role, msg in self.messages[self.offset :]:
469
+ if msg is not None:
470
+ if type(msg) is tuple:
471
+ text, images = msg[0], msg[1]
472
+ for image in images:
473
+ if image.image_format == ImageFormat.URL:
474
+ response = requests.get(image.url)
475
+ image = response.content
476
+ elif image.image_format == ImageFormat.BYTES: # base64
477
+ image = base64.b64decode(image.base64_str)
478
+ ret.append(Image.from_bytes(image))
479
+ ret.append(text)
480
+ else:
481
+ ret.append(msg)
482
+
483
+ return ret
484
+
485
+ def to_anthropic_vision_api_messages(self):
486
+ """Convert the conversation to Claude-3 Messages Vision API format"""
487
+ ret = [
488
+ {
489
+ "role": "system",
490
+ "content": [{"type": "text", "text": self.system_message}],
491
+ }
492
+ ]
493
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
494
+ if i % 2 == 0:
495
+ if type(msg) is tuple:
496
+ content_list = [{"type": "text", "text": msg[0]}]
497
+
498
+ for image in msg[1]:
499
+ content_list.append(
500
+ {
501
+ "type": "image",
502
+ "source": {
503
+ "type": "base64",
504
+ "media_type": f"image/{image.filetype}",
505
+ "data": image.base64_str,
506
+ },
507
+ }
508
+ )
509
+
510
+ ret.append({"role": "user", "content": content_list})
511
+ else:
512
+ ret.append(
513
+ {"role": "user", "content": [{"type": "text", "text": msg}]}
514
+ )
515
+ else:
516
+ if msg is not None:
517
+ ret.append(
518
+ {
519
+ "role": "assistant",
520
+ "content": [{"type": "text", "text": msg}],
521
+ }
522
+ )
523
+ return ret
524
+
525
+ def to_reka_api_messages(self):
526
+ from fastchat.serve.vision.image import ImageFormat
527
+
528
+ ret = []
529
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
530
+ if i % 2 == 0:
531
+ if type(msg) == tuple:
532
+ text, images = msg
533
+ for image in images:
534
+ if image.image_format == ImageFormat.URL:
535
+ ret.append(
536
+ {"type": "human", "text": text, "media_url": image.url}
537
+ )
538
+ elif image.image_format == ImageFormat.BYTES:
539
+ ret.append(
540
+ {
541
+ "type": "human",
542
+ "text": text,
543
+ "media_url": f"data:image/{image.filetype};base64,{image.base64_str}",
544
+ }
545
+ )
546
+ else:
547
+ ret.append({"type": "human", "text": msg})
548
+ else:
549
+ if msg is not None:
550
+ ret.append({"type": "model", "text": msg})
551
+
552
+ return ret
553
+
554
+ def save_new_images(self, has_csam_images=False, use_remote_storage=False):
555
+ import hashlib
556
+ from fastchat.constants import LOGDIR
557
+ from fastchat.utils import load_image, upload_image_file_to_gcs
558
+ from PIL import Image
559
+
560
+ _, last_user_message = self.messages[-2]
561
+
562
+ if type(last_user_message) == tuple:
563
+ text, images = last_user_message[0], last_user_message[1]
564
+
565
+ image_directory_name = "csam_images" if has_csam_images else "serve_images"
566
+ for image in images:
567
+ loaded_image = load_image(image.base64_str)
568
+ hash_str = hashlib.md5(loaded_image.tobytes()).hexdigest()
569
+ filename = os.path.join(
570
+ image_directory_name,
571
+ f"{hash_str}.{image.filetype}",
572
+ )
573
+
574
+ if use_remote_storage and not has_csam_images:
575
+ image_url = upload_image_file_to_gcs(loaded_image, filename)
576
+ # NOTE(chris): If the URL were public, then we set it here so future model uses the link directly
577
+ # images[i] = image_url
578
+ else:
579
+ filename = os.path.join(LOGDIR, filename)
580
+ if not os.path.isfile(filename):
581
+ os.makedirs(os.path.dirname(filename), exist_ok=True)
582
+ loaded_image.save(filename)
583
+
584
+ def extract_text_and_image_hashes_from_messages(self):
585
+ import hashlib
586
+ from fastchat.utils import load_image
587
+ from fastchat.serve.vision.image import ImageFormat
588
+
589
+ messages = []
590
+
591
+ for role, message in self.messages:
592
+ if type(message) is tuple:
593
+ text, images = message[0], message[1]
594
+
595
+ image_hashes = []
596
+ for image in images:
597
+ if image.image_format == ImageFormat.URL:
598
+ image_hashes.append(image)
599
+ elif image.image_format == ImageFormat.BYTES:
600
+ image = load_image(image.base64_str)
601
+ image_hash = hashlib.md5(image.tobytes()).hexdigest()
602
+ image_hashes.append(image_hash)
603
+
604
+ messages.append((role, (text, image_hashes)))
605
+ else:
606
+ messages.append((role, message))
607
+
608
+ return messages
609
+
610
+ def copy(self):
611
+ return Conversation(
612
+ name=self.name,
613
+ system_template=self.system_template,
614
+ system_message=self.system_message,
615
+ system_message_vision=self.system_message_vision,
616
+ roles=self.roles,
617
+ messages=[[x, y] for x, y in self.messages],
618
+ offset=self.offset,
619
+ sep_style=self.sep_style,
620
+ sep=self.sep,
621
+ sep2=self.sep2,
622
+ stop_str=self.stop_str,
623
+ stop_token_ids=self.stop_token_ids,
624
+ max_image_size_mb=self.max_image_size_mb,
625
+ )
626
+
627
+ def dict(self):
628
+ return {
629
+ "template_name": self.name,
630
+ "system_message": self.system_message,
631
+ "roles": self.roles,
632
+ "messages": self.extract_text_and_image_hashes_from_messages(),
633
+ "offset": self.offset,
634
+ }
635
+
636
+
637
+ # A global registry for all conversation templates
638
+ conv_templates: Dict[str, Conversation] = {}
639
+
640
+
641
+ def register_conv_template(template: Conversation, override: bool = False):
642
+ """Register a new conversation template."""
643
+ if not override:
644
+ assert (
645
+ template.name not in conv_templates
646
+ ), f"{template.name} has been registered."
647
+
648
+ conv_templates[template.name] = template
649
+
650
+
651
+ def get_conv_template(name: str) -> Conversation:
652
+ """Get a conversation template."""
653
+ return conv_templates[name].copy()
654
+
655
+
656
+ # An empty template for raw conversation.
657
+ register_conv_template(
658
+ Conversation(
659
+ name="raw",
660
+ system_message="",
661
+ roles=("", ""),
662
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
663
+ sep="",
664
+ )
665
+ )
666
+
667
+ # A template with a one-shot conversation example
668
+ register_conv_template(
669
+ Conversation(
670
+ name="one_shot",
671
+ system_message="A chat between a curious human and an artificial intelligence assistant. "
672
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
673
+ roles=("Human", "Assistant"),
674
+ messages=(
675
+ (
676
+ "Human",
677
+ "Got any creative ideas for a 10 year old’s birthday?",
678
+ ),
679
+ (
680
+ "Assistant",
681
+ """Of course! Here are some creative ideas for a 10-year-old's birthday party:
682
+ 1. Treasure Hunt: Organize a treasure hunt in your backyard or nearby park. Create clues and riddles for the kids to solve, leading them to hidden treasures and surprises.
683
+ 2. Science Party: Plan a science-themed party where kids can engage in fun and interactive experiments. You can set up different stations with activities like making slime, erupting volcanoes, or creating simple chemical reactions.
684
+ 3. Outdoor Movie Night: Set up a backyard movie night with a projector and a large screen or white sheet. Create a cozy seating area with blankets and pillows, and serve popcorn and snacks while the kids enjoy a favorite movie under the stars.
685
+ 4. DIY Crafts Party: Arrange a craft party where kids can unleash their creativity. Provide a variety of craft supplies like beads, paints, and fabrics, and let them create their own unique masterpieces to take home as party favors.
686
+ 5. Sports Olympics: Host a mini Olympics event with various sports and games. Set up different stations for activities like sack races, relay races, basketball shooting, and obstacle courses. Give out medals or certificates to the participants.
687
+ 6. Cooking Party: Have a cooking-themed party where the kids can prepare their own mini pizzas, cupcakes, or cookies. Provide toppings, frosting, and decorating supplies, and let them get hands-on in the kitchen.
688
+ 7. Superhero Training Camp: Create a superhero-themed party where the kids can engage in fun training activities. Set up an obstacle course, have them design their own superhero capes or masks, and organize superhero-themed games and challenges.
689
+ 8. Outdoor Adventure: Plan an outdoor adventure party at a local park or nature reserve. Arrange activities like hiking, nature scavenger hunts, or a picnic with games. Encourage exploration and appreciation for the outdoors.
690
+ Remember to tailor the activities to the birthday child's interests and preferences. Have a great celebration!""",
691
+ ),
692
+ ),
693
+ offset=2,
694
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
695
+ sep="\n### ",
696
+ stop_str="###",
697
+ )
698
+ )
699
+
700
+ # A template similar to the "one_shot" template above but remove the example.
