File size: 8,457 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import gym
import numpy as np
import pytest
from easydict import EasyDict

from ding.torch_utils import to_ndarray
from ding.envs.env import DingEnvWrapper


class FakeEnvForTest(gym.Env):

    def __init__(self):
        self.observation_space = gym.spaces.Box(low=-1., high=1., shape=(10, ), dtype=np.float32)
        self.action_space = gym.spaces.Tuple(
            (
                gym.spaces.Discrete(3),
                gym.spaces.Box(low=np.array([0., -1.]), high=np.array([1., 1.]), shape=(2, ), dtype=np.float32)
            )
        )

    def step(self, action):
        assert self.action_space.contains(action)
        self._step_count += 1
        obs = self.observation_space.sample()
        obs = to_ndarray(obs).astype(np.float32)
        done = True if self._step_count == 100 else False
        return (obs, 0.5, done, {})

    def reset(self):
        self._step_count = 0
        obs = self.observation_space.sample()
        obs = to_ndarray(obs).astype(np.float32)
        return obs

    def render(self, mode="human", close=False):
        pass

    def close(self):
        pass


gym.envs.registration.register(
    id="FakeHybridForTest-v0",
    entry_point="ding.envs.env.tests.test_ding_env_wrapper:FakeEnvForTest",
)


class TestDingEnvWrapper:

    @pytest.mark.unittest
    @pytest.mark.parametrize('env_id', ['CartPole-v0', 'Pendulum-v1'])
    def test_cartpole_pendulum(self, env_id):
        env = gym.make(env_id)
        ding_env = DingEnvWrapper(env=env)
        print(ding_env.observation_space, ding_env.action_space, ding_env.reward_space)
        cfg = EasyDict(dict(
            collector_env_num=16,
            evaluator_env_num=3,
            is_train=True,
        ))
        l1 = ding_env.create_collector_env_cfg(cfg)
        assert isinstance(l1, list)
        l1 = ding_env.create_evaluator_env_cfg(cfg)
        assert isinstance(l1, list)
        obs = ding_env.reset()
        assert isinstance(obs, np.ndarray)
        action = ding_env.random_action()
        # assert isinstance(action, np.ndarray)
        print('random_action: {}, action_space: {}'.format(action.shape, ding_env.action_space))

    @pytest.mark.envtest
    def test_mujoco(self):
        env_cfg = EasyDict(
            env_id='Ant-v3',
            env_wrapper='mujoco_default',
        )
        ding_env_mujoco = DingEnvWrapper(cfg=env_cfg)
        obs = ding_env_mujoco.reset()
        assert isinstance(obs, np.ndarray)
        # action_dim = ding_env_mujoco.action_space.shape  # n
        while True:
            # action = np.random.random(size=action_dim)  # Continuous Action
            action = ding_env_mujoco.random_action()
            timestep = ding_env_mujoco.step(action)
            # print(_, timestep.reward)
            assert timestep.reward.shape == (1, ), timestep.reward.shape
            if timestep.done:
                assert 'eval_episode_return' in timestep.info, timestep.info
                break
        print(ding_env_mujoco.observation_space, ding_env_mujoco.action_space, ding_env_mujoco.reward_space)
        action = ding_env_mujoco.random_action()
        # assert isinstance(action, np.ndarray)
        assert action.shape == ding_env_mujoco.action_space.shape

    @pytest.mark.envtest
    @pytest.mark.parametrize('atari_env_id', ['Pong-v4', 'MontezumaRevenge-v4'])
    def test_atari(self, atari_env_id):
        env_cfg = EasyDict(
            env_id=atari_env_id,
            env_wrapper='atari_default',
        )
        ding_env_atari = DingEnvWrapper(cfg=env_cfg)

        ding_env_atari.enable_save_replay('atari_path/')
        obs = ding_env_atari.reset()
        assert isinstance(obs, np.ndarray)
        assert obs.shape == ding_env_atari.observation_space.shape  # (4, 84, 84)
        # action_dim = ding_env_atari.action_space.n
        while True:
            # action = np.random.choice(range(action_dim), size=(1, ))  # Discrete Action
            action = ding_env_atari.random_action()
            timestep = ding_env_atari.step(action)
            # print(timestep.reward)
            assert timestep.reward.shape == ding_env_atari.reward_space.shape, timestep.reward.shape  # (1, )
            if timestep.done:
                assert 'eval_episode_return' in timestep.info, timestep.info
                break
        print(ding_env_atari.observation_space, ding_env_atari.action_space, ding_env_atari.reward_space)
        action = ding_env_atari.random_action()
        # assert isinstance(action, np.ndarray)
        assert action.shape == (1, )

