File size: 24,338 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
from collections import namedtuple
from typing import List, Dict, Any, Tuple
import copy
import torch
from ding.model import model_wrap
from ding.rl_utils import get_train_sample, compute_q_retraces, acer_policy_error,\
acer_value_error, acer_trust_region_update
from ding.torch_utils import Adam, RMSprop, to_device
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate
from ding.policy.base_policy import Policy
EPS = 1e-8
@POLICY_REGISTRY.register('acer')
class ACERPolicy(Policy):
r"""
Overview:
Policy class of ACER algorithm.
Config:
== ======================= ======== ============== ===================================== =======================
ID Symbol Type Default Value Description Other(Shape)
== ======================= ======== ============== ===================================== =======================
1 ``type`` str acer | RL policy register name, refer to | this arg is optional,
| registry ``POLICY_REGISTRY`` | a placeholder
2 ``cuda`` bool False | Whether to use cuda for network | this arg can be diff-
| | erent from modes
3 ``on_policy`` bool False | Whether the RL algorithm is
| on-policy or off-policy
4 ``trust_region`` bool True | Whether the RL algorithm use trust |
| region constraint |
5 ``trust_region_value`` float 1.0 | maximum range of the trust region |
6 ``unroll_len`` int 32 | trajectory length to calculate
| Q retrace target
7 ``learn.update`` int 4 | How many updates(iterations) to | this args can be vary
``per_collect`` | train after collector's one | from envs. Bigger val
| collection. Only |
| valid in serial training | means more off-policy
8 ``c_clip_ratio`` float 1.0 | clip ratio of importance weights |
== ======================= ======== ============== ===================================== =======================
"""
unroll_len = 32
config = dict(
type='acer',
cuda=False,
# (bool) whether use on-policy training pipeline(behaviour policy and training policy are the same)
# here we follow ppo serial pipeline, the original is False
on_policy=False,
priority=False,
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=False,
learn=dict(
# (str) the type of gradient clip method
grad_clip_type=None,
# (float) max value when ACER use gradient clip
clip_value=None,
# (int) collect n_sample data, train model update_per_collect times
# here we follow ppo serial pipeline
update_per_collect=4,
# (int) the number of data for a train iteration
batch_size=16,
# (float) loss weight of the value network, the weight of policy network is set to 1
value_weight=0.5,
# (float) loss weight of the entropy regularization, the weight of policy network is set to 1
entropy_weight=0.0001,
# (float) discount factor for future reward, defaults int [0, 1]
discount_factor=0.9,
# (float) additional discounting parameter
lambda_=0.95,
# (int) the trajectory length to calculate v-trace target
unroll_len=unroll_len,
# (float) clip ratio of importance weights
c_clip_ratio=10,
trust_region=True,
trust_region_value=1.0,
learning_rate_actor=0.0005,
learning_rate_critic=0.0005,
target_theta=0.01
),
collect=dict(
# (int) collect n_sample data, train model n_iteration times
# n_sample=16,
# (int) the trajectory length to calculate v-trace target
unroll_len=unroll_len,
# (float) discount factor for future reward, defaults int [0, 1]
discount_factor=0.9,
gae_lambda=0.95,
collector=dict(
type='sample',
collect_print_freq=1000,
),
),
eval=dict(evaluator=dict(eval_freq=200, ), ),
other=dict(replay_buffer=dict(
replay_buffer_size=1000,
max_use=16,
), ),
)
def default_model(self) -> Tuple[str, List[str]]:
return 'acer', ['ding.model.template.acer']
def _init_learn(self) -> None:
r"""
Overview:
Learn mode init method. Called by ``self.__init__``.
Initialize the optimizer, algorithm config and main model.
"""
# Optimizer
self._optimizer_actor = Adam(
self._model.actor.parameters(),
lr=self._cfg.learn.learning_rate_actor,
grad_clip_type=self._cfg.learn.grad_clip_type,
clip_value=self._cfg.learn.clip_value
)
self._optimizer_critic = Adam(
self._model.critic.parameters(),
lr=self._cfg.learn.learning_rate_critic,
)
self._target_model = copy.deepcopy(self._model)
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='momentum',
update_kwargs={'theta': self._cfg.learn.target_theta}
)
self._learn_model = model_wrap(self._model, wrapper_name='base')
self._action_shape = self._cfg.model.action_shape
self._unroll_len = self._cfg.learn.unroll_len
# Algorithm config
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
self._value_weight = self._cfg.learn.value_weight
self._entropy_weight = self._cfg.learn.entropy_weight
self._gamma = self._cfg.learn.discount_factor
# self._rho_clip_ratio = self._cfg.learn.rho_clip_ratio
self._c_clip_ratio = self._cfg.learn.c_clip_ratio
# self._rho_pg_clip_ratio = self._cfg.learn.rho_pg_clip_ratio
self._use_trust_region = self._cfg.learn.trust_region
self._trust_region_value = self._cfg.learn.trust_region_value
# Main model
self._learn_model.reset()
self._target_model.reset()
def _data_preprocess_learn(self, data: List[Dict[str, Any]]):
"""
Overview:
Data preprocess function of learn mode.
Convert list trajectory data to to trajectory data, which is a dict of tensors.
Arguments:
- data (:obj:`List[Dict[str, Any]]`): List type data, a list of data for training. Each list element is a \
dict, whose values are torch.Tensor or np.ndarray or dict/list combinations, keys include at least 'obs',\
'next_obs', 'logit', 'action', 'reward', 'done'
Returns:
- data (:obj:`dict`): Dict type data. Values are torch.Tensor or np.ndarray or dict/list combinations. \
ReturnsKeys:
- necessary: 'logit', 'action', 'reward', 'done', 'weight', 'obs_plus_1'.