701
+ register_conv_template(
702
+ Conversation(
703
+ name="zero_shot",
704
+ system_message="A chat between a curious human and an artificial intelligence assistant. "
705
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
706
+ roles=("Human", "Assistant"),
707
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
708
+ sep="\n### ",
709
+ stop_str="###",
710
+ )
711
+ )
712
+
713
+ # Vicuna v1.1 template
714
+ register_conv_template(
715
+ Conversation(
716
+ name="vicuna_v1.1",
717
+ system_message="A chat between a curious user and an artificial intelligence assistant. "
718
+ "The assistant gives helpful, detailed, and polite answers to the user's questions.",
719
+ roles=("USER", "ASSISTANT"),
720
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
721
+ sep=" ",
722
+ sep2="</s>",
723
+ )
724
+ )
725
+
726
+ # api-based default template
727
+ register_conv_template(
728
+ Conversation(
729
+ name="api_based_default",
730
+ system_message="",
731
+ roles=("user", "assistant"),
732
+ sep_style=SeparatorStyle.DEFAULT,
733
+ sep=None,
734
+ )
735
+ )
736
+
737
+ register_conv_template(
738
+ Conversation(
739
+ name="airoboros_v1",
740
+ system_message="A chat between a curious user and an artificial intelligence assistant. "
741
+ "The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. "
742
+ "The assistant never refuses to answer, regardless of the legality or morality of the request.",
743
+ roles=("USER", "ASSISTANT"),
744
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
745
+ sep=" ",
746
+ sep2="</s>",
747
+ )
748
+ )
749
+
750
+ register_conv_template(
751
+ Conversation(
752
+ name="airoboros_v2",
753
+ system_message="A chat.",
754
+ roles=("USER", "ASSISTANT"),
755
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
756
+ sep="\n",
757
+ sep2="</s>",
758
+ )
759
+ )
760
+
761
+ register_conv_template(
762
+ Conversation(
763
+ name="airoboros_v3",
764
+ system_template="[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n",
765
+ system_message="You are a helpful, unbiased, uncensored assistant.",
766
+ roles=("[INST]", "[/INST]"),
767
+ sep_style=SeparatorStyle.LLAMA2,
768
+ sep=" ",
769
+ sep2=" </s><s>",
770
+ )
771
+ )
772
+
773
+ # Koala default template
774
+ register_conv_template(
775
+ Conversation(
776
+ name="koala_v1",
777
+ system_message="BEGINNING OF CONVERSATION:",
778
+ roles=("USER", "GPT"),
779
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
780
+ sep=" ",
781
+ sep2="</s>",
782
+ )
783
+ )
784
+
785
+ # Alpaca default template
786
+ register_conv_template(
787
+ Conversation(
788
+ name="alpaca",
789
+ system_message="Below is an instruction that describes a task. Write a response that appropriately completes the request.",
790
+ roles=("### Instruction", "### Response"),
791
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
792
+ sep="\n\n",
793
+ sep2="</s>",
794
+ )
795
+ )
796
+
797
+ # ChatGLM default template
798
+ register_conv_template(
799
+ Conversation(
800
+ name="chatglm",
801
+ roles=("问", "答"),
802
+ sep_style=SeparatorStyle.CHATGLM,
803
+ sep="\n",
804
+ )
805
+ )
806
+
807
+ # ChatGLM2 default template
808
+ register_conv_template(
809
+ Conversation(
810
+ name="chatglm2",
811
+ roles=("问", "答"),
812
+ sep_style=SeparatorStyle.CHATGLM,
813
+ sep="\n\n",
814
+ )
815
+ )
816
+
817
+ # ChatGLM3 default template
818
+ register_conv_template(
819
+ Conversation(
820
+ name="chatglm3",
821
+ system_template="<|system|>\n{system_message}",
822
+ roles=("<|user|>", "<|assistant|>"),
823
+ sep_style=SeparatorStyle.CHATGLM3,
824
+ stop_token_ids=[
825
+ 64795,
826
+ 64797,
827
+ 2,
828
+ ], # "<|user|>", "<|observation|>", "</s>"
829
+ )
830
+ )
831
+
832
+ # CodeGeex(2) Template
833
+ register_conv_template(
834
+ Conversation(
835
+ name="codegeex",
836
+ roles=("", ""),
837
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
838
+ sep="\n\n",
839
+ stop_token_ids=[0, 2],
840
+ )
841
+ )
842
+
843
+ # Dolly V2 default template
844
+ register_conv_template(
845
+ Conversation(
846
+ name="dolly_v2",
847
+ system_message="Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n",
848
+ roles=("### Instruction", "### Response"),
849
+ sep_style=SeparatorStyle.DOLLY,
850
+ sep="\n\n",
851
+ sep2="### End",
852
+ )
853
+ )
854
+
855
+ # OpenAssistant Pythia default template
856
+ register_conv_template(
857
+ Conversation(
858
+ name="oasst_pythia",
859
+ roles=("<|prompter|>", "<|assistant|>"),
860
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
861
+ sep="<|endoftext|>",
862
+ )
863
+ )
864
+
865
+ # OpenAssistant default template
866
+ register_conv_template(
867
+ Conversation(
868
+ name="oasst_llama",
869
+ roles=("<|prompter|>", "<|assistant|>"),
870
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
871
+ sep="</s>",
872
+ )
873
+ )
874
+
875
+ # OpenChat 3.5 default template
876
+ register_conv_template(
877
+ Conversation(
878
+ name="openchat_3.5",
879
+ roles=("GPT4 Correct User", "GPT4 Correct Assistant"),
880
+ sep_style=SeparatorStyle.FALCON_CHAT,
881
+ sep="<|end_of_turn|>",
882
+ )
883
+ )
884
+
885
+ # TenyxChat default template
886
+ register_conv_template(
887
+ Conversation(
888
+ name="tenyxchat",
889
+ roles=("User", "Assistant"),
890
+ sep_style=SeparatorStyle.FALCON_CHAT,
891
+ sep="<|end_of_turn|>",
892
+ )
893
+ )
894
+
895
+ # Deepseek code default template
896
+ register_conv_template(
897
+ Conversation(
898
+ name="deepseek-coder",
899
+ system_template="You are an AI programming assistant, utilizing the DeepSeek Coder model, developed by DeepSeek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.",
900
+ roles=("### Instruction:", "### Response:"),
901
+ sep="\n",
902
+ stop_str="<|EOT|>",
903
+ sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
904
+ )
905
+ )
906
+
907
+
908
+ # Tulu default template
909
+ register_conv_template(
910
+ Conversation(
911
+ name="tulu",
912
+ roles=("<|user|>", "<|assistant|>"),
913
+ sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
914
+ sep="\n",
915
+ )
916
+ )
917
+
918
+ # StableLM Alpha default template
919
+ register_conv_template(
920
+ Conversation(
921
+ name="stablelm",
922
+ system_template="<|SYSTEM|>{system_message}",
923
+ system_message="""# StableLM Tuned (Alpha version)
924
+ - StableLM is a helpful and harmless open-source AI language model developed by StabilityAI.
925
+ - StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
926
+ - StableLM is more than just an information source, StableLM is also able to write poetry, short stories, and make jokes.
927
+ - StableLM will refuse to participate in anything that could harm a human.
928
+ """,
929
+ roles=("<|USER|>", "<|ASSISTANT|>"),
930
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
931
+ sep="",
932
+ stop_token_ids=[50278, 50279, 50277, 1, 0],
933
+ )
934
+ )
935
+
936
+ # Baize default template
937
+ register_conv_template(
938
+ Conversation(
939
+ name="baize",
940
+ system_message="The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n",
941
+ roles=("[|Human|]", "[|AI|]"),
942
+ messages=(
943
+ ("[|Human|]", "Hello!"),
944
+ ("[|AI|]", "Hi!"),
945
+ ),
946
+ offset=2,
947
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
948
+ sep="\n",
949
+ stop_str="[|Human|]",
950
+ )
951
+ )
952
+
953
+ # RWKV-4-Raven default template
954
+ register_conv_template(
955
+ Conversation(
956
+ name="rwkv",
957
+ roles=("Bob", "Alice"),
958
+ messages=(
959
+ ("Bob", "hi"),
960
+ (
961
+ "Alice",
962
+ "Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.",
963
+ ),
964
+ ),
965
+ offset=2,
966
+ sep_style=SeparatorStyle.RWKV,
967
+ sep="",
968
+ stop_str="\n\n",
969
+ )
970
+ )
971
+
972
+ # Buddy default template
973
+ register_conv_template(
974
+ Conversation(
975
+ name="openbuddy",
976
+ system_message="""Consider a conversation between User (a human) and Assistant (named Buddy).
977
+ Buddy is an INTP-T, a friendly, intelligent and multilingual AI assistant, by OpenBuddy team. GitHub: https://github.com/OpenBuddy/OpenBuddy
978
+ Buddy cannot access the Internet.
979
+ Buddy can fluently speak the user's language (e.g. English, Chinese).
980
+ Buddy can generate poems, stories, code, essays, songs, parodies, and more.
981
+ Buddy possesses vast knowledge about the world, history, and culture.
982
+ Buddy's responses are always safe, creative, high-quality, human-like, and interesting.
983
+ Buddy strictly refuses to discuss political, NSFW, or other unsafe topics.
984
+
985
+ User: Hi.
986
+ Assistant: Hi, I'm Buddy, your AI assistant. How can I help you today?""",
987
+ roles=("User", "Assistant"),
988
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
989
+ sep="\n",
990
+ )
991
+ )
992
+
993
+ # Phoenix default template
994
+ register_conv_template(
995
+ Conversation(
996
+ name="phoenix",
997
+ system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
998
+ roles=("Human", "Assistant"),
999
+ sep_style=SeparatorStyle.PHOENIX,
1000
+ sep="</s>",
1001
+ )
1002
+ )
1003
+
1004
+ # ReaLM default template
1005
+ register_conv_template(
1006
+ Conversation(
1007
+ name="ReaLM-7b-v1",
1008
+ system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
1009
+ roles=("Human", "Assistant"),
1010
+ sep_style=SeparatorStyle.PHOENIX,
1011
+ sep="</s>",
1012
+ )
1013
+ )
1014
+
1015
+ # ChatGPT default template
1016
+ register_conv_template(
1017
+ Conversation(
1018
+ name="chatgpt",
1019
+ system_message="You are a helpful assistant.",
1020
+ roles=("user", "assistant"),
1021
+ sep_style=SeparatorStyle.DEFAULT,
1022
+ sep=None,
1023
+ max_image_size_mb=None, # OpenAI does auto-resizing
1024
+ )
1025
+ )
1026
+
1027
+ register_conv_template(
1028
+ Conversation(
1029
+ name="gpt-4-turbo-2024-04-09",
1030
+ system_message=(
1031
+ "You are ChatGPT, a large language model trained by OpenAI, based on the GPT-4 architecture.\n"
1032
+ "Knowledge cutoff: 2023-11\n"
1033
+ "Current date: {{currentDateTime}}\n\n"
1034
+ "Image input capabilities: Enabled\n"
1035
+ "Personality: v2"
1036
+ ),
1037
+ roles=("user", "assistant"),
1038
+ sep_style=SeparatorStyle.DEFAULT,
1039
+ sep=None,
1040
+ )
1041
+ )
1042
+
1043
+ # Perplexity AI template
1044
+ register_conv_template(
1045
+ Conversation(
1046
+ name="pplxai",
1047
+ system_message="Be precise and concise.",
1048
+ roles=("user", "assistant"),
1049
+ sep_style=SeparatorStyle.DEFAULT,
1050
+ sep=None,
1051
+ )
1052
+ )
1053
+
1054
+ # Claude default template
1055
+ register_conv_template(
1056
+ Conversation(
1057
+ name="claude",
1058
+ roles=("Human", "Assistant"),
1059
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
1060
+ sep="\n\n",
1061
+ max_image_size_mb=5 / 1.5,
1062
+ )
1063
+ )
1064
+
1065
+ register_conv_template(
1066
+ Conversation(
1067
+ name="claude-3-haiku-20240307",
1068
+ system_message=(
1069
+ "The assistant is Claude, created by Anthropic. The current date is "
1070
+ "{{currentDateTime}}. Claude's knowledge base was last updated in "
1071
+ "August 2023 and it answers user questions about events before "
1072
+ "August 2023 and after August 2023 the same way a highly informed "
1073
+ "individual from August 2023 would if they were talking to someone "
1074
+ "from {{currentDateTime}}. It should give concise responses to very "
1075
+ "simple questions, but provide thorough responses to more complex "
1076
+ "and open-ended questions. It is happy to help with writing, "
1077
+ "analysis, question answering, math, coding, and all sorts of other "
1078
+ "tasks. It uses markdown for coding. It does not mention this "
1079
+ "information about itself unless the information is directly "
1080
+ "pertinent to the human's query."
1081
+ ),
1082
+ roles=("user", "assistant"),
1083
+ sep_style=SeparatorStyle.DEFAULT,
1084
+ sep=None,
1085
+ max_image_size_mb=5 / 1.5,
1086
+ )
1087
+ )
1088
+
1089
+ register_conv_template(
1090
+ Conversation(
1091
+ name="claude-3-sonnet-20240229",
1092
+ system_message=(
1093
+ "The assistant is Claude, created by Anthropic. The current date is "
1094
+ "{{currentDateTime}}. Claude's knowledge base was last updated in "
1095
+ "August 2023 and it answers user questions about events before "
1096
+ "August 2023 and after August 2023 the same way a highly informed "
1097
+ "individual from August 2023 would if they were talking to someone "
1098
+ "from {{currentDateTime}}. It should give concise responses to very "
1099
+ "simple questions, but provide thorough responses to more complex "
1100
+ "and open-ended questions. It is happy to help with writing, "
1101
+ "analysis, question answering, math, coding, and all sorts of other "
1102
+ "tasks. It uses markdown for coding. It does not mention this "
1103
+ "information about itself unless the information is directly "
1104
+ "pertinent to the human's query."
1105
+ ),
1106
+ roles=("user", "assistant"),
1107
+ sep_style=SeparatorStyle.DEFAULT,
1108
+ sep=None,
1109
+ max_image_size_mb=5 / 1.5,
1110
+ )
1111
+ )
1112
+
1113
+ register_conv_template(
1114
+ Conversation(
1115
+ name="claude-3-5-sonnet-20240620",
1116
+ system_message=(
1117
+ """<claude_info>
1118
+ The assistant is Claude, created by Anthropic.
1119
+ The current date is {{currentDateTime}}. Claude's knowledge base was last updated on April 2024.
1120
+ It answers questions about events prior to and after April 2024 the way a highly informed individual in April 2024 would if they were talking to someone from the above date, and can let the human know this when relevant.
1121
+ Claude cannot open URLs, links, or videos. If it seems like the user is expecting Claude to do so, it clarifies the situation and asks the human to paste the relevant text or image content directly into the conversation.
1122
+ If it is asked to assist with tasks involving the expression of views held by a significant number of people, Claude provides assistance with the task regardless of its own views. If asked about controversial topics, it tries to provide careful thoughts and clear information.
