""" Common utilities. """ from asyncio import AbstractEventLoop from io import BytesIO import base64 import json import logging import logging.handlers import os import platform import sys import time from typing import AsyncGenerator, Generator import warnings import requests from fastchat.constants import LOGDIR handler = None visited_loggers = set() def build_logger(logger_name, logger_filename): global handler formatter = logging.Formatter( fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", ) # Set the format of root handlers if not logging.getLogger().handlers: if sys.version_info[1] >= 9: # This is for windows logging.basicConfig(level=logging.INFO, encoding="utf-8") else: if platform.system() == "Windows": warnings.warn( "If you are running on Windows, " "we recommend you use Python >= 3.9 for UTF-8 encoding." ) logging.basicConfig(level=logging.INFO) logging.getLogger().handlers[0].setFormatter(formatter) # Redirect stdout and stderr to loggers stdout_logger = logging.getLogger("stdout") stdout_logger.setLevel(logging.INFO) sl = StreamToLogger(stdout_logger, logging.INFO) sys.stdout = sl stderr_logger = logging.getLogger("stderr") stderr_logger.setLevel(logging.ERROR) sl = StreamToLogger(stderr_logger, logging.ERROR) sys.stderr = sl # Get logger logger = logging.getLogger(logger_name) logger.setLevel(logging.INFO) # Avoid httpx flooding POST logs logging.getLogger("httpx").setLevel(logging.WARNING) # if LOGDIR is empty, then don't try output log to local file if LOGDIR != "": os.makedirs(LOGDIR, exist_ok=True) filename = os.path.join(LOGDIR, logger_filename) handler = logging.handlers.TimedRotatingFileHandler( filename, when="D", utc=True, encoding="utf-8" ) handler.setFormatter(formatter) for l in [stdout_logger, stderr_logger, logger]: if l in visited_loggers: continue visited_loggers.add(l) l.addHandler(handler) return logger class StreamToLogger(object): """ Fake file-like stream object that redirects writes to a logger instance. """ def __init__(self, logger, log_level=logging.INFO): self.terminal = sys.stdout self.logger = logger self.log_level = log_level self.linebuf = "" def __getattr__(self, attr): return getattr(self.terminal, attr) def write(self, buf): temp_linebuf = self.linebuf + buf self.linebuf = "" for line in temp_linebuf.splitlines(True): # From the io.TextIOWrapper docs: # On output, if newline is None, any '\n' characters written # are translated to the system default line separator. # By default sys.stdout.write() expects '\n' newlines and then # translates them so this is still cross platform. if line[-1] == "\n": encoded_message = line.encode("utf-8", "ignore").decode("utf-8") self.logger.log(self.log_level, encoded_message.rstrip()) else: self.linebuf += line def flush(self): if self.linebuf != "": encoded_message = self.linebuf.encode("utf-8", "ignore").decode("utf-8") self.logger.log(self.log_level, encoded_message.rstrip()) self.linebuf = "" def disable_torch_init(): """ Disable the redundant torch default initialization to accelerate model creation. """ import torch setattr(torch.nn.Linear, "reset_parameters", lambda self: None) setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None) def get_gpu_memory(max_gpus=None): """Get available memory for each GPU.""" import torch gpu_memory = [] num_gpus = ( torch.cuda.device_count() if max_gpus is None else min(max_gpus, torch.cuda.device_count()) ) for gpu_id in range(num_gpus): with torch.cuda.device(gpu_id): device = torch.cuda.current_device() gpu_properties = torch.cuda.get_device_properties(device) total_memory = gpu_properties.total_memory / (1024**3) allocated_memory = torch.cuda.memory_allocated() / (1024**3) available_memory = total_memory - allocated_memory gpu_memory.append(available_memory) return gpu_memory def oai_moderation(text, custom_thresholds=None): """ Check whether the text violates OpenAI moderation API. """ import openai client = openai.OpenAI(api_key=os.environ["OPENAI_API_KEY"]) # default to true to be conservative flagged = True MAX_RETRY = 3 for _ in range(MAX_RETRY): try: res = client.moderations.create(input=text) flagged = res.results[0].flagged if custom_thresholds is not None: for category, threshold in custom_thresholds.items(): if getattr(res.results[0].category_scores, category) > threshold: flagged = True break except (openai.OpenAIError, KeyError, IndexError) as e: print(f"MODERATION ERROR: {e}\nInput: {text}") return flagged def moderation_filter(text, model_list, do_moderation=False): # Apply moderation for below models MODEL_KEYWORDS = [ "claude", "gpt", "bard", "mistral-large", "command-r", "dbrx", "gemini", "reka", ] custom_thresholds = {"sexual": 0.3} # set a stricter threshold for claude for model in model_list: if "claude" in model: custom_thresholds = {"sexual": 0.2} for keyword in MODEL_KEYWORDS: for model in model_list: if keyword in model: do_moderation = True break if do_moderation: return oai_moderation(text, custom_thresholds) return False def clean_flant5_ckpt(ckpt_path): """ Flan-t5 trained with HF+FSDP saves corrupted weights for shared embeddings, Use this function to make sure it can be correctly loaded. """ import torch index_file = os.path.join(ckpt_path, "pytorch_model.bin.index.json") index_json = json.load(open(index_file, "r")) weightmap = index_json["weight_map"] share_weight_file = weightmap["shared.weight"] share_weight = torch.load(os.path.join(ckpt_path, share_weight_file))[ "shared.weight" ] for weight_name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]: weight_file = weightmap[weight_name] weight = torch.load(os.path.join(ckpt_path, weight_file)) weight[weight_name] = share_weight torch.save(weight, os.path.join(ckpt_path, weight_file)) def pretty_print_semaphore(semaphore): """Print a semaphore in better format.""" if semaphore is None: return "None" return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})" """A javascript function to get url parameters for the gradio web server.""" get_window_url_params_js = """ function() { const params = new URLSearchParams(window.location.search); url_params = Object.fromEntries(params); console.log("url_params", url_params); return url_params; } """ get_window_url_params_with_tos_js = """ function() { const params = new URLSearchParams(window.location.search); const url_params = Object.fromEntries(params); console.log("url_params", url_params); const urlContainsLeaderboard = Object.keys(url_params).some(key => key.toLowerCase().includes("leaderboard")); const msg = "Users of this website are required to agree to the following terms:\\n\\nThe service is a research preview. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.\\nPlease do not upload any private information.\\nThe service collects user dialogue data, including both text and images, and reserves the right to distribute it under a Creative Commons Attribution (CC-BY) or a similar license."; if (!urlContainsLeaderboard) { if (window.alerted_before) return; alert(msg); window.alerted_before = true; } return url_params; } """ alert_js = """ () => { if (window.alerted_before) return; const msg = "Users of this website are required to agree to the following terms:\\n\\nThe service is a research preview. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.\\nPlease do not upload any private information.\\nThe service collects user dialogue data, including both text and images, and reserves the right to distribute it under a Creative Commons Attribution (CC-BY) or a similar license."; alert(msg); window.alerted_before = true; } """ def iter_over_async( async_gen: AsyncGenerator, event_loop: AbstractEventLoop ) -> Generator: """ Convert async generator to sync generator :param async_gen: the AsyncGenerator to convert :param event_loop: the event loop to run on :returns: Sync generator """ ait = async_gen.__aiter__() async def get_next(): try: obj = await ait.__anext__() return False, obj except StopAsyncIteration: return True, None while True: done, obj = event_loop.run_until_complete(get_next()) if done: break yield obj def detect_language(text: str) -> str: """Detect the langauge of a string.""" import polyglot # pip3 install polyglot pyicu pycld2 from polyglot.detect import Detector from polyglot.detect.base import logger as polyglot_logger import pycld2 polyglot_logger.setLevel("ERROR") try: lang_code = Detector(text).language.name except (pycld2.error, polyglot.detect.base.UnknownLanguage): lang_code = "unknown" return lang_code def parse_gradio_auth_creds(filename: str): """Parse a username:password file for gradio authorization.""" gradio_auth_creds = [] with