Spaces:
Runtime error
Runtime error
File size: 14,149 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
import numpy as np
import torch.nn as nn
from utils.util import convert_pad_shape
class BaseModule(torch.nn.Module):
def __init__(self):
super(BaseModule, self).__init__()
@property
def nparams(self):
"""
Returns number of trainable parameters of the module.
"""
num_params = 0
for name, param in self.named_parameters():
if param.requires_grad:
num_params += np.prod(param.detach().cpu().numpy().shape)
return num_params
def relocate_input(self, x: list):
"""
Relocates provided tensors to the same device set for the module.
"""
device = next(self.parameters()).device
for i in range(len(x)):
if isinstance(x[i], torch.Tensor) and x[i].device != device:
x[i] = x[i].to(device)
return x
class LayerNorm(BaseModule):
def __init__(self, channels, eps=1e-4):
super(LayerNorm, self).__init__()
self.channels = channels
self.eps = eps
self.gamma = torch.nn.Parameter(torch.ones(channels))
self.beta = torch.nn.Parameter(torch.zeros(channels))
def forward(self, x):
n_dims = len(x.shape)
mean = torch.mean(x, 1, keepdim=True)
variance = torch.mean((x - mean) ** 2, 1, keepdim=True)
x = (x - mean) * torch.rsqrt(variance + self.eps)
shape = [1, -1] + [1] * (n_dims - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class ConvReluNorm(BaseModule):
def __init__(
self,
in_channels,
hidden_channels,
out_channels,
kernel_size,
n_layers,
p_dropout,
eps=1e-5,
):
super(ConvReluNorm, self).__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.p_dropout = p_dropout
self.eps = eps
self.conv_layers = torch.nn.ModuleList()
self.conv_layers.append(
torch.nn.Conv1d(
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
)
)
self.relu_drop = torch.nn.Sequential(
torch.nn.ReLU(), torch.nn.Dropout(p_dropout)
)
for _ in range(n_layers - 1):
self.conv_layers.append(
torch.nn.Conv1d(
hidden_channels,
hidden_channels,
kernel_size,
padding=kernel_size // 2,
)
)
self.proj = torch.nn.Conv1d(hidden_channels, out_channels, 1)
self.proj.weight.data.zero_()
self.proj.bias.data.zero_()
def forward(self, x, x_mask):
for i in range(self.n_layers):
x = self.conv_layers[i](x * x_mask)
x = self.instance_norm(x, x_mask)
x = self.relu_drop(x)
x = self.proj(x)
return x * x_mask
def instance_norm(self, x, mask, return_mean_std=False):
mean, std = self.calc_mean_std(x, mask)
x = (x - mean) / std
if return_mean_std:
return x, mean, std
else:
return x
def calc_mean_std(self, x, mask=None):
x = x * mask
B, C = x.shape[:2]
mn = x.view(B, C, -1).mean(-1)
sd = (x.view(B, C, -1).var(-1) + self.eps).sqrt()
mn = mn.view(B, C, *((len(x.shape) - 2) * [1]))
sd = sd.view(B, C, *((len(x.shape) - 2) * [1]))
return mn, sd
class MultiHeadAttention(BaseModule):
def __init__(
self,
channels,
out_channels,
n_heads,
window_size=None,
heads_share=True,
p_dropout=0.0,
proximal_bias=False,
proximal_init=False,
):
super(MultiHeadAttention, self).__init__()
assert channels % n_heads == 0
self.channels = channels
self.out_channels = out_channels
self.n_heads = n_heads
self.window_size = window_size
self.heads_share = heads_share
self.proximal_bias = proximal_bias
self.p_dropout = p_dropout
self.attn = None
self.k_channels = channels // n_heads
self.conv_q = torch.nn.Conv1d(channels, channels, 1)
self.conv_k = torch.nn.Conv1d(channels, channels, 1)
self.conv_v = torch.nn.Conv1d(channels, channels, 1)
if window_size is not None:
n_heads_rel = 1 if heads_share else n_heads
rel_stddev = self.k_channels**-0.5
self.emb_rel_k = torch.nn.Parameter(
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
* rel_stddev
)
self.emb_rel_v = torch.nn.Parameter(
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
* rel_stddev
)
self.conv_o = torch.nn.Conv1d(channels, out_channels, 1)
self.drop = torch.nn.Dropout(p_dropout)
torch.nn.init.xavier_uniform_(self.conv_q.weight)
torch.nn.init.xavier_uniform_(self.conv_k.weight)
if proximal_init:
self.conv_k.weight.data.copy_(self.conv_q.weight.data)
self.conv_k.bias.data.copy_(self.conv_q.bias.data)
torch.nn.init.xavier_uniform_(self.conv_v.weight)
def forward(self, x, c, attn_mask=None):
q = self.conv_q(x)
k = self.conv_k(c)
v = self.conv_v(c)
x, self.attn = self.attention(q, k, v, mask=attn_mask)
x = self.conv_o(x)
return x
def attention(self, query, key, value, mask=None):
b, d, t_s, t_t = (*key.size(), query.size(2))
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels)
if self.window_size is not None:
assert (
t_s == t_t
), "Relative attention is only available for self-attention."