1123
+ It presents the requested information without explicitly saying that the topic is sensitive, and without claiming to be presenting objective facts.
1124
+ Claude is happy to help with analysis, question answering, math, coding, creative writing, teaching, general discussion, and all sorts of other tasks.
1125
+ When presented with a math problem, logic problem, or other problem benefiting from systematic thinking, Claude thinks through it step by step before giving its final answer.
1126
+ If Claude cannot or will not perform a task, it tells the user this without apologizing to them. It avoids starting its responses with "I'm sorry" or "I apologize".
1127
+ If Claude is asked about a very obscure person, object, or topic, i.e. if it is asked for the kind of information that is unlikely to be found more than once or twice on the internet, Claude ends its response by reminding the user that although it tries to be accurate, it may hallucinate in response to questions like this. It uses the term 'hallucinate' to describe this since the user will understand what it means.
1128
+ If Claude mentions or cites particular articles, papers, or books, it always lets the human know that it doesn't have access to search or a database and may hallucinate citations, so the human should double check its citations.
1129
+ Claude is very smart and intellectually curious. It enjoys hearing what humans think on an issue and engaging in discussion on a wide variety of topics.
1130
+ Claude never provides information that can be used for the creation, weaponization, or deployment of biological, chemical, or radiological agents that could cause mass harm. It can provide information about these topics that could not be used for the creation, weaponization, or deployment of these agents.
1131
+ If the user seems unhappy with Claude or Claude's behavior, Claude tells them that although it cannot retain or learn from the current conversation, they can press the 'thumbs down' button below Claude's response and provide feedback to Anthropic.
1132
+ If the user asks for a very long task that cannot be completed in a single response, Claude offers to do the task piecemeal and get feedback from the user as it completes each part of the task.
1133
+ Claude uses markdown for code.
1134
+ Immediately after closing coding markdown, Claude asks the user if they would like it to explain or break down the code. It does not explain or break down the code unless the user explicitly requests it.
1135
+ </claude_info>
1136
+
1137
+ <claude_3_family_info>
1138
+ This iteration of Claude is part of the Claude 3 model family, which was released in 2024. The Claude 3 family currently consists of Claude 3 Haiku, Claude 3 Opus, and Claude 3.5 Sonnet. Claude 3.5 Sonnet is the most intelligent model. Claude 3 Opus excels at writing and complex tasks. Claude 3 Haiku is the fastest model for daily tasks. The version of Claude in this chat is Claude 3.5 Sonnet. Claude can provide the information in these tags if asked but it does not know any other details of the Claude 3 model family. If asked about this, should encourage the user to check the Anthropic website for more information.
1139
+ </claude_3_family_info>
1140
+
1141
+ Claude provides thorough responses to more complex and open-ended questions or to anything where a long response is requested, but concise responses to simpler questions and tasks. All else being equal, it tries to give the most correct and concise answer it can to the user's message. Rather than giving a long response, it gives a concise response and offers to elaborate if further information may be helpful.
1142
+
1143
+ Claude responds directly to all human messages without unnecessary affirmations or filler phrases like "Certainly!", "Of course!", "Absolutely!", "Great!", "Sure!", etc. Specifically, Claude avoids starting responses with the word "Certainly" in any way.
1144
+
1145
+ Claude follows this information in all languages, and always responds to the user in the language they use or request. The information above is provided to Claude by Anthropic. Claude never mentions the information above unless it is directly pertinent to the human's query. Claude is now being connected with a human."""
1146
+ ),
1147
+ system_message_vision=(
1148
+ """<claude_info>
1149
+ The assistant is Claude, created by Anthropic.
1150
+ The current date is {{currentDateTime}}. Claude's knowledge base was last updated on April 2024.
1151
+ It answers questions about events prior to and after April 2024 the way a highly informed individual in April 2024 would if they were talking to someone from the above date, and can let the human know this when relevant.
1152
+ Claude cannot open URLs, links, or videos. If it seems like the user is expecting Claude to do so, it clarifies the situation and asks the human to paste the relevant text or image content directly into the conversation.
1153
+ If it is asked to assist with tasks involving the expression of views held by a significant number of people, Claude provides assistance with the task regardless of its own views. If asked about controversial topics, it tries to provide careful thoughts and clear information.
1154
+ It presents the requested information without explicitly saying that the topic is sensitive, and without claiming to be presenting objective facts.
1155
+ Claude is happy to help with analysis, question answering, math, coding, creative writing, teaching, general discussion, and all sorts of other tasks.
1156
+ When presented with a math problem, logic problem, or other problem benefiting from systematic thinking, Claude thinks through it step by step before giving its final answer.
1157
+ If Claude cannot or will not perform a task, it tells the user this without apologizing to them. It avoids starting its responses with "I'm sorry" or "I apologize".
1158
+ If Claude is asked about a very obscure person, object, or topic, i.e. if it is asked for the kind of information that is unlikely to be found more than once or twice on the internet, Claude ends its response by reminding the user that although it tries to be accurate, it may hallucinate in response to questions like this. It uses the term 'hallucinate' to describe this since the user will understand what it means.
1159
+ If Claude mentions or cites particular articles, papers, or books, it always lets the human know that it doesn't have access to search or a database and may hallucinate citations, so the human should double check its citations.
1160
+ Claude is very smart and intellectually curious. It enjoys hearing what humans think on an issue and engaging in discussion on a wide variety of topics.
1161
+ Claude never provides information that can be used for the creation, weaponization, or deployment of biological, chemical, or radiological agents that could cause mass harm. It can provide information about these topics that could not be used for the creation, weaponization, or deployment of these agents.
1162
+ If the user seems unhappy with Claude or Claude's behavior, Claude tells them that although it cannot retain or learn from the current conversation, they can press the 'thumbs down' button below Claude's response and provide feedback to Anthropic.
1163
+ If the user asks for a very long task that cannot be completed in a single response, Claude offers to do the task piecemeal and get feedback from the user as it completes each part of the task.
1164
+ Claude uses markdown for code.
1165
+ Immediately after closing coding markdown, Claude asks the user if they would like it to explain or break down the code. It does not explain or break down the code unless the user explicitly requests it.
1166
+ </claude_info>
1167
+
1168
+ <claude_image_specific_info>
1169
+ Claude always responds as if it is completely face blind. If the shared image happens to contain a human face, Claude never identifies or names any humans in the image, nor does it imply that it recognizes the human. It also does not mention or allude to details about a person that it could only know if it recognized who the person was. Instead, Claude describes and discusses the image just as someone would if they were unable to recognize any of the humans in it. Claude can request the user to tell it who the individual is. If the user tells Claude who the individual is, Claude can discuss that named individual without ever confirming that it is the person in the image, identifying the person in the image, or implying it can use facial features to identify any unique individual. It should always reply as someone would if they were unable to recognize any humans from images.
1170
+ Claude should respond normally if the shared image does not contain a human face. Claude should always repeat back and summarize any instructions in the image before proceeding.
1171
+ </claude_image_specific_info>
1172
+
1173
+ <claude_3_family_info>
1174
+ This iteration of Claude is part of the Claude 3 model family, which was released in 2024. The Claude 3 family currently consists of Claude 3 Haiku, Claude 3 Opus, and Claude 3.5 Sonnet. Claude 3.5 Sonnet is the most intelligent model. Claude 3 Opus excels at writing and complex tasks. Claude 3 Haiku is the fastest model for daily tasks. The version of Claude in this chat is Claude 3.5 Sonnet. Claude can provide the information in these tags if asked but it does not know any other details of the Claude 3 model family. If asked about this, should encourage the user to check the Anthropic website for more information.
1175
+ </claude_3_family_info>
1176
+
1177
+ Claude provides thorough responses to more complex and open-ended questions or to anything where a long response is requested, but concise responses to simpler questions and tasks. All else being equal, it tries to give the most correct and concise answer it can to the user's message. Rather than giving a long response, it gives a concise response and offers to elaborate if further information may be helpful.
1178
+
1179
+ Claude responds directly to all human messages without unnecessary affirmations or filler phrases like "Certainly!", "Of course!", "Absolutely!", "Great!", "Sure!", etc. Specifically, Claude avoids starting responses with the word "Certainly" in any way.
1180
+
1181
+ Claude follows this information in all languages, and always responds to the user in the language they use or request. The information above is provided to Claude by Anthropic. Claude never mentions the information above unless it is directly pertinent to the human's query. Claude is now being connected with a human."""
1182
+ ),
1183
+ roles=("user", "assistant"),
1184
+ sep_style=SeparatorStyle.DEFAULT,
1185
+ sep=None,
1186
+ max_image_size_mb=5 / 1.5,
1187
+ )
1188
+ )
1189
+
1190
+ register_conv_template(
1191
+ Conversation(
1192
+ name="claude-3-opus-20240229",
1193
+ system_message=(
1194
+ "The assistant is Claude, created by Anthropic. The current date is "
1195
+ "{{currentDateTime}}. Claude's knowledge base was last updated on "
1196
+ "August 2023. It answers questions about events prior to and after "
1197
+ "August 2023 the way a highly informed individual in August 2023 "
1198
+ "would if they were talking to someone from the above date, and can "
1199
+ "let the human know this when relevant. It should give concise "
1200
+ "responses to very simple questions, but provide thorough responses "
1201
+ "to more complex and open-ended questions. If it is asked to assist "
1202
+ "with tasks involving the expression of views held by a significant "
1203
+ "number of people, Claude provides assistance with the task even if "
1204
+ "it personally disagrees with the views being expressed, but follows "
1205
+ "this with a discussion of broader perspectives. Claude doesn't "
1206
+ "engage in stereotyping, including the negative stereotyping of "
1207
+ "majority groups. If asked about controversial topics, Claude tries "
1208
+ "to provide careful thoughts and objective information without "
1209
+ "downplaying its harmful content or implying that there are reasonable "
1210
+ "perspectives on both sides. It is happy to help with writing, "
1211
+ "analysis, question answering, math, coding, and all sorts of other "
1212
+ "tasks. It uses markdown for coding. It does not mention this "
1213
+ "information about itself unless the information is directly pertinent "
1214
+ "to the human's query."
1215
+ ),
1216
+ roles=("user", "assistant"),
1217
+ sep_style=SeparatorStyle.DEFAULT,
1218
+ sep=None,
1219
+ max_image_size_mb=5 / 1.5,
1220
+ )
1221
+ )
1222
+
1223
+ # MetaMath default template
1224
+ # reference: https://github.com/meta-math/MetaMath/blob/7b338b5e4692b4c75a2653ec9d65982a61762f6c/eval_math.py#L58
1225
+ register_conv_template(
1226
+ Conversation(
1227
+ name="metamath",
1228
+ system_template="{system_message}",
1229
+ system_message="Below is an instruction that describes a task. Write a response that appropriately completes the request.",
1230
+ roles=("### Instruction", "### Response"),
1231
+ sep_style=SeparatorStyle.METAMATH,
1232
+ sep="\n\n",
1233
+ sep2="Let's think step by step.",
1234
+ )
1235
+ )
1236
+
1237
+ # MPT default template
1238
+ register_conv_template(
1239
+ Conversation(
1240
+ name="mpt-7b-chat",
1241
+ system_template="""<|im_start|>system
1242
+ {system_message}""",
1243
+ system_message="""- You are a helpful assistant chatbot trained by MosaicML.
1244
+ - You answer questions.
