# Model Support This document describes how to support a new model in FastChat. ## Content - [Local Models](#local-models) - [API-Based Models](#api-based-models) ## Local Models To support a new local model in FastChat, you need to correctly handle its prompt template and model loading. The goal is to make the following command run with the correct prompts. ``` python3 -m fastchat.serve.cli --model [YOUR_MODEL_PATH] ``` You can run this example command to learn the code logic. ``` python3 -m fastchat.serve.cli --model lmsys/vicuna-7b-v1.5 ``` You can add `--debug` to see the actual prompt sent to the model. ### Steps FastChat uses the `Conversation` class to handle prompt templates and `BaseModelAdapter` class to handle model loading. 1. Implement a conversation template for the new model at [fastchat/conversation.py](https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py). You can follow existing examples and use `register_conv_template` to add a new one. Please also add a link to the official reference code if possible. 2. Implement a model adapter for the new model at [fastchat/model/model_adapter.py](https://github.com/lm-sys/FastChat/blob/main/fastchat/model/model_adapter.py). You can follow existing examples and use `register_model_adapter` to add a new one. 3. (Optional) add the model name to the "Supported models" [section](#supported-models) above and add more information in [fastchat/model/model_registry.py](https://github.com/lm-sys/FastChat/blob/main/fastchat/model/model_registry.py). After these steps, the new model should be compatible with most FastChat features, such as CLI, web UI, model worker, and OpenAI-compatible API server. Please do some testing with these features as well. ### Supported models - [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) - example: `python3 -m fastchat.serve.cli --model-path meta-llama/Llama-2-7b-chat-hf` - Vicuna, Alpaca, LLaMA, Koala - example: `python3 -m fastchat.serve.cli --model-path lmsys/vicuna-7b-v1.5` - [allenai/tulu-2-dpo-7b](https://huggingface.co/allenai/tulu-2-dpo-7b) - [BAAI/AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B) - [BAAI/AquilaChat2-7B](https://huggingface.co/BAAI/AquilaChat2-7B) - [BAAI/AquilaChat2-34B](https://huggingface.co/BAAI/AquilaChat2-34B) - [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en#using-huggingface-transformers) - [argilla/notus-7b-v1](https://huggingface.co/argilla/notus-7b-v1) - [baichuan-inc/baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B) - [BlinkDL/RWKV-4-Raven](https://huggingface.co/BlinkDL/rwkv-4-raven) - example: `python3 -m fastchat.serve.cli --model-path ~/model_weights/RWKV-4-Raven-7B-v11x-Eng99%-Other1%-20230429-ctx8192.pth` - [bofenghuang/vigogne-2-7b-instruct](https://huggingface.co/bofenghuang/vigogne-2-7b-instruct) - [bofenghuang/vigogne-2-7b-chat](https://huggingface.co/bofenghuang/vigogne-2-7b-chat) - [camel-ai/CAMEL-13B-Combined-Data](https://huggingface.co/camel-ai/CAMEL-13B-Combined-Data) - [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) - [databricks/dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b) - [deepseek-ai/deepseek-llm-67b-chat](https://huggingface.co/deepseek-ai/deepseek-llm-67b-chat) - [deepseek-ai/deepseek-coder-33b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct) - [FlagAlpha/Llama2-Chinese-13b-Chat](https://huggingface.co/FlagAlpha/Llama2-Chinese-13b-Chat) - [FreedomIntelligence/phoenix-inst-chat-7b](https://huggingface.co/FreedomIntelligence/phoenix-inst-chat-7b) - [FreedomIntelligence/ReaLM-7b-v1](https://huggingface.co/FreedomIntelligence/Realm-7b) - [h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b](https://huggingface.co/h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b) - [HuggingFaceH4/starchat-beta](https://huggingface.co/HuggingFaceH4/starchat-beta) - [HuggingFaceH4/zephyr-7b-alpha](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha) - [internlm/internlm-chat-7b](https://huggingface.co/internlm/internlm-chat-7b) - [cllm/consistency-llm-7b-codesearchnet/consistency-llm-7b-gsm8k/consistency-llm-7b-sharegpt48k/consistency-llm-7b-spider](https://huggingface.co/cllm) - [IEITYuan/Yuan2-2B/51B/102B-hf](https://huggingface.co/IEITYuan) - [lcw99/polyglot-ko-12.8b-chang-instruct-chat](https://huggingface.co/lcw99/polyglot-ko-12.8b-chang-instruct-chat) - [lmsys/fastchat-t5-3b-v1.0](https://huggingface.co/lmsys/fastchat-t5) - [meta-math/MetaMath-7B-V1.0](https://huggingface.co/meta-math/MetaMath-7B-V1.0) - [Microsoft/Orca-2-7b](https://huggingface.co/microsoft/Orca-2-7b) - [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat) - example: `python3 -m fastchat.serve.cli --model-path mosaicml/mpt-7b-chat` - [Neutralzz/BiLLa-7B-SFT](https://huggingface.co/Neutralzz/BiLLa-7B-SFT) - [nomic-ai/gpt4all-13b-snoozy](https://huggingface.co/nomic-ai/gpt4all-13b-snoozy) - [NousResearch/Nous-Hermes-13b](https://huggingface.co/NousResearch/Nous-Hermes-13b) - [openaccess-ai-collective/manticore-13b-chat-pyg](https://huggingface.co/openaccess-ai-collective/manticore-13b-chat-pyg) - [OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5](https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5) - [openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5) - [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) - [OpenLemur/lemur-70b-chat-v1](https://huggingface.co/OpenLemur/lemur-70b-chat-v1) - [Phind/Phind-CodeLlama-34B-v2](https://huggingface.co/Phind/Phind-CodeLlama-34B-v2) - [project-baize/baize-v2-7b](https://huggingface.co/project-baize/baize-v2-7b) - [Qwen/Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat) - [rishiraj/CatPPT](https://huggingface.co/rishiraj/CatPPT) - [Salesforce/codet5p-6b](https://huggingface.co/Salesforce/codet5p-6b) - [StabilityAI/stablelm-tuned-alpha-7b](https://huggingface.co/stabilityai/stablelm-tuned-alpha-7b) - [tenyx/TenyxChat-7B-v1](https://huggingface.co/tenyx/TenyxChat-7B-v1) - [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) - [THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b) - [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b) - [tiiuae/falcon-40b](https://huggingface.co/tiiuae/falcon-40b) - [tiiuae/falcon-180B-chat](https://huggingface.co/tiiuae/falcon-180B-chat) - [timdettmers/guanaco-33b-merged](https://huggingface.co/timdettmers/guanaco-33b-merged) - [togethercomputer/RedPajama-INCITE-7B-Chat](https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Chat) - [VMware/open-llama-7b-v2-open-instruct](https://huggingface.co/VMware/open-llama-7b-v2-open-instruct) - [WizardLM/WizardLM-13B-V1.0](https://huggingface.co/WizardLM/WizardLM-13B-V1.0) - [WizardLM/WizardCoder-15B-V1.0](https://huggingface.co/WizardLM/WizardCoder-15B-V1.0) - [Xwin-LM/Xwin-LM-7B-V0.1](https://huggingface.co/Xwin-LM/Xwin-LM-70B-V0.1) - Any [EleutherAI](https://huggingface.co/EleutherAI) pythia model such as [pythia-6.9b](https://huggingface.co/EleutherAI/pythia-6.9b) - Any [Peft](https://github.com/huggingface/peft) adapter trained on top of a model above. To activate, must have `peft` in the model path. Note: If loading multiple peft models, you can have them share the base model weights by setting the environment variable `PEFT_SHARE_BASE_WEIGHTS=true` in any model worker. ## API-Based Models To support an API-based model, consider learning from the existing OpenAI example. If the model is compatible with OpenAI APIs, then a configuration file is all that's needed without any additional code. For custom protocols, implementation of a streaming generator in [fastchat/serve/api_provider.py](https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/api_provider.py) is required, following the provided examples. Currently, FastChat is compatible with OpenAI, Anthropic, Google Vertex AI, Mistral, Nvidia NGC, YandexGPT and Reka. ### Steps to Launch a WebUI with an API Model 1. Specify the endpoint information in a JSON configuration file. For instance, create a file named `api_endpoints.json`: ```json { "gpt-3.5-turbo": { "model_name": "gpt-3.5-turbo", "api_type": "openai", "api_base": "https://api.openai.com/v1", "api_key": "sk-******", "anony_only": false, "recommended_config": { "temperature": 0.7, "top_p": 1.0 }, "text-arena": true, "vision-arena": false, } } ``` - "api_type" can be one of the following: openai, anthropic, gemini, mistral, yandexgpt or reka. For custom APIs, add a new type and implement it accordingly. - "anony_only" indicates whether to display this model in anonymous mode only. - "recommended_config" indicates the recommended generation parameters for temperature and top_p. - "text-arena" indicates whether the model should be displayed in the Text Arena. - "vision-arena" indicates whether the model should be displayed in the Vision Arena. 2. Launch the Gradio web server with the argument `--register api_endpoints.json`: ``` python3 -m fastchat.serve.gradio_web_server --controller "" --share --register api_endpoints.json ``` Now, you can open a browser and interact with the model.