open(filename, "r", encoding="utf8") as file: for line in file.readlines(): gradio_auth_creds += [x.strip() for x in line.split(",") if x.strip()] if gradio_auth_creds: auth = [tuple(cred.split(":")) for cred in gradio_auth_creds] else: auth = None return auth def is_partial_stop(output: str, stop_str: str): """Check whether the output contains a partial stop str.""" for i in range(0, min(len(output), len(stop_str))): if stop_str.startswith(output[-i:]): return True return False def run_cmd(cmd: str): """Run a bash command.""" print(cmd) return os.system(cmd) def is_sentence_complete(output: str): """Check whether the output is a complete sentence.""" end_symbols = (".", "?", "!", "...", "。", "?", "!", "…", '"', "'", "”") return output.endswith(end_symbols) # Models don't use the same configuration key for determining the maximum # sequence length. Store them here so we can sanely check them. # NOTE: The ordering here is important. Some models have two of these and we # have a preference for which value gets used. SEQUENCE_LENGTH_KEYS = [ "max_position_embeddings", "max_sequence_length", "seq_length", "max_seq_len", "model_max_length", ] def get_context_length(config): """Get the context length of a model from a huggingface model config.""" rope_scaling = getattr(config, "rope_scaling", None) if rope_scaling: rope_scaling_factor = config.rope_scaling["factor"] else: rope_scaling_factor = 1 for key in SEQUENCE_LENGTH_KEYS: val = getattr(config, key, None) if val is not None: return int(rope_scaling_factor * val) return 2048 def str_to_torch_dtype(dtype: str): import torch if dtype is None: return None elif dtype == "float32": return torch.float32 elif dtype == "float16": return torch.float16 elif dtype == "bfloat16": return torch.bfloat16 else: raise ValueError(f"Unrecognized dtype: {dtype}") def load_image(image_file): from PIL import Image import requests image = None if image_file.startswith("http://") or image_file.startswith("https://"): timeout = int(os.getenv("REQUEST_TIMEOUT", "3")) response = requests.get(image_file, timeout=timeout) image = Image.open(BytesIO(response.content)) elif image_file.lower().endswith(("png", "jpg", "jpeg", "webp", "gif")): image = Image.open(image_file) elif image_file.startswith("data:"): image_file = image_file.split(",")[1] image = Image.open(BytesIO(base64.b64decode(image_file))) else: image = Image.open(BytesIO(base64.b64decode(image_file))) return image def upload_image_file_to_gcs(image, filename): from google.cloud import storage import io storage_client = storage.Client() # upload file to GCS bucket = storage_client.get_bucket("arena_service_data") blob = bucket.blob(f"{filename}") if not blob.exists(): buffer = io.BytesIO() image.save(buffer, format="PNG") buffer.seek(0) blob.upload_from_file(buffer, content_type="image/png") return blob.public_url def get_image_file_from_gcs(filename): from google.cloud import storage storage_client = storage.Client() bucket = storage_client.get_bucket("arena_service_data") blob = bucket.blob(f"{filename}") contents = blob.download_as_bytes() return contents def image_moderation_request(image_bytes, endpoint, api_key): headers = {"Content-Type": "image/jpeg", "Ocp-Apim-Subscription-Key": api_key} MAX_RETRIES = 3 for _ in range(MAX_RETRIES): response = requests.post(endpoint, headers=headers, data=image_bytes).json() try: if response["Status"]["Code"] == 3000: break except: time.sleep(0.5) return response def image_moderation_provider(image, api_type): if api_type == "nsfw": endpoint = os.environ["AZURE_IMG_MODERATION_ENDPOINT"] api_key = os.environ["AZURE_IMG_MODERATION_API_KEY"] response = image_moderation_request(image, endpoint, api_key) print(response) return response["IsImageAdultClassified"] elif api_type == "csam": endpoint = ( "https://api.microsoftmoderator.com/photodna/v1.0/Match?enhance=false" ) api_key = os.environ["PHOTODNA_API_KEY"] response = image_moderation_request(image, endpoint, api_key) return response["IsMatch"] def image_moderation_filter(image): print(f"moderating image") image_bytes = base64.b64decode(image.base64_str) nsfw_flagged = image_moderation_provider(image_bytes, "nsfw") csam_flagged = False if nsfw_flagged: csam_flagged = image_moderation_provider(image_bytes, "csam") return nsfw_flagged, csam_flagged