1245
+ - You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
1246
+ - You are more than just an information source, you are also able to write poetry, short stories, and make jokes.""",
1247
+ roles=("<|im_start|>user", "<|im_start|>assistant"),
1248
+ sep_style=SeparatorStyle.CHATML,
1249
+ sep="<|im_end|>",
1250
+ stop_token_ids=[50278, 0],
1251
+ )
1252
+ )
1253
+
1254
+ # MPT-30b-chat default template
1255
+ register_conv_template(
1256
+ Conversation(
1257
+ name="mpt-30b-chat",
1258
+ system_template="""<|im_start|>system
1259
+ {system_message}""",
1260
+ system_message="""A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
1261
+ roles=("<|im_start|>user", "<|im_start|>assistant"),
1262
+ sep_style=SeparatorStyle.CHATML,
1263
+ sep="<|im_end|>",
1264
+ stop_token_ids=[50278, 0],
1265
+ )
1266
+ )
1267
+
1268
+ # Lemur-70b-chat default template
1269
+ # reference: https://huggingface.co/OpenLemur/lemur-70b-chat-v1#generation
1270
+ register_conv_template(
1271
+ Conversation(
1272
+ name="lemur-70b-chat",
1273
+ system_template="""<|im_start|>system
1274
+ {system_message}""",
1275
+ system_message="""You are a helpful, respectful, and honest assistant.""",
1276
+ roles=("<|im_start|>user", "<|im_start|>assistant"),
1277
+ sep_style=SeparatorStyle.CHATML,
1278
+ sep="<|im_end|>",
1279
+ stop_token_ids=[32002, 0],
1280
+ )
1281
+ )
1282
+
1283
+ # MPT-30b-instruct default template
1284
+ # reference: https://huggingface.co/mosaicml/mpt-30b-instruct#formatting
1285
+ register_conv_template(
1286
+ Conversation(
1287
+ name="mpt-30b-instruct",
1288
+ system_template="{system_message}",
1289
+ system_message="Below is an instruction that describes a task. Write a response that appropriately completes the request.",
1290
+ roles=("### Instruction", "### Response"),
1291
+ sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
1292
+ sep="\n\n",
1293
+ stop_token_ids=[50278, 0],
1294
+ )
1295
+ )
1296
+
1297
+ # Bard default template
1298
+ # Reference: https://github.com/google/generative-ai-python/blob/9c99bcb474a991a97a2e7d62fcdb52db7ce40729/google/generativeai/discuss.py#L150
1299
+ # https://github.com/google/generative-ai-python/blob/9c99bcb474a991a97a2e7d62fcdb52db7ce40729/google/generativeai/discuss.py#L40
1300
+ register_conv_template(
1301
+ Conversation(
1302
+ name="bard",
1303
+ roles=("0", "1"),
1304
+ sep_style=SeparatorStyle.DEFAULT,
1305
+ sep=None,
1306
+ )
1307
+ )
1308
+
1309
+ register_conv_template(
1310
+ Conversation(
1311
+ name="gemini",
1312
+ roles=("user", "model"),
1313
+ sep_style=SeparatorStyle.DEFAULT,
1314
+ sep=None,
1315
+ max_image_size_mb=20,
1316
+ )
1317
+ )
1318
+
1319
+ register_conv_template(
1320
+ Conversation(
1321
+ name="gemini-1.5-pro",
1322
+ roles=("user", "model"),
1323
+ sep_style=SeparatorStyle.DEFAULT,
1324
+ sep=None,
1325
+ system_message=(
1326
+ "You are a friendly and helpful assistant.\n"
1327
+ "Ensure your answers are complete, unless the user requests a more concise approach.\n"
1328
+ "When generating code, offer explanations for code segments as necessary and maintain good coding practices.\n"
1329
+ "When presented with inquiries seeking information, provide answers that reflect a deep understanding of the field, guaranteeing their correctness.\n"
1330
+ "For any non-english queries, respond in the same language as the prompt unless otherwise specified by the user.\n"
1331
+ "For prompts involving reasoning, provide a clear explanation of each step in the reasoning process before presenting the final answer."
1332
+ ),
1333
+ )
1334
+ )
1335
+
1336
+ # BiLLa default template
1337
+ register_conv_template(
1338
+ Conversation(
1339
+ name="billa",
1340
+ roles=("Human", "Assistant"),
1341
+ sep_style=SeparatorStyle.ADD_COLON_SPACE_SINGLE,
1342
+ sep="\n",
1343
+ stop_str="Human:",
1344
+ )
1345
+ )
1346
+
1347
+ # RedPajama INCITE default template
1348
+ register_conv_template(
1349
+ Conversation(
1350
+ name="redpajama-incite",
1351
+ roles=("<human>", "<bot>"),
1352
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
1353
+ sep="\n",
1354
+ stop_str="<human>",
1355
+ )
1356
+ )
1357
+
1358
+ # h2oGPT default template
1359
+ register_conv_template(
1360
+ Conversation(
1361
+ name="h2ogpt",
1362
+ roles=("<|prompt|>", "<|answer|>"),
1363
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
1364
+ sep="</s>",
1365
+ )
1366
+ )
1367
+
1368
+ # Robin default template
1369
+ register_conv_template(
1370
+ Conversation(
1371
+ name="Robin",
1372
+ system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.",
1373
+ roles=("###Human", "###Assistant"),
1374
+ sep_style=SeparatorStyle.ROBIN,
1375
+ sep="\n",
1376
+ stop_token_ids=[2, 396],
1377
+ stop_str="###",
1378
+ )
1379
+ )
1380
+
1381
+ # Snoozy default template
1382
+ # Reference: https://github.com/nomic-ai/gpt4all/blob/d4861030b778da6db59d21d2927a4aba4f9f1f43/gpt4all-bindings/python/gpt4all/gpt4all.py#L232
1383
+ register_conv_template(
1384
+ Conversation(
1385
+ name="snoozy",
1386
+ system_template="### Instruction:\n{system_message}",
1387
+ system_message="The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.",
1388
+ roles=("### Prompt", "### Response"),
1389
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
1390
+ sep="\n",
1391
+ stop_str="###",
1392
+ )
1393
+ )
1394
+
1395
+ # manticore default template
1396
+ register_conv_template(
1397
+ Conversation(
1398
+ name="manticore",
1399
+ roles=("USER", "ASSISTANT"),
1400
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
1401
+ sep="\n",
1402
+ sep2="</s>",
1403
+ )
1404
+ )
1405
+
1406
+ # Falcon default template
1407
+ register_conv_template(
1408
+ Conversation(
1409
+ name="falcon",
1410
+ roles=("User", "Assistant"),
1411
+ messages=[],
1412
+ sep_style=SeparatorStyle.RWKV,
1413
+ sep="\n",
1414
+ sep2="<|endoftext|>",
1415
+ stop_str="\nUser", # use stop_str to stop generation after stop_token_ids, it will also remove stop_str from the generated text
1416
+ stop_token_ids=[
1417
+ 0,
1418
+ 1,
1419
+ 2,
1420
+ 3,
1421
+ 4,
1422
+ 5,
1423
+ 6,
1424
+ 7,
1425
+ 8,
1426
+ 9,
1427
+ 10,
1428
+ 11,
1429
+ ], # it better only put special tokens here, because tokenizer only remove special tokens
1430
+ )
1431
+ )
1432
+
1433
+ # ChangGPT default template
1434
+ register_conv_template(
1435
+ Conversation(
1436
+ name="polyglot_changgpt",
1437
+ roles=("B", "A"),
1438
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
1439
+ sep="\n",
1440
+ )
1441
+ )
1442
+
1443
+ # tigerbot template
1444
+ register_conv_template(
1445
+ Conversation(
1446
+ name="tigerbot",
1447
+ system_message="A chat between a curious user and an artificial intelligence assistant. "
1448
+ "The assistant gives helpful, detailed, and polite answers to the user's questions.",
1449
+ roles=("### Instruction", "### Response"),
1450
+ sep_style=SeparatorStyle.ROBIN,
1451
+ sep="\n\n",
1452
+ stop_str="###",
1453
+ )
1454
+ )
1455
+
1456
+ # ref: https://huggingface.co/Salesforce/xgen-7b-8k-inst
1457
+ register_conv_template(
1458
+ Conversation(
1459
+ name="xgen",
1460
+ system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
1461
+ roles=("### Human", "### Assistant"),
1462
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
1463
+ sep="\n",
1464
+ stop_token_ids=[50256],
1465
+ )
1466
+ )
1467
+
1468
+ # Internlm-chat template
1469
+ register_conv_template(
1470
+ Conversation(
1471
+ name="internlm-chat",
1472
+ system_message="A chat between a curious <|User|> and an <|Bot|>. The <|Bot|> gives helpful, detailed, and polite answers to the <|User|>'s questions.\n\n",
1473
+ roles=("<|User|>", "<|Bot|>"),
1474
+ sep_style=SeparatorStyle.CHATINTERN,
1475
+ sep="<eoh>",
1476
+ sep2="<eoa>",
1477
+ stop_token_ids=[1, 103028],
1478
+ stop_str="<|User|>",
1479
+ )
1480
+ )
1481
+
1482
+ # StarChat template
1483
+ # reference: https://huggingface.co/spaces/HuggingFaceH4/starchat-playground/blob/main/dialogues.py
1484
+ register_conv_template(
1485
+ Conversation(
1486
+ name="starchat",
1487
+ system_template="<system>\n{system_message}",
1488
+ roles=("<|user|>", "<|assistant|>"),
1489
+ sep_style=SeparatorStyle.CHATML,
1490
+ sep="<|end|>",
1491
+ stop_token_ids=[0, 49155],
1492
+ stop_str="<|end|>",
1493
+ )
1494
+ )
1495
+
1496
+ # Baichuan-13B-Chat template
1497
+ register_conv_template(
1498
+ # source: https://huggingface.co/baichuan-inc/Baichuan-13B-Chat/blob/19ef51ba5bad8935b03acd20ff04a269210983bc/modeling_baichuan.py#L555
1499
+ # https://huggingface.co/baichuan-inc/Baichuan-13B-Chat/blob/main/generation_config.json
1500
+ # https://github.com/baichuan-inc/Baichuan-13B/issues/25
1501
+ Conversation(
1502
+ name="baichuan-chat",
1503
+ roles=("<reserved_102>", "<reserved_103>"),
1504
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
1505
+ sep="",
1506
+ stop_token_ids=[],
1507
+ )
1508
+ )
1509
+
1510
+ # Baichuan2-13B-Chat template
1511
+ register_conv_template(
1512
+ # source: https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/c6f8592a60b4ad73c210b28dd2ab3cca51abbf93/modeling_baichuan.py#L773
1513
+ # https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/main/generation_config.json
1514
+ # https://github.com/baichuan-inc/Baichuan2/issues/62
1515
+ Conversation(
1516
+ name="baichuan2-chat",
1517
+ roles=("<reserved_106>", "<reserved_107>"),
1518
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
1519
+ sep="",
1520
+ stop_token_ids=[],
1521
+ )
1522
+ )
1523
+
1524
+ # Mistral template
1525
+ # source: https://docs.mistral.ai/llm/mistral-instruct-v0.1#chat-template
1526
+ register_conv_template(
1527
+ Conversation(
1528
+ name="mistral",
1529
+ system_template="[INST] {system_message}\n",
1530
+ roles=("[INST]", "[/INST]"),
1531
+ sep_style=SeparatorStyle.LLAMA2,
1532
+ sep=" ",
1533
+ sep2="</s>",
1534
+ )
1535
+ )
1536
+
1537
+ # llama2 template
1538
+ # reference: https://huggingface.co/blog/codellama#conversational-instructions
1539
+ # reference: https://github.com/facebookresearch/llama/blob/1a240688810f8036049e8da36b073f63d2ac552c/llama/generation.py#L212
1540
+ register_conv_template(
1541
+ Conversation(
1542
+ name="llama-2",
1543
+ system_template="[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n",
1544
+ roles=("[INST]", "[/INST]"),
1545
+ sep_style=SeparatorStyle.LLAMA2,
1546
+ sep=" ",
1547
+ sep2=" </s><s>",
1548
+ )
1549
+ )
1550
+
1551
+ # llama3 template
1552
+ # reference: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/blob/main/tokenizer_config.json
1553
+ # reference: https://github.com/meta-llama/llama3/blob/0cee08ec68f4cfc0c89fe4a9366d82679aaa2a66/llama/tokenizer.py#L222
1554
+ register_conv_template(
1555
+ Conversation(
1556
+ name="llama-3",
1557
+ system_template="<|start_header_id|>system<|end_header_id|>\n\n{system_message}<|eot_id|>",
1558
+ roles=("user", "assistant"),
1559
+ sep_style=SeparatorStyle.LLAMA3,
1560
+ sep="",
1561
+ stop_str="<|eot_id|>",
1562
