File size: 4,879 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import time
import torch
import torch.nn.functional as F
from hpc_rll.origin.vtrace import vtrace_error_discrete_action, vtrace_data
from hpc_rll.rl_utils.vtrace import VTrace
from testbase import mean_relative_error, times

assert torch.cuda.is_available()
use_cuda = True

T = 128
B = 128
N = 128


def vtrace_val():
    ori_target_output = torch.randn(T, B, N)
    ori_behaviour_output = torch.randn(T, B, N)
    ori_action = torch.randint(
        0, N, size=(
            T,
            B,
        )
    )
    ori_value = torch.randn(T + 1, B)
    ori_reward = torch.randn(T, B)

    hpc_target_output = ori_target_output.clone().detach()
    hpc_behaviour_output = ori_behaviour_output.clone().detach()
    hpc_action = ori_action.clone().detach()
    hpc_value = ori_value.clone().detach()
    hpc_reward = ori_reward.clone().detach()
    hpc_vtrace = VTrace(T, B, N)

    if use_cuda:
        ori_target_output = ori_target_output.cuda()
        ori_behaviour_output = ori_behaviour_output.cuda()
        ori_action = ori_action.cuda()
        ori_value = ori_value.cuda()
        ori_reward = ori_reward.cuda()

        hpc_target_output = hpc_target_output.cuda()
        hpc_behaviour_output = hpc_behaviour_output.cuda()
        hpc_action = hpc_action.cuda()
        hpc_value = hpc_value.cuda()
        hpc_reward = hpc_reward.cuda()
        hpc_vtrace = hpc_vtrace.cuda()

    ori_target_output.requires_grad_(True)
    ori_value.requires_grad_(True)
    ori_loss = vtrace_error_discrete_action(
        vtrace_data(ori_target_output, ori_behaviour_output, ori_action, ori_value, ori_reward, None)
    )
    ori_loss = sum(ori_loss)
    ori_loss.backward()

    hpc_target_output.requires_grad_(True)
    hpc_value.requires_grad_(True)
    hpc_loss = hpc_vtrace(hpc_target_output, hpc_behaviour_output, hpc_action, hpc_value, hpc_reward)
    hpc_loss = sum(hpc_loss)
    hpc_loss.backward()

    mre = mean_relative_error(
        torch.flatten(ori_loss).cpu().detach().numpy(),
        torch.flatten(hpc_loss).cpu().detach().numpy()
    )
    print("vtrace fp mean_relative_error: " + str(mre))
    mre = mean_relative_error(
        torch.flatten(ori_target_output.grad).cpu().detach().numpy(),
        torch.flatten(hpc_target_output.grad).cpu().detach().numpy()
    )
    print("vtrace bp target_output mean_relative_error: " + str(mre))
    mre = mean_relative_error(
        torch.flatten(ori_value.grad).cpu().detach().numpy(),
        torch.flatten(hpc_value.grad).cpu().detach().numpy()
    )
    print("vtrace bp value mean_relative_error: " + str(mre))


def vtrace_perf():
    ori_target_output = torch.randn(T, B, N)
    ori_behaviour_output = torch.randn(T, B, N)
    ori_action = torch.randint(
        0, N, size=(
            T,
            B,
        )
    )
    ori_value = torch.randn(T + 1, B)
    ori_reward = torch.randn(T, B)

    hpc_target_output = ori_target_output.clone().detach()
    hpc_behaviour_output = ori_behaviour_output.clone().detach()
    hpc_action = ori_action.clone().detach()
    hpc_value = ori_value.clone().detach()
    hpc_reward = ori_reward.clone().detach()
    hpc_vtrace = VTrace(T, B, N)

    if use_cuda:
        ori_target_output = ori_target_output.cuda()
        ori_behaviour_output = ori_behaviour_output.cuda()
        ori_action = ori_action.cuda()
        ori_value = ori_value.cuda()
        ori_reward = ori_reward.cuda()

        hpc_target_output = hpc_target_output.cuda()
        hpc_behaviour_output = hpc_behaviour_output.cuda()
        hpc_action = hpc_action.cuda()
        hpc_value = hpc_value.cuda()
        hpc_reward = hpc_reward.cuda()
        hpc_vtrace = hpc_vtrace.cuda()

    ori_target_output.requires_grad_(True)
    ori_value.requires_grad_(True)
    for i in range(times):
        t = time.time()
        ori_loss = vtrace_error_discrete_action(
            vtrace_data(ori_target_output, ori_behaviour_output, ori_action, ori_value, ori_reward, None)
        )
        ori_loss = sum(ori_loss)
        ori_loss.backward()
        if use_cuda:
            torch.cuda.synchronize()
        print('epoch: {}, original vtrace cost time: {}'.format(i, time.time() - t))

    hpc_target_output.requires_grad_(True)
    hpc_value.requires_grad_(True)
    for i in range(times):
        t = time.time()
        hpc_loss = hpc_vtrace(hpc_target_output, hpc_behaviour_output, hpc_action, hpc_value, hpc_reward)
        hpc_loss = sum(hpc_loss)
        hpc_loss.backward()
        if use_cuda:
            torch.cuda.synchronize()
        print('epoch: {}, hpc vtrace cost time: {}'.format(i, time.time() - t))


if __name__ == '__main__':
    print("target problem: T = {}, B = {}, N = {}".format(T, B, N))
    print("================run vtrace validation test================")
    vtrace_val()
    print("================run vtrace performance test================")
    vtrace_perf()