File size: 3,923 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
from easydict import EasyDict

# options={'Hopper-v3', 'HalfCheetah-v3', 'Walker2d-v3', 'Ant-v3', 'Humanoid-v3'}
env_name = 'Hopper-v3'

if env_name == 'Hopper-v3':
    action_space_size = 3
    observation_shape = 11
elif env_name in ['HalfCheetah-v3', 'Walker2d-v3']:
    action_space_size = 6
    observation_shape = 17
elif env_name == 'Ant-v3':
    action_space_size = 8
    observation_shape = 111
elif env_name == 'Humanoid-v3':
    action_space_size = 17
    observation_shape = 376

ignore_done = False
if env_name == 'HalfCheetah-v3':
    # for halfcheetah, we ignore done signal to predict the Q value of the last step correctly.
    ignore_done = True

# ==============================================================
# begin of the most frequently changed config specified by the user
# ==============================================================
collector_env_num = 8
n_episode = 8
evaluator_env_num = 3
continuous_action_space = False
K = 20  # num_of_sampled_actions
num_simulations = 50
update_per_collect = 200
batch_size = 256
max_env_step = int(3e6)
reanalyze_ratio = 0.
each_dim_disc_size = 5
policy_entropy_loss_weight = 0.005


# ==============================================================
# end of the most frequently changed config specified by the user
# ==============================================================

mujoco_disc_sampled_efficientzero_config = dict(
    exp_name=
    f'data_sez_ctree/{env_name[:-3]}_bin-{each_dim_disc_size}_sampled_efficientzero_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_pelw{policy_entropy_loss_weight}_seed0',
    env=dict(
        env_name=env_name,
        action_clip=True,
        continuous=False,
        manually_discretization=False,
        collector_env_num=collector_env_num,
        evaluator_env_num=evaluator_env_num,
        n_evaluator_episode=evaluator_env_num,
        manager=dict(shared_memory=False, ),
        each_dim_disc_size=each_dim_disc_size,
    ),
    policy=dict(
        model=dict(
            observation_shape=observation_shape,
            action_space_size=int(each_dim_disc_size ** action_space_size),
            continuous_action_space=continuous_action_space,
            num_of_sampled_actions=K,
            model_type='mlp',
            lstm_hidden_size=256,
            latent_state_dim=256,
            self_supervised_learning_loss=True,
            res_connection_in_dynamics=True,
        ),
        cuda=True,
        policy_entropy_loss_weight=policy_entropy_loss_weight,
        ignore_done=ignore_done,
        env_type='not_board_games',
        game_segment_length=200,
        update_per_collect=update_per_collect,
        batch_size=batch_size,
        discount_factor=0.99,
        optim_type='AdamW',
        lr_piecewise_constant_decay=False,
        learning_rate=0.003,
        num_simulations=num_simulations,
        reanalyze_ratio=reanalyze_ratio,
        n_episode=n_episode,
        eval_freq=int(2e3),
        replay_buffer_size=int(1e6),
        collector_env_num=collector_env_num,
        evaluator_env_num=evaluator_env_num,
    ),
)

mujoco_disc_sampled_efficientzero_config = EasyDict(mujoco_disc_sampled_efficientzero_config)
main_config = mujoco_disc_sampled_efficientzero_config

mujoco_disc_sampled_efficientzero_create_config = dict(
    env=dict(
        type='mujoco_disc_lightzero',
        import_names=['zoo.mujoco.envs.mujoco_disc_lightzero_env'],
    ),
    env_manager=dict(type='subprocess'),
    policy=dict(
        type='sampled_efficientzero',
        import_names=['lzero.policy.sampled_efficientzero'],
    ),
)
mujoco_disc_sampled_efficientzero_create_config = EasyDict(mujoco_disc_sampled_efficientzero_create_config)
create_config = mujoco_disc_sampled_efficientzero_create_config

if __name__ == "__main__":
    from lzero.entry import train_muzero
    train_muzero([main_config, create_config], seed=0, max_env_step=max_env_step)