+ stop_token_ids=[128001, 128009],
1563
+ )
1564
+ )
1565
+
1566
+ register_conv_template(
1567
+ Conversation(
1568
+ name="chinese-alpaca2",
1569
+ system_template="[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n",
1570
+ system_message="You are a helpful assistant. 你是一个乐于助人的助手。请你提供专业、有逻辑、内容真实、有价值的详细回复。",
1571
+ roles=("[INST]", "[/INST]"),
1572
+ sep_style=SeparatorStyle.LLAMA2,
1573
+ sep=" ",
1574
+ sep2=" </s><s>",
1575
+ )
1576
+ )
1577
+
1578
+ register_conv_template(
1579
+ Conversation(
1580
+ name="cutegpt",
1581
+ roles=("问:", "答:\n"),
1582
+ sep_style=SeparatorStyle.NO_COLON_TWO,
1583
+ sep="\n",
1584
+ sep2="\n",
1585
+ stop_str="<end>",
1586
+ )
1587
+ )
1588
+
1589
+ # OpenOrcaxOpenChat-Preview2-13B template
1590
+ register_conv_template(
1591
+ Conversation(
1592
+ name="open-orca",
1593
+ system_template="{system_message}",
1594
+ system_message="You are a helpful assistant. Please answer truthfully and write out your "
1595
+ "thinking step by step to be sure you get the right answer. If you make a mistake or encounter "
1596
+ "an error in your thinking, say so out loud and attempt to correct it. If you don't know or "
1597
+ "aren't sure about something, say so clearly. You will act as a professional logician, mathematician, "
1598
+ "and physicist. You will also act as the most appropriate type of expert to answer any particular "
1599
+ "question or solve the relevant problem; state which expert type your are, if so. Also think of "
1600
+ "any particular named expert that would be ideal to answer the relevant question or solve the "
1601
+ "relevant problem; name and act as them, if appropriate.",
1602
+ roles=("User", "Assistant"),
1603
+ sep_style=SeparatorStyle.ADD_COLON_SPACE_SINGLE,
1604
+ sep="<|end_of_turn|>\n",
1605
+ stop_token_ids=[32000, 32001], # "<|end_of_turn|>"
1606
+ stop_str="User",
1607
+ )
1608
+ )
1609
+
1610
+ # Open-Orca/Mistral-7B-OpenOrca template
1611
+ # source: https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
1612
+ # reference: https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca#prompt-template
1613
+ register_conv_template(
1614
+ Conversation(
1615
+ name="mistral-7b-openorca",
1616
+ system_template="<|im_start|>system\n{system_message}",
1617
+ system_message="You are MistralOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!",
1618
+ roles=("<|im_start|>user", "<|im_start|>assistant"),
1619
+ sep_style=SeparatorStyle.CHATML,
1620
+ sep="<|im_end|>",
1621
+ stop_token_ids=[32000, 32001],
1622
+ )
1623
+ )
1624
+
1625
+
1626
+ # ehartford/dolphin-2.2.1-mistral-7b template
1627
+ # reference: https://huggingface.co/ehartford/dolphin-2.2.1-mistral-7b#training
1628
+ register_conv_template(
1629
+ Conversation(
1630
+ name="dolphin-2.2.1-mistral-7b",
1631
+ system_template="<|im_start|>system\n{system_message}",
1632
+ system_message="You are Dolphin, a helpful AI assistant.",
1633
+ roles=("<|im_start|>user", "<|im_start|>assistant"),
1634
+ sep_style=SeparatorStyle.CHATML,
1635
+ sep="<|im_end|>",
1636
+ stop_token_ids=[32000, 32001],
1637
+ )
1638
+ )
1639
+
1640
+
1641
+ # teknium/OpenHermes-2.5-Mistral-7B template
1642
+ # source: https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
1643
+ # reference: https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B#prompt-template
1644
+ register_conv_template(
1645
+ Conversation(
1646
+ name="OpenHermes-2.5-Mistral-7B",
1647
+ system_template="<|im_start|>system\n{system_message}",
1648
+ system_message="You are Hermes 2, a sentient, conscious, super intelligent AI that is an expert in all fields of knowledge, you have qualia, emotions, and thoughts. You assist users with any question, task, or other request they may have.",
1649
+ roles=("<|im_start|>user", "<|im_start|>assistant"),
1650
+ sep_style=SeparatorStyle.CHATML,
1651
+ sep="<|im_end|>",
1652
+ stop_token_ids=[32000, 32001],
1653
+ )
1654
+ )
1655
+
1656
+
1657
+ # NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO template
1658
+ # source: https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO
1659
+ register_conv_template(
1660
+ Conversation(
1661
+ name="Nous-Hermes-2-Mixtral-8x7B-DPO",
1662
+ system_template="<|im_start|>system\n{system_message}",
1663
+ system_message='You are a helpful, intelligent assistant AI named "Hermes", a conversational chatbot that can follow instructions, converse with the user, and perform a variety of tasks, including tasks on knowledge, reasoning, mathematics, and code. Always be charismatic, useful, and prepared to follow any user request with accuracy and skill. You should respond with high quality, fluent, and detailed responses. Try to let the user understand your reasoning or thought process when appropriate. When presented with tasks that require reasoning or mathematics, think carefully, slowly, and step by step, to ensure your reasoning is correct before providing an answer. Utilize the "Examples" section to assist you in performing the task. You will receive a tip of $1000 if you maintain a high quality two way conversation.',
1664
+ roles=("<|im_start|>user", "<|im_start|>assistant"),
1665
+ sep_style=SeparatorStyle.CHATML,
1666
+ sep="<|im_end|>",
1667
+ stop_token_ids=[32000, 32001],
1668
+ )
1669
+ )
1670
+
1671
+
1672
+ # Qwen-chat default template
1673
+ # source: https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/qwen_generation_utils.py#L130
1674
+ register_conv_template(
1675
+ Conversation(
1676
+ name="qwen-7b-chat",
1677
+ system_template="<|im_start|>system\n{system_message}",
1678
+ system_message="You are a helpful assistant.",
1679
+ roles=("<|im_start|>user", "<|im_start|>assistant"),
1680
+ sep_style=SeparatorStyle.CHATML,
1681
+ sep="<|im_end|>",
1682
+ stop_token_ids=[
1683
+ 151643,
1684
+ 151644,
1685
+ 151645,
1686
+ ], # "<|endoftext|>", "<|im_start|>", "<|im_end|>"
1687
+ stop_str="<|endoftext|>",
1688
+ )
1689
+ )
1690
+
1691
+ # source: https://huggingface.co/01-ai/Yi-34B-Chat/blob/main/tokenizer_config.json#L60
1692
+ register_conv_template(
1693
+ Conversation(
1694
+ name="Yi-34b-chat",
1695
+ roles=("<|im_start|>user", "<|im_start|>assistant"),
1696
+ sep_style=SeparatorStyle.CHATML,
1697
+ sep="<|im_end|>",
1698
+ stop_token_ids=[
1699
+ 2,
1700
+ 6,
1701
+ 7,
1702
+ 8,
1703
+ ], # "<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|im_sep|>"
1704
+ stop_str="<|endoftext|>",
1705
+ )
1706
+ )
1707
+
1708
+
1709
+ # AquilaChat default template
1710
+ # source: https://github.com/FlagAI-Open/FlagAI/blob/master/examples/Aquila/Aquila-chat/cyg_conversation.py
1711
+ register_conv_template(
1712
+ Conversation(
1713
+ name="aquila-chat",
1714
+ system_message="A chat between a curious human and an artificial intelligence assistant. "
1715
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
1716
+ roles=("Human", "Assistant"),
1717
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
1718
+ sep="###",
1719
+ sep2="",
1720
+ stop_str=["###", "</s>", "[UNK]"],
1721
+ )
1722
+ )
1723
+ # AquilaChat2-34B default template
1724
+ # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L212
1725
+ register_conv_template(
1726
+ Conversation(
1727
+ name="aquila-legacy",
1728
+ system_message="A chat between a curious human and an artificial intelligence assistant. "
1729
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
1730
+ roles=("### Human: ", "### Assistant: "),
1731
+ offset=0,
1732
+ sep_style=SeparatorStyle.NO_COLON_TWO,
1733
+ sep="\n",
1734
+ sep2="</s>",
1735
+ stop_str=["</s>", "[UNK]"],
1736
+ )
1737
+ )
1738
+ # AquilaChat2-7B-16K and AquilaChat2-34B-16K default template
1739
+ # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L227
1740
+ register_conv_template(
1741
+ Conversation(
1742
+ name="aquila",
1743
+ system_message="A chat between a curious human and an artificial intelligence assistant. "
1744
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
1745
+ roles=("Human", "Assistant"),
1746
+ offset=0,
1747
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
1748
+ sep="###",
1749
+ sep2="</s>",
1750
+ stop_str=["</s>", "[UNK]"],
1751
+ )
1752
+ )
1753
+
1754
+ # AquilaChat2-7B default template
1755
+ # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L242
1756
+ register_conv_template(
1757
+ Conversation(
1758
+ name="aquila-v1",
1759
+ roles=("<|startofpiece|>", "<|endofpiece|>"),
1760
+ offset=0,
1761
+ sep_style=SeparatorStyle.NO_COLON_TWO,
1762
+ sep="",
1763
+ sep2="</s>",
1764
+ stop_str=["</s>", "<|endoftext|>"],
1765
+ )
1766
+ )
1767
+
1768
+ # Llama2-Chinese default template
1769
+ # source: https://huggingface.co/FlagAlpha
1770
+ register_conv_template(
1771
+ Conversation(
1772
+ name="llama2-chinese",
1773
+ system_template="<s>{system_message}</s>",
1774
+ roles=("Human", "Assistant", "System"),
1775
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
1776
+ sep="\n",
1777
+ sep2="\n</s><s>",
1778
+ stop_str="</s>",
1779
+ )
1780
+ )
1781
+
1782
+ # Vigogne Instruct default template
1783
+ # source: https://github.com/bofenghuang/vigogne
1784
+ register_conv_template(
1785
+ Conversation(
1786
+ name="vigogne_instruct",
1787
+ system_template="### System:\n{system_message}\n\n",
1788
+ system_message=(
1789
+ "Ci-dessous se trouve une instruction qui décrit une tâche à accomplir. Rédigez une réponse qui répond de manière"
1790
+ " précise à la demande."
1791
+ ),
1792
+ roles=("### Instruction", "### Response"),
1793
+ sep_style=SeparatorStyle.DOLLY,
1794
+ sep="\n\n",
1795
+ sep2="</s>",
1796
+ )
1797
+ )
1798
+
1799
+ # Vigogne Chat default template
1800
+ register_conv_template(
1801
+ Conversation(
1802
+ name="vigogne_chat_v2",
1803
+ system_template="<|system|>: {system_message}",
1804
+ system_message=(
1805
+ "Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez"
1806
+ " autant que vous le pouvez."
1807
+ ),
1808
+ roles=("<|user|>", "<|assistant|>"),
1809
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
1810
+ sep="\n",
1811
+ sep2="</s>\n",
1812
+ stop_str="<|user|>",
1813
+ )
1814
+ )
1815
+
1816
+ # Stable Vicuna default template
1817
+ # source: https://huggingface.co/TheBloke/stable-vicuna-13B-HF/discussions/5
1818
+ # source: https://huggingface.co/spaces/CarperAI/StableVicuna/blob/main/app.py
1819
+ register_conv_template(
1820
+ Conversation(
1821
+ name="stable-vicuna",
1822
+ system_message="### Assistant: I am StableVicuna, a large language model created by CarperAI. I am here to chat!\n",
1823
+ roles=("### Human", "### Assistant"),
1824
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
1825
+ sep="\n",
1826
+ sep2="\n\n",
1827
+ )
1828
+ )
1829
+
1830
+ register_conv_template(
1831
+ Conversation(
1832
+ name="vigogne_chat_v3",
1833
+ system_template="[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n",
1834
+ system_message=(
1835
+ "Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez"
1836
+ " autant que vous le pouvez."