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
rel_logits = self._matmul_with_relative_keys(query, key_relative_embeddings)
rel_logits = self._relative_position_to_absolute_position(rel_logits)
scores_local = rel_logits / math.sqrt(self.k_channels)
scores = scores + scores_local
if self.proximal_bias:
assert t_s == t_t, "Proximal bias is only available for self-attention."
scores = scores + self._attention_bias_proximal(t_s).to(
device=scores.device, dtype=scores.dtype
)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e4)
p_attn = torch.nn.functional.softmax(scores, dim=-1)
p_attn = self.drop(p_attn)
output = torch.matmul(p_attn, value)
if self.window_size is not None:
relative_weights = self._absolute_position_to_relative_position(p_attn)
value_relative_embeddings = self._get_relative_embeddings(
self.emb_rel_v, t_s
)
output = output + self._matmul_with_relative_values(
relative_weights, value_relative_embeddings
)
output = output.transpose(2, 3).contiguous().view(b, d, t_t)
return output, p_attn
def _matmul_with_relative_values(self, x, y):
ret = torch.matmul(x, y.unsqueeze(0))
return ret
def _matmul_with_relative_keys(self, x, y):
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
return ret
def _get_relative_embeddings(self, relative_embeddings, length):
pad_length = max(length - (self.window_size + 1), 0)
slice_start_position = max((self.window_size + 1) - length, 0)
slice_end_position = slice_start_position + 2 * length - 1
if pad_length > 0:
padded_relative_embeddings = torch.nn.functional.pad(
relative_embeddings,
convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
)
else:
padded_relative_embeddings = relative_embeddings
used_relative_embeddings = padded_relative_embeddings[
:, slice_start_position:slice_end_position
]
return used_relative_embeddings
def _relative_position_to_absolute_position(self, x):
batch, heads, length, _ = x.size()
x = torch.nn.functional.pad(
x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]])
)
x_flat = x.view([batch, heads, length * 2 * length])
x_flat = torch.nn.functional.pad(
x_flat, convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
)
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
:, :, :length, length - 1 :
]
return x_final
def _absolute_position_to_relative_position(self, x):
batch, heads, length, _ = x.size()
x = torch.nn.functional.pad(
x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
)
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
x_flat = torch.nn.functional.pad(
x_flat, convert_pad_shape([[0, 0], [0, 0], [length, 0]])
)
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
return x_final
def _attention_bias_proximal(self, length):
r = torch.arange(length, dtype=torch.float32)
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
class FFN(BaseModule):
def __init__(
self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0.0
):
super(FFN, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.conv_1 = torch.nn.Conv1d(
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
)
self.conv_2 = torch.nn.Conv1d(
filter_channels, out_channels, kernel_size, padding=kernel_size // 2
)
self.drop = torch.nn.Dropout(p_dropout)
def forward(self, x, x_mask):
x = self.conv_1(x * x_mask)
x = torch.relu(x)
x = self.drop(x)
x = self.conv_2(x * x_mask)
return x * x_mask
class Encoder(BaseModule):
def __init__(
self,
hidden_channels,
filter_channels,
n_heads=2,
n_layers=6,
kernel_size=3,
p_dropout=0.1,
window_size=4,
**kwargs
):
super(Encoder, self).__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.window_size = window_size
self.drop = torch.nn.Dropout(p_dropout)
self.attn_layers = torch.nn.ModuleList()
self.norm_layers_1 = torch.nn.ModuleList()
self.ffn_layers = torch.nn.ModuleList()
self.norm_layers_2 = torch.nn.ModuleList()
for _ in range(self.n_layers):
self.attn_layers.append(
MultiHeadAttention(
hidden_channels,
hidden_channels,
n_heads,
window_size=window_size,
p_dropout=p_dropout,
)
)
self.norm_layers_1.append(LayerNorm(hidden_channels))
self.ffn_layers.append(
FFN(
hidden_channels,
hidden_channels,
filter_channels,
kernel_size,
p_dropout=p_dropout,
)
)
self.norm_layers_2.append(LayerNorm(hidden_channels))
def forward(self, x, x_mask):
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
for i in range(self.n_layers):
x = x * x_mask
y = self.attn_layers[i](x, x, attn_mask)
y = self.drop(y)
x = self.norm_layers_1[i](x + y)
y = self.ffn_layers[i](x, x_mask)
y = self.drop(y)
x = self.norm_layers_2[i](x + y)
x = x * x_mask
return x
class Conformer(BaseModule):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
self.n_heads = self.cfg.n_heads
self.n_layers = self.cfg.n_layers
self.hidden_channels = self.cfg.input_dim
self.filter_channels = self.cfg.filter_channels
self.output_dim = self.cfg.output_dim
self.dropout = self.cfg.dropout
self.conformer_encoder = Encoder(
self.hidden_channels,
self.filter_channels,
n_heads=self.n_heads,
n_layers=self.n_layers,
kernel_size=3,
p_dropout=self.dropout,
window_size=4,
)
self.projection = nn.Conv1d(self.hidden_channels, self.output_dim, 1)
def forward(self, x, x_mask):
"""
Args:
x: (N, seq_len, input_dim)
Returns:
output: (N, seq_len, output_dim)
"""
# (N, seq_len, d_model)
x = x.transpose(1, 2)
x_mask = x_mask.transpose(1, 2)
output = self.conformer_encoder(x, x_mask)
# (N, seq_len, output_dim)
output = self.projection(output)
output = output.transpose(1, 2)
return output
|