    @pytest.mark.unittest
    @pytest.mark.parametrize('lun_bip_env_id', ['LunarLander-v2', 'LunarLanderContinuous-v2', 'BipedalWalker-v3'])
    def test_lunarlander_bipedalwalker(self, lun_bip_env_id):
        env_cfg = EasyDict(
            env_id=lun_bip_env_id,
            env_wrapper='default',
        )
        ding_env_lun_bip = DingEnvWrapper(cfg=env_cfg)

        obs = ding_env_lun_bip.reset()
        assert isinstance(obs, np.ndarray)
        assert obs.shape == ding_env_lun_bip.observation_space.shape
        # action_space = ding_env_lun_bip.action_space
        # if lun_bip_env_id in ['LunarLanderContinuous-v2', 'BipedalWalker-v3']:
        #     action_dim = action_space.shape
        # else:
        #     action_dim = action_space.n
        while True:
            # if lun_bip_env_id in ['LunarLanderContinuous-v2', 'BipedalWalker-v3']:
            #     action = np.random.random(size=action_dim)  # Continuous Action
            # else:
            #     action = np.random.choice(range(action_dim), size=(1, ))  # Discrete Action
            action = ding_env_lun_bip.random_action()
            timestep = ding_env_lun_bip.step(action)
            # print(timestep.reward)
            assert timestep.reward.shape == ding_env_lun_bip.reward_space.shape, timestep.reward.shape  # (1, )
            if timestep.done:
                assert 'eval_episode_return' in timestep.info, timestep.info
                break
        print(ding_env_lun_bip.observation_space, ding_env_lun_bip.action_space, ding_env_lun_bip.reward_space)
        action = ding_env_lun_bip.random_action()
        # assert isinstance(action, np.ndarray)
        print('random_action: {}, action_space: {}'.format(action.shape, ding_env_lun_bip.action_space))

    @pytest.mark.unittest
    def test_hybrid(self):
        env_cfg = EasyDict(env_id='FakeHybridForTest-v0', env_wrapper='gym_hybrid_default')
        ding_env_hybrid = DingEnvWrapper(cfg=env_cfg)

        obs = ding_env_hybrid.reset()
        assert isinstance(obs, np.ndarray)
        assert obs.shape == ding_env_hybrid.observation_space.shape
        while True:
            action = ding_env_hybrid.random_action()
            # print('random_action:', action)
            for k, v in action.items():
                if isinstance(v, int):
                    continue
                # print('before: {}, after: {}'.format(v.shape, ding_env_hybrid.action_space[k].shape))
                v.shape = ding_env_hybrid.action_space[k].shape
            timestep = ding_env_hybrid.step(action)
            # print(timestep.reward)
            assert timestep.reward.shape == ding_env_hybrid.reward_space.shape, timestep.reward.shape  # (1, )
            if timestep.done:
                assert 'eval_episode_return' in timestep.info, timestep.info
                break
        print(ding_env_hybrid.observation_space, ding_env_hybrid.action_space, ding_env_hybrid.reward_space)
        action = ding_env_hybrid.random_action()
        print('random_action', action)
        assert isinstance(action, dict)

    @pytest.mark.envtest
    def test_AllinObsWrapper(self):
        env_cfg = EasyDict(env_id='PongNoFrameskip-v4', env_wrapper='reward_in_obs')
        ding_env_aio = DingEnvWrapper(cfg=env_cfg)

        data = ding_env_aio.reset()
        assert isinstance(data, dict)
        assert 'obs' in data.keys() and 'reward' in data.keys()
        assert data['obs'].shape == ding_env_aio.observation_space
        while True:
            action = ding_env_aio.random_action()
            timestep = ding_env_aio.step(action)
            # print(timestep.reward)
            assert isinstance(timestep.obs, dict)
            if timestep.done:
                assert 'eval_episode_return' in timestep.info, timestep.info
                break
        print(ding_env_aio.observation_space, ding_env_aio.action_space, ding_env_aio.reward_space)