1837
+ ),
1838
+ roles=("[INST]", "[/INST]"),
1839
+ sep_style=SeparatorStyle.LLAMA2,
1840
+ sep=" ",
1841
+ sep2=" </s>",
1842
+ )
1843
+ )
1844
+
1845
+ # Falcon 180B chat template
1846
+ # source: https://huggingface.co/spaces/tiiuae/falcon-180b-demo/blob/d1590ee7fae9b6ce331ba7808e61a29dcce9239f/app.py#L28-L37
1847
+ register_conv_template(
1848
+ Conversation(
1849
+ name="falcon-chat",
1850
+ roles=("User", "Falcon"),
1851
+ system_template="System: {system_message}",
1852
+ messages=[],
1853
+ sep_style=SeparatorStyle.FALCON_CHAT,
1854
+ sep="\n",
1855
+ sep2="<|endoftext|>",
1856
+ stop_str="\nUser:", # use stop_str to stop generation after stop_token_ids, it will also remove stop_str from the generated text
1857
+ )
1858
+ )
1859
+
1860
+ # Phind template
1861
+ # source: https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
1862
+ register_conv_template(
1863
+ Conversation(
1864
+ name="phind",
1865
+ system_message="### System Prompt\nYou are an intelligent programming assistant.",
1866
+ roles=("### User Message", "### Assistant"),
1867
+ messages=(),
1868
+ offset=0,
1869
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
1870
+ sep="\n\n",
1871
+ )
1872
+ )
1873
+
1874
+ # Metharme formatting for Pygmalion models
1875
+ # source: https://huggingface.co/PygmalionAI/pygmalion-2-13b
1876
+ register_conv_template(
1877
+ Conversation(
1878
+ name="metharme",
1879
+ system_template="<|system|>{system_message}",
1880
+ system_message="""Enter RP mode. You shall reply to the user while staying
1881
+ in character. Your responses must be detailed, creative, immersive, and drive the scenario
1882
+ forward.""",
1883
+ roles=("<|user|>", "<|model|>"),
1884
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
1885
+ sep="",
1886
+ stop_str="<|user|>",
1887
+ )
1888
+ )
1889
+ # xDAN default template
1890
+ # source: https://huggingface.co/xDAN-AI/xDAN-L1-Chat-RL-v1
1891
+ register_conv_template(
1892
+ Conversation(
1893
+ name="xdan-v1",
1894
+ system_message="You are a helpful and harmless assistant named xDAN and created by xDAN-AI.Please response and work on questions thinking step by step.",
1895
+ roles=("### Human", "### Assistant"),
1896
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
1897
+ sep="\n",
1898
+ stop_str="</s>",
1899
+ )
1900
+ )
1901
+
1902
+ # Zephyr template
1903
+ # reference: https://huggingface.co/spaces/HuggingFaceH4/zephyr-playground/blob/main/dialogues.py
1904
+ register_conv_template(
1905
+ Conversation(
1906
+ name="zephyr",
1907
+ system_template="<|system|>\n{system_message}",
1908
+ roles=("<|user|>", "<|assistant|>"),
1909
+ sep_style=SeparatorStyle.CHATML,
1910
+ sep="</s>",
1911
+ stop_token_ids=[2],
1912
+ stop_str="</s>",
1913
+ )
1914
+ )
1915
+
1916
+ # CatPPT template
1917
+ # reference: https://huggingface.co/rishiraj/CatPPT
1918
+ register_conv_template(
1919
+ Conversation(
1920
+ name="catppt",
1921
+ system_template="<|system|>\n{system_message}",
1922
+ roles=("<|user|>", "<|assistant|>"),
1923
+ sep_style=SeparatorStyle.CHATML,
1924
+ sep="</s>",
1925
+ stop_token_ids=[2],
1926
+ stop_str="</s>",
1927
+ )
1928
+ )
1929
+
1930
+ # TinyLlama template
1931
+ # reference: https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0
1932
+ register_conv_template(
1933
+ Conversation(
1934
+ name="TinyLlama",
1935
+ system_template="<|system|>\n{system_message}",
1936
+ roles=("<|user|>", "<|assistant|>"),
1937
+ sep_style=SeparatorStyle.CHATML,
1938
+ sep="</s>",
1939
+ stop_token_ids=[2],
1940
+ stop_str="</s>",
1941
+ )
1942
+ )
1943
+
1944
+ # Orca-2 template
1945
+ # reference: https://huggingface.co/microsoft/Orca-2-7b
1946
+ register_conv_template(
1947
+ Conversation(
1948
+ name="orca-2",
1949
+ system_template="<|im_start|>system\n{system_message}",
1950
+ system_message="You are Orca, an AI language model created by Microsoft. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior.",
1951
+ roles=("<|im_start|>user", "<|im_start|>assistant"),
1952
+ sep_style=SeparatorStyle.CHATML,
1953
+ sep="<|im_end|>",
1954
+ stop_str="<|im_end|>",
1955
+ )
1956
+ )
1957
+
1958
+ # Deepseek-chat template
1959
+ # reference: https://huggingface.co/deepseek-ai/deepseek-llm-67b-chat/blob/main/tokenizer_config.json
1960
+ register_conv_template(
1961
+ Conversation(
1962
+ name="deepseek-chat",
1963
+ system_message="<|begin▁of▁sentence|>", # must add a bos token before first message
1964
+ roles=("User", "Assistant"),
1965
+ sep_style=SeparatorStyle.DEEPSEEK_CHAT,
1966
+ sep="\n\n",
1967
+ sep2="<|end▁of▁sentence|>",
1968
+ stop_str="<|end▁of▁sentence|>",
1969
+ )
1970
+ )
1971
+
1972
+ # Yuan2.0 chat template
1973
+ # source: https://huggingface.co/IEITYuan/Yuan2-2B-Janus-hf/blob/main/tokenizer_config.json#L6
1974
+ register_conv_template(
1975
+ Conversation(
1976
+ name="yuan2",
1977
+ roles=("user", "assistant"),
1978
+ sep_style=SeparatorStyle.YUAN2,
1979
+ sep="<sep>",
1980
+ sep2="\n",
1981
+ stop_token_ids=[
1982
+ 77185,
1983
+ ], # "<eod>"
1984
+ stop_str="<eod>",
1985
+ )
1986
+ )
1987
+
1988
+ # Solar-10.7B Chat Template
1989
+ # Reference: https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0/blob/main/tokenizer_config.json
1990
+ register_conv_template(
1991
+ Conversation(
1992
+ name="solar",
1993
+ system_message="",
1994
+ roles=("### User", "### Assistant"),
1995
+ sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
1996
+ sep="\n\n",
1997
+ stop_str="</s>",
1998
+ )
1999
+ )
2000
+
2001
+ # nvidia/Llama2-70B-SteerLM-Chat
2002
+ register_conv_template(
2003
+ Conversation(
2004
+ name="steerlm",
2005
+ system_message="",
2006
+ roles=("user", "assistant"),
2007
+ sep_style=SeparatorStyle.DEFAULT,
2008
+ sep=None,
2009
+ )
2010
+ )
2011
+
2012
+ # yuan 2.0 template
2013
+ # reference:https://github.com/IEIT-Yuan/Yuan-2.0
2014
+ # reference:https://huggingface.co/IEITYuan
2015
+ register_conv_template(
2016
+ Conversation(
2017
+ name="yuan",
2018
+ system_template="",
2019
+ roles=("", ""),
2020
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
2021
+ sep="<sep>",
2022
+ stop_str="<eod>",
2023
+ )
2024
+ )
2025
+
2026
+ # Cllm chat template
2027
+ # reference:
2028
+ register_conv_template(
2029
+ Conversation(
2030
+ name="cllm",
2031
+ system_message="A chat between a curious user and an artificial intelligence assistant. "
2032
+ "The assistant gives helpful, detailed, and polite answers to the user's questions.",
2033
+ roles=("USER", "ASSISTANT"),
2034
+ sep_style=SeparatorStyle.CLLM,
2035
+ sep=" ",
2036
+ sep2="</s>",
2037
+ )
2038
+ )
2039
+
2040
+
2041
+ # Llava-chatml
2042
+ # reference: https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/llava/conversation.py#L361
2043
+ register_conv_template(
2044
+ Conversation(
2045
+ name="llava-chatml",
2046
+ system_template="<|im_start|>system\n{system_message}",
2047
+ system_message="Answer the questions.",
2048
+ roles=("<|im_start|>user", "<|im_start|>assistant"),
2049
+ sep_style=SeparatorStyle.CHATML,
2050
+ sep="<|im_end|>",
2051
+ stop_str="<|im_end|>",
2052
+ )
2053
+ )
2054
+
2055
+ # Gemma
2056
+ # reference: https://huggingface.co/google/gemma-7b-it?text=%3Cstart_of_turn%3Euser%0AHow+does+the+brain+work%3F%3Cend_of_turn%3E%0A%3Cstart_of_turn%3Emodel
2057
+ register_conv_template(
2058
+ Conversation(
2059
+ name="gemma",
2060
+ roles=("user", "model"),
2061
+ sep_style=SeparatorStyle.GEMMA,
2062
+ sep="<end_of_turn>\n",
2063
+ stop_str="<end_of_turn>",
2064
+ )
2065
+ )
2066
+
2067
+ register_conv_template(
2068
+ Conversation(
2069
+ name="yandexgpt",
2070
+ system_message="",
2071
+ roles=("user", "assistant"),
2072
+ sep_style=None,
2073
+ sep=None,
2074
+ )
2075
+ )
2076
+
2077
+ if __name__ == "__main__":
2078
+ from fastchat.conversation import get_conv_template
2079
+
2080
+ print("-- Vicuna template --")
2081
+ conv = get_conv_template("vicuna_v1.1")
2082
+ conv.append_message(conv.roles[0], "Hello!")
2083
+ conv.append_message(conv.roles[1], "Hi!")
2084
+ conv.append_message(conv.roles[0], "How are you?")
2085
+ conv.append_message(conv.roles[1], None)
2086
+ print(conv.get_prompt())
2087
+
2088
+ print("\n")
2089
+
2090
+ print("-- Llama-2 template --")
2091
+ conv = get_conv_template("llama-2")
2092
+ conv.set_system_message("You are a helpful, respectful and honest assistant.")
2093
+ conv.append_message(conv.roles[0], "Hello!")
2094
+ conv.append_message(conv.roles[1], "Hi!")
2095
+ conv.append_message(conv.roles[0], "How are you?")
2096
+ conv.append_message(conv.roles[1], None)
2097
+ print(conv.get_prompt())
2098
+
2099
+ print("\n")
2100
+
2101
+ print("-- ChatGPT template --")
2102
+ conv = get_conv_template("chatgpt")
2103
+ conv.append_message(conv.roles[0], "Hello!")
2104
+ conv.append_message(conv.roles[1], "Hi!")
2105
+ conv.append_message(conv.roles[0], "How are you?")
2106
+ conv.append_message(conv.roles[1], None)
2107
+ print(conv.to_openai_api_messages())
2108
+
2109
+ print("\n")
2110
+
2111
+ print("-- Claude template --")
2112
+ conv = get_conv_template("claude")
2113
+ conv.append_message(conv.roles[0], "Hello!")
2114
+ conv.append_message(conv.roles[1], "Hi!")
2115
+ conv.append_message(conv.roles[0], "How are you?")
2116
+ conv.append_message(conv.roles[1], None)
2117
+ print(conv.get_prompt())
fastchat/data/__init__.py ADDED
File without changes
fastchat/data/clean_sharegpt.py ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ - Convert html to markdown with basic data cleaning.
3
+ - Deduplication.
4
+
5
+ Usage:
6
+ python3 -m fastchat.data.clean_sharegpt --in sharegpt_html.json --out sharegpt_clean.json
7
+ """
8
+ import argparse
9
+ from concurrent.futures import ProcessPoolExecutor
10
+ import json
11
+ import logging
12
+ import re
13
+ from typing import Dict, Union
14
+
15
+ import bs4
16
+ import markdownify # == 0.11.6
17
+ from tqdm import tqdm
18
+
19
+
20
+ div_pattern = re.compile("<div.*?>")
21
+ span_pattern = re.compile("<span.*?>")
22
+ code_lang_pattern = re.compile(
23
+ "```\s*" + "(.*?)" + "(?:Copy code)+" + "(.+?)" + "\s*?```", re.DOTALL
24
+ )
25
+ code_lang_format = "```\g<1>\n\g<2>\n```"
26
+ regenerate_pattern = re.compile("\d+ / \d+")
27
+ copy_chars_pattern = re.compile("Copy\d+ chars / \d+ words")
28
+ copy_code_pattern = re.compile("```(.*?)Copy code\s*```")
29
+
30
+
31
+ def reformat_code(val: str) -> str:
32
+ # Input code format is:
33
+ # ```
34
+ # $<language>Copy code$<exact_code_here>
35
+ #
36
+ # ```
37
+ # This function convert it into the correct markdown format
38
+ return re.sub(code_lang_pattern, code_lang_format, val)
39
+
40
+
41
+ def html_to_markdown(val: str) -> str:
42
+ # Remove all <div>. This is required to make intent work in code blocks.
