File size: 3,722 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
from easydict import EasyDict
# options={'PongNoFrameskip-v4', 'QbertNoFrameskip-v4', 'MsPacmanNoFrameskip-v4', 'SpaceInvadersNoFrameskip-v4', 'BreakoutNoFrameskip-v4', ...}
env_name = 'PongNoFrameskip-v4'
if env_name == 'PongNoFrameskip-v4':
action_space_size = 6
elif env_name == 'QbertNoFrameskip-v4':
action_space_size = 6
elif env_name == 'MsPacmanNoFrameskip-v4':
action_space_size = 9
elif env_name == 'SpaceInvadersNoFrameskip-v4':
action_space_size = 6
elif env_name == 'BreakoutNoFrameskip-v4':
action_space_size = 4
# ==============================================================
# begin of the most frequently changed config specified by the user
# ==============================================================
# collector_env_num = 8
# n_episode = 8
# evaluator_env_num = 3
# num_simulations = 50
# update_per_collect = 1000
# batch_size = 256
# max_env_step = int(1e6)
# reanalyze_ratio = 0.
# chance_space_size = 4
# debug config
collector_env_num = 1
n_episode = 1
evaluator_env_num = 1
num_simulations = 5
update_per_collect = 10
batch_size = 2
max_env_step = int(1e6)
reanalyze_ratio = 0.
chance_space_size = 4
# ==============================================================
# end of the most frequently changed config specified by the user
# ==============================================================
atari_stochastic_muzero_config = dict(
exp_name=
f'data_stochastic_mz_ctree/{env_name[:-14]}_stochastic_muzero_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_chance{chance_space_size}_seed0',
env=dict(
stop_value=int(1e6),
env_name=env_name,
obs_shape=(4, 96, 96),
collector_env_num=collector_env_num,
evaluator_env_num=evaluator_env_num,
n_evaluator_episode=evaluator_env_num,
manager=dict(shared_memory=False, ),
),
policy=dict(
model=dict(
observation_shape=(4, 96, 96),
frame_stack_num=4,
action_space_size=action_space_size,
chance_space_size=chance_space_size,
downsample=True,
self_supervised_learning_loss=True, # default is False
discrete_action_encoding_type='one_hot',
norm_type='BN',
),
cuda=True,
gumbel_algo=False,
mcts_ctree=True,
env_type='not_board_games',
game_segment_length=400,
use_augmentation=True,
update_per_collect=update_per_collect,
batch_size=batch_size,
optim_type='Adam',
lr_piecewise_constant_decay=False,
learning_rate=3e-3,
num_simulations=num_simulations,
reanalyze_ratio=reanalyze_ratio,
ssl_loss_weight=2, # default is 0
n_episode=n_episode,
eval_freq=int(2e3),
replay_buffer_size=int(1e6), # the size/capacity of replay_buffer, in the terms of transitions.
collector_env_num=collector_env_num,
evaluator_env_num=evaluator_env_num,
),
)
atari_stochastic_muzero_config = EasyDict(atari_stochastic_muzero_config)
main_config = atari_stochastic_muzero_config
atari_stochastic_muzero_create_config = dict(
env=dict(
type='atari_lightzero',
import_names=['zoo.atari.envs.atari_lightzero_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(
type='stochastic_muzero',
import_names=['lzero.policy.stochastic_muzero'],
),
)
atari_stochastic_muzero_create_config = EasyDict(atari_stochastic_muzero_create_config)
create_config = atari_stochastic_muzero_create_config
if __name__ == "__main__":
from lzero.entry import train_muzero
train_muzero([main_config, create_config], seed=0, max_env_step=max_env_step)
|