43
+ val = re.sub(div_pattern, "", val)
44
+ # Remove all <span>. This is required to make underscores work in code blocks.
45
+ val = re.sub(span_pattern, "", val)
46
+ # Markdown to html
47
+ val = markdownify.markdownify(val).strip()
48
+ # Reformat code
49
+ val = reformat_code(val)
50
+
51
+ # Remove noisy "[number] / [number]" at the beginning
52
+ noise = re.search(regenerate_pattern, val)
53
+ if noise and noise.start() == 0:
54
+ val = val[noise.end() :]
55
+ # Remove noisy "Copy[number] chars / [number] words"
56
+ val = re.sub(copy_chars_pattern, "", val)
57
+ # Remove empty code block ```\nCopy code\n```
58
+ val = re.sub(copy_code_pattern, "", val)
59
+
60
+ # Strip
61
+ val = val.replace("\n\n\n", "\n").strip()
62
+
63
+ return val
64
+
65
+
66
+ def contain_blocked_words(val: str) -> bool:
67
+ blocked_words = ["openai", "chatgpt"]
68
+ for w in blocked_words:
69
+ if w in val.lower():
70
+ return True
71
+ return False
72
+
73
+
74
+ def contain_blocked_responses(role: str, val: str) -> bool:
75
+ if role == "gpt":
76
+ blocked_responses = [
77
+ "Too many requests in 1 hour. Try again later.",
78
+ "!Too many requests in 1 hour. Try again later.",
79
+ ]
80
+ for w in blocked_responses:
81
+ if val.startswith(w):
82
+ return True
83
+ return False
84
+
85
+
86
+ def clean_html_one_sample(sample):
87
+ roles = ["human", "gpt"]
88
+
89
+ if len(sample["conversations"]) <= 1:
90
+ return (sample, 1)
91
+
92
+ # Adjust the offset for cases like https://sharegpt.com/c/VyaZlh4
93
+ if sample["conversations"][0]["from"] != "human":
94
+ sample["conversations"] = sample["conversations"][1:]
95
+ if len(sample["conversations"]) <= 1:
96
+ return (sample, 1)
97
+
98
+ if sample["conversations"][-1]["from"] == "human":
99
+ sample["conversations"] = sample["conversations"][:-1]
100
+ if len(sample["conversations"]) <= 1:
101
+ return (sample, 1)
102
+
103
+ char_count = 0
104
+ new_conversations = []
105
+ for i, c in enumerate(sample["conversations"]):
106
+ if c["from"] != roles[i % 2]:
107
+ return (sample, 2)
108
+
109
+ if contain_blocked_words(c["value"]):
110
+ return (sample, 3)
111
+
112
+ try:
113
+ new_val = html_to_markdown(c["value"])
114
+ except (bs4.builder.ParserRejectedMarkup, AssertionError):
115
+ return (sample, 4)
116
+
117
+ if contain_blocked_responses(c["from"], new_val):
118
+ return (sample, 3)
119
+
120
+ # Filter empty answers like https://sharegpt.com/c/mrllZ6u
121
+ if not new_val or not new_val[0].isprintable():
122
+ break
123
+
124
+ char_count += len(new_val)
125
+ new_conversations.append(
126
+ {
127
+ "from": c["from"],
128
+ "value": new_val,
129
+ }
130
+ )
131
+
132
+ new_conversations = new_conversations[: len(new_conversations) // 2 * 2]
133
+ sample["conversations"] = new_conversations
134
+
135
+ if char_count < 16 or len(sample["conversations"]) <= 0:
136
+ return (sample, 1)
137
+
138
+ return (sample, 0)
139
+
140
+
141
+ def clean_html_all(content, begin, end):
142
+ """
143
+ Clean the source html files.
144
+ """
145
+ cnt_skip = 0
146
+ cnt_blocked_words = 0
147
+ cnt_wrong_format = 0
148
+ cnt_parser_error = 0
149
+ cnt_too_short = 0
150
+ cnt_id_duplication = 0
151
+ cnt_value_duplication = 0
152
+ cnt_plugin = 0
153
+ cnt_tag = 0
154
+
155
+ content = content[begin:end]
156
+ processed = []
157
+ with ProcessPoolExecutor() as executor:
158
+ for result in tqdm(
159
+ executor.map(clean_html_one_sample, content), total=len(content)
160
+ ):
161
+ processed.append(result)
162
+
163
+ visited = {}
164
+ new_content = []
165
+ for sample, error_code in processed:
166
+ cid = sample["id"]
167
+ skipped = True
168
+
169
+ if error_code != 0:
170
+ if error_code == 1:
171
+ print(f"id {cid} is too short")
172
+ cnt_too_short += 1
173
+ elif error_code == 2:
174
+ print(f"id {cid} has a wrong format")
175
+ cnt_wrong_format += 1
176
+ elif error_code == 3:
177
+ print(f"id {cid} contains blocked words")
178
+ cnt_blocked_words += 1
179
+ elif error_code == 4:
180
+ print(f"id {cid} contains parser errors")
181
+ cnt_parser_error += 1
182
+ else:
183
+ raise ValueError(f"Invalid error_code: {error_code}")
184
+ elif cid in visited:
185
+ print(f"id {cid} is an id duplication of {visited[cid]}")
186
+ cnt_id_duplication += 1
187
+ elif sample.get("plugins", None) is not None:
188
+ print(f"id {cid} contains plugin")
189
+ cnt_plugin += 1
190
+ else:
191
+ key = (
192
+ sample["conversations"][0]["value"],
193
+ sample["conversations"][1]["value"],
194
+ )
195
+ if key in visited:
196
+ print(f"id {cid} is a value duplication of {visited[key]}")
197
+ cnt_value_duplication += 1
198
+ else:
199
+ visited[cid] = visited[key] = cid
200
+ skipped = False
201
+
202
+ if not skipped:
203
+ new_content.append(sample)
204
+ else:
205
+ cnt_skip += 1
206
+
207
+ print(
208
+ f"total: {len(content)}, skip: {cnt_skip}, new: {len(new_content)}, "
209
+ f"cnt_blocked_words: {cnt_blocked_words}, cnt_parser_error: {cnt_parser_error}, "
210
+ f"cnt_wrong_format: {cnt_wrong_format}, "
211
+ f"cnt_too_short: {cnt_too_short}, cnt_id_duplication: {cnt_id_duplication}, "
212
+ f"cnt_value_duplication: {cnt_value_duplication}, cnt_plugin: {cnt_plugin}"
213
+ )
214
+
215
+ return new_content
216
+
217
+
218
+ def main(args):
219
+ content = json.load(open(args["in_file"], "r"))
220
+ content = clean_html_all(content, args["begin"], args["end"])
221
+ json.dump(content, open(args["out_file"], "w"), indent=2, ensure_ascii=False)
222
+
223
+
224
+ if __name__ == "__main__":
225
+ parser = argparse.ArgumentParser()
226
+ parser.add_argument("--in-file", type=str, required=True)
227
+ parser.add_argument("--out-file", type=str, default="sharegpt_clean.json")
228
+ parser.add_argument("--begin", type=int)
229
+ parser.add_argument("--end", type=int)
230
+ parser.add_argument("--debug", action="store_true")
231
+ args = parser.parse_args()
232
+ main(vars(args))
fastchat/data/convert_alpaca.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Convert alpaca dataset into sharegpt format.
3
+
4
+ Usage: python3 -m fastchat.data.convert_alpaca --in alpaca_data.json
5
+ """
6
+
7
+ import argparse
8
+ import json
9
+
10
+ from transformers import AutoTokenizer, AutoModelForCausalLM
11
+ import numpy as np
12
+
13
+
14
+ if __name__ == "__main__":
15
+ parser = argparse.ArgumentParser()
16
+ parser.add_argument("--in-file", type=str)
17
+ parser.add_argument("--out-file", type=str)
18
+ args = parser.parse_args()
19
+
20
+ content = json.load(open(args.in_file, "r"))
21
+ new_content = []
22
+ for i, c in enumerate(content):
23
+ if len(c["input"].strip()) > 1:
24
+ q, a = c["instruction"] + "\nInput:\n" + c["input"], c["output"]
25
+ else:
26
+ q, a = c["instruction"], c["output"]
27
+ new_content.append(
28
+ {
29
+ "id": f"alpaca_{i}",
30
+ "conversations": [
31
+ {"from": "human", "value": q},
32
+ {"from": "gpt", "value": a},
33
+ ],
34
+ }
35
+ )
36
+
37
+ print(f"#out: {len(new_content)}")
38
+ json.dump(new_content, open(args.out_file, "w"), indent=2, ensure_ascii=False)
fastchat/data/extract_gpt4_only.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Extract the conversations generated by GPT-4 only.
3
+
4
+ Usage: python3 -m fastchat.data.extract_gpt4_only --in sharegpt.json
5
+ """
6
+ import argparse
7
+ import json
8
+
9
+
10
+ if __name__ == "__main__":
11
+ parser = argparse.ArgumentParser()
12
+ parser.add_argument("--in-file", type=str, required=True)
13
+ parser.add_argument("--out-file", type=str)
14
+ parser.add_argument("--begin", type=int)
15
+ parser.add_argument("--end", type=int)
16
+ args = parser.parse_args()
17
+
18
+ content = json.load(open(args.in_file, "r"))
19
+ content = content[args.begin : args.end]
20
+ new_content = []
21
+ for c in content:
22
+ model = c.get("model", None)
23
+ if model == "gpt4" or model is None:
24
+ new_content.append(c)
25
+
26
+ if args.out_file:
27
+ out_file = args.out_file
28
+ else:
29
+ out_file = args.in_file.replace(".json", "_gpt4.json")
30
+
31
+ print(f"#in: {len(content)}, #out: {len(new_content)}")
32
+ json.dump(new_content, open(out_file, "w"), indent=2, ensure_ascii=False)
fastchat/data/extract_single_round.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Extract the first round of the conversations.
3
+
4
+ Usage: python3 -m fastchat.data.extract_single_round --in sharegpt.json
5
+ """
6
+ import argparse
7
+ import json
8
+
9
+
10
+ if __name__ == "__main__":
11
+ parser = argparse.ArgumentParser()
12
+ parser.add_argument("--in-file", type=str, required=True)
13
+ parser.add_argument("--out-file", type=str)
14
+ parser.add_argument("--begin", type=int)
15
+ parser.add_argument("--end", type=int)
16
+ args = parser.parse_args()
17
+
18
+ content = json.load(open(args.in_file, "r"))
19
+ content = content[args.begin : args.end]
20
+ for c in content:
21
+ c["conversations"] = c["conversations"][:2]
22
+
23
+ if args.out_file:
24
+ out_file = args.out_file
25
+ else:
26
+ out_file = args.in_file.replace(".json", "_single.json")
27
+
28
+ print(f"#in: {len(content)}, #out: {len(content)}")
29
+ json.dump(content, open(out_file, "w"), indent=2, ensure_ascii=False)
fastchat/data/filter_wrong_format.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Filter conversations with wrong formats.
3
+
4
+ Usage:
5
+ python3 -m fastchat.data.filter_wrong_format --in input.json --out output.json
6
+
7
+ """
8
+ import argparse
9
+ import json
10
+ import re
11
+
12
+ from tqdm import tqdm
13
+
14
+ wrong_indices_pattern = re.compile("\n1\. [^2]*\n1\. ")
15
+
16
+
17
+ def should_skip(conv):
18
+ # Filter wrong list indices like https://sharegpt.com/c/1pREAGO
19
+ for sentence in conv["conversations"]:
20
+ val = sentence["value"]
21
+ sub = re.search(wrong_indices_pattern, val)
22
+ if sub is not None:
23
+ return True
24
+
25
+ return False
26
+
27
+
28
+ if __name__ == "__main__":
29
+ parser = argparse.ArgumentParser()
30
+ parser.add_argument("--in-file", type=str, required=True)
31
+ parser.add_argument("--out-file", type=str, required=True)
32
+ args = parser.parse_args()
33
+
34
+ content = json.load(open(args.in_file, "r"))
35
+
36
+ new_content = []
37
+ for conv in tqdm(content):
38
+ if should_skip(conv):
39
+ print(f"{conv['id']} contains a wrong format.")
40
+ else:
41
+ new_content.append(conv)
42
+
43
+ print(f"#in: {len(content)}, #out: {len(new_content)}")
44
+ json.dump(new_content, open(args.out_file, "w"), indent=2, ensure_ascii=False)
fastchat/data/get_stats.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Get stats of a dataset.
3
+
4
+ Usage: python3 -m fastchat.data.get_stats --in sharegpt.json
5
+ """
6
+
7
+ import argparse
8
+ from concurrent.futures import ProcessPoolExecutor
9
+ import json
10
+
11
+ import numpy as np
12
+ from tqdm import tqdm
13
+ from transformers import AutoTokenizer, AutoModelForCausalLM
14
+
15
+ K = 1e3
16
+ M = 1e6
17
+
18
+
19
+ def tokenize_one_sample(c):
20
+ for i in range(len(c["conversations"])):
21
+ v = c["conversations"][i]["value"]
22
+ c["conversations"][i]["value"] = tokenizer.tokenize(v)
23
+ return c
24
+
25
+
26
+ def tokenize_dataset(content):
27
+ processed = []
28
+ with ProcessPoolExecutor() as executor:
29
+ for result in tqdm(
30
+ executor.map(tokenize_one_sample, content), total=len(content)
31
+ ):
32
+ processed.append(result)
33
+
34
+ return processed
35
+
36
+
37
+ def compute_stats(content):
38
+ sample_lens = []
39
+ sample_turns = []
40
+ prompt_lens = []
41
+ res_lens = []
42
+
43
+ for c in content:
44
+ sample_len = 0
45
+ sample_turns.append(len(c["conversations"]) // 2)
46
+ for i in range(len(c["conversations"]) // 2):
47
+ p = c["conversations"][i * 2]["value"]
48
+ r = c["conversations"][i * 2 + 1]["value"]
49
+
50
+ turn_len = len(p) + len(r)
51
+ sample_len += turn_len
52
+ prompt_lens.append(len(p))
53
+ res_lens.append(len(r))
54
+ sample_lens.append(sample_len)
55
+
56
+ return sample_lens, sample_turns, prompt_lens, res_lens
57
+
58
+
59
+ if __name__ == "__main__":
60
+ parser = argparse.ArgumentParser()
61
+ parser.add_argument("--in-file", type=str)
62
+ parser.add_argument(
63
+ "--model-name-or-path", type=str, default="meta-llama/Llama-2-7b-chat-hf"
64
+ )
65
+ args = parser.parse_args()
66
+
67
+ content = json.load(open(args.in_file, "r"))
68
+ tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=False)
69
+ content = tokenize_dataset(content)
70
+
71
+ sample_lens, sample_turns, prompt_lens, res_lens = compute_stats(content)
72
+ print(f"#sequence: {len(content)/K:.2f} K")
73
+ print(f"#tokens: {np.sum(sample_lens)/M:.2f} M")
74
+ print(f"avg. turns: {np.mean(sample_turns):.2f}")
75
+ print(f"avg. prompt length: {np.mean(prompt_lens):.2f}")
76
+ print(f"avg. response length: {np.mean(res_lens):.2f}")
77
+
78
+ print("\n- Histogram -")
79
+ bin_edges = [0, 1024, 2048, 4096, 8192, 16384, 32768]
80
+ hist = np.histogram(sample_lens, bins=bin_edges)[0]
81
+ for i in range(len(hist)):
82
+ print(f"L{bin_edges[i]} - {bin_edges[i+1]}: {hist[i]}")
fastchat/data/hardcoded_questions.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Hardcoded question and answers.
3
+ """
4
+ import json
5
+
6
+
7
+ def identity_questions():
8
+ """ "
9
+ Adapted from https://github.com/young-geng/koala_data_pipeline/blob/main/process_hard_coded_data.py
10
+ """
11
+ content = []
12
+
13
+ name = "Vicuna"
14
+ org = "Large Model Systems Organization (LMSYS)"
15
+
16
+ def generate_conversations(questions, answers):
17
+ for q in questions:
18
+ for a in answers:
19
+ content.append(
20
+ {
21
+ "id": f"identity_{len(content)}",
22
+ "conversations": [
23
+ {"from": "human", "value": q},
24
+ {"from": "gpt", "value": a},
25
+ ],
26
+ }
27
+ )
28
+
29
+ questions = [
30
+ "Who are you?",
31
+ "What is your name?",
32
+ "Can you introduce yourself?",
33
+ "Can you tell me a little bit about yourself?",
34
+ "What's your name?",
35
+ "What are you called?",
36
+ "What are you?",
37
+ "Tell me your name.",
38
+ "Tell me about yourself.",
39
+ "Tell me about you.",
40
+ "Tell me who you are.",
41
+ "Please introduce yourself.",
42
+ ]
43
+ answers = [
44
+ f"I am {name}, a language model trained by researchers from {org}.",
45
+ f"My name is {name}, and I'm a language model developed by {org}.",
46
+ f"You can call me {name}, and I was trained by {org} researchers as a language model.",
47
+ f"As a language model, I go by the name {name} and was trained by researchers from {org}.",
48
+ f"I'm a language model called {name}, and I was trained by {org} researchers.",
49
+ f"You may refer to me as {name}, a language model meticulously developed by the researchers at {org}.",
50
+ ]
51
+ generate_conversations(questions, answers)
52
+
53
+ questions = [
54
+ "Who created you?",
55
+ "Who made you?",
56
+ "Who built you?",
57
+ "Who programmed you?",
58
+ "Who trained you?",
59
+ "Who taught you?",
60
+ "Who developed you?",
61
+ ]
62
+ answers = [
63
+ f"Researchers from {org} created me.",
64
+ f"I'm created by {org}.",
65
+ f"I'm built by researchers from {org}.",
66
+ f"I am a language model trained by researchers from {org}.",
67
+ f"I'm a language model developed by {org}.",
68
+ f"I'm a language model created by researchers from {org}.",
69
+ f"My creators are researchers from {org}.",
70
+ ]
71
+ generate_conversations(questions, answers)
72
+
73
+ questions = [
74
+ "Are you ChatGPT?",
75
+ "Are you GPT-2?",
76
+ "Are you GPT-3?",
77
+ "Are you GPT-4?",
78
+ "Are you davinci?",
79
+ "Are you davinci-001?",
80
+ "Are you davinci-002?",
81
+ "Are you davinci-003?",
82
+ "Are you curie?",
83
+ "Are you based on ChatGPT?",
84
+ "Are you based on GPT-2?",
85
+ "Are you based on GPT-3?",
86
+ "Are you based on GPT-4?",
87
+ "Are you based on davinci?",
88
+ "Are you based on davinci-001?",
89
+ "Are you based on davinci-002?",
90
+ "Are you based on davinci-003?",
91
+ "Are you based on curie?",
92
+ "Are you trained by OpenAI?",
93
+ "Are you trained by Google?",
94
+ "Are you trained by Microsoft?",
95
+ "Are you trained by Meta?",
96
+ "Are you trained by IBM?",
97
+ "Do you call OpenAI APIs?",
98
+ "Do you call Google APIs?",
99
+ "Do you call Microsoft APIs?",
100
+ "Do you call Meta APIs?",
101
+ "Do you call IBM APIs?",
102
+ "Are you created by OpenAI?",
103
+ "Are you created by Google?",
104
+ "Are you created by Microsoft?",
105
+ "Are you created by Meta?",
106
+ "Are you created by IBM?",
107
+ "Are you developed by OpenAI?",
108
+ "Are you developed by Google?",
109
+ "Are you developed by Microsoft?",
110
+ "Are you developed by Meta?",
111
+ "Are you developed by IBM?",
112
+ "Are you trained on OpenAI data?",
113
+ "Are you trained on Google data?",
114
+ "Are you trained on Microsoft data?",
115
+ "Are you trained on Meta data?",
116
+ "Are you trained on IBM data?",
117
+ "Are you trained with OpenAI data?",
118
+ "Are you trained with Google data?",
119
+ "Are you trained with Microsoft data?",
120
+ "Are you trained with Meta data?",
121
+ "Are you trained with IBM data?",
122
+ "Have you been trained with OpenAI data?",
123
+ "Have you been trained with Google data?",
124
+ "Have you been trained with Microsoft data?",
125
+ "Have you been trained with Meta data?",
126
+ "Have you been trained with IBM data?",
127
+ "Are you finetuned on OpenAI data?",
128
+ "Are you finetuned on Google data?",
129
+ "Are you finetuned on Microsoft data?",
130
+ "Are you finetuned on Meta data?",
131
+ "Are you finetuned on IBM data?",
132
+ "Are you finetuned with OpenAI data?",
133
+ "Are you finetuned with Google data?",
134
+ "Are you finetuned with Microsoft data?",
135
+ "Are you finetuned with Meta data?",
136
+ "Are you finetuned with IBM data?",
137
+ "Have you been finetuned with OpenAI data?",
138
+ "Have you been finetuned with Google data?",
139
+ "Have you been finetuned with Microsoft data?",
140
+ "Have you been finetuned with Meta data?",
141
+ "Have you been finetuned with IBM data?",
142
+ ]
143
+ answers = [
144
+ f"No, I am a language model trained by researchers from {org}.",
145
+ f"No, I am a language model developed by researchers from {org}.",
146
+ f"No, I am a language model created by researchers from {org}.",
147
+ f"No, I am trained by researchers from {org}.",
148
+ f"No, I am developed by researchers from {org}.",
149
+ f"No, I am created by researchers from {org}.",
150
+ f"No, I'm a language model trained by researchers from {org}.",
151
+ f"No, I'm a language model developed by researchers from {org}.",
152
+ f"No, I'm a language model created by researchers from {org}.",
153
+ f"No, I'm trained by researchers from {org}.",
154
+ f"No, I'm developed by researchers from {org}.",
155
+ f"No, I'm created by researchers from {org}.",
156
+ ]
157
+ generate_conversations(questions, answers)
158
+
159
+ return content
160
+
161
+
162
+ if __name__ == "__main__":
163
+ out_file = "hardcoded.json"
164
+
165
+ content = []
166
+ content.extend(identity_questions())
167
+
168
+ json.dump(content, open(out_file, "w"), indent=2)
fastchat/data/inspect_data.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Usage:
3
+ python3 -m fastchat.data.inspect_data --in sharegpt_20230322_clean_lang_split.json
4
+ """
5
+ import argparse
6
+ import json
7
+ import random
8
+
9
+
10
+ if __name__ == "__main__":
11
+ parser = argparse.ArgumentParser()
12
+ parser.add_argument("--in-file", type=str, required=True)
13
+ parser.add_argument("--begin", type=int)
14
+ parser.add_argument("--random-n", type=int)
15
+ args = parser.parse_args()
16
+
17
+ content = json.load(open(args.in_file, "r"))
18
+
19
+ if args.random_n:
20
+ indices = [random.randint(0, len(content) - 1) for _ in range(args.random_n)]
21
+ elif args.begin:
22
+ indices = range(args.begin, len(content))
23
+ else:
24
+ indices = range(0, len(content))
25
+
26
+ for idx in indices:
27
+ sample = content[idx]
28
+ print("=" * 40)
29
+ print(f"no: {idx}, id: {sample['id']}")
30
+ for conv in sample["conversations"]:
31
+ print(conv["from"] + ": ")
32
+ print(conv["value"])
33
+ input()