- optional and not used in later computation: 'obs', 'next_obs'.'IS', 'collect_iter', 'replay_unique_id', \
'replay_buffer_idx', 'priority', 'staleness', 'use'.
ReturnsShapes:
- obs_plus_1 (:obj:`torch.FloatTensor`): :math:`(T * B, obs_shape)`, where T is timestep, B is batch size \
and obs_shape is the shape of single env observation
- logit (:obj:`torch.FloatTensor`): :math:`(T, B, N)`, where N is action dim
- action (:obj:`torch.LongTensor`): :math:`(T, B)`
- reward (:obj:`torch.FloatTensor`): :math:`(T+1, B)`
- done (:obj:`torch.FloatTensor`): :math:`(T, B)`
- weight (:obj:`torch.FloatTensor`): :math:`(T, B)`
"""
data = default_collate(data)
if self._cuda:
data = to_device(data, self._device)
data['weight'] = data.get('weight', None)
# shape (T+1)*B,env_obs_shape
data['obs_plus_1'] = torch.cat((data['obs'] + data['next_obs'][-1:]), dim=0)
data['logit'] = torch.cat(
data['logit'], dim=0
).reshape(self._unroll_len, -1, self._action_shape) # shape T,B,env_action_shape
data['action'] = torch.cat(data['action'], dim=0).reshape(self._unroll_len, -1) # shape T,B,
data['done'] = torch.cat(data['done'], dim=0).reshape(self._unroll_len, -1).float() # shape T,B,
data['reward'] = torch.cat(data['reward'], dim=0).reshape(self._unroll_len, -1) # shape T,B,
data['weight'] = torch.cat(
data['weight'], dim=0
).reshape(self._unroll_len, -1) if data['weight'] else None # shape T,B
return data
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
r"""
Overview:
Forward computation graph of learn mode(updating policy).
Arguments:
- data (:obj:`List[Dict[str, Any]]`): List type data, a list of data for training. Each list element is a \
dict, whose values are torch.Tensor or np.ndarray or dict/list combinations, keys include at least 'obs',\
'next_obs', 'logit', 'action', 'reward', 'done'
Returns:
- info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \
recorded in text log and tensorboard, values are python scalar or a list of scalars.
ArgumentsKeys:
- necessary: ``obs``, ``action``, ``reward``, ``next_obs``, ``done``
- optional: 'collect_iter', 'replay_unique_id', 'replay_buffer_idx', 'priority', 'staleness', 'use', 'IS'
ReturnsKeys:
- necessary: ``cur_lr_actor``, ``cur_lr_critic``, ``actor_loss`,``bc_loss``,``policy_loss``,\
``critic_loss``,``entropy_loss``
"""
data = self._data_preprocess_learn(data)
self._learn_model.train()
action_data = self._learn_model.forward(data['obs_plus_1'], mode='compute_actor')
q_value_data = self._learn_model.forward(data['obs_plus_1'], mode='compute_critic')
avg_action_data = self._target_model.forward(data['obs_plus_1'], mode='compute_actor')
target_logit, behaviour_logit, avg_logit, actions, q_values, rewards, weights = self._reshape_data(
action_data, avg_action_data, q_value_data, data
)
# shape (T+1),B,env_action_shape
target_logit = torch.log_softmax(target_logit, dim=-1)
# shape T,B,env_action_shape
behaviour_logit = torch.log_softmax(behaviour_logit, dim=-1)
# shape (T+1),B,env_action_shape
avg_logit = torch.log_softmax(avg_logit, dim=-1)
with torch.no_grad():
# shape T,B,env_action_shape
ratio = torch.exp(target_logit[0:-1] - behaviour_logit)
# shape (T+1),B,1
v_pred = (q_values * torch.exp(target_logit)).sum(-1).unsqueeze(-1)
# Calculate retrace
q_retraces = compute_q_retraces(q_values, v_pred, rewards, actions, weights, ratio, self._gamma)
# the terminal states' weights are 0. it needs to be shift to count valid state
weights_ext = torch.ones_like(weights)
weights_ext[1:] = weights[0:-1]
weights = weights_ext
q_retraces = q_retraces[0:-1] # shape T,B,1
q_values = q_values[0:-1] # shape T,B,env_action_shape
v_pred = v_pred[0:-1] # shape T,B,1
target_logit = target_logit[0:-1] # shape T,B,env_action_shape
avg_logit = avg_logit[0:-1] # shape T,B,env_action_shape
total_valid = weights.sum() # 1
# ====================
# policy update
# ====================
actor_loss, bc_loss = acer_policy_error(
q_values, q_retraces, v_pred, target_logit, actions, ratio, self._c_clip_ratio
)
actor_loss = actor_loss * weights.unsqueeze(-1)
bc_loss = bc_loss * weights.unsqueeze(-1)
dist_new = torch.distributions.categorical.Categorical(logits=target_logit)
entropy_loss = (dist_new.entropy() * weights).unsqueeze(-1) # shape T,B,1
total_actor_loss = (actor_loss + bc_loss + self._entropy_weight * entropy_loss).sum() / total_valid
self._optimizer_actor.zero_grad()
actor_gradients = torch.autograd.grad(-total_actor_loss, target_logit, retain_graph=True)
if self._use_trust_region:
actor_gradients = acer_trust_region_update(
actor_gradients, target_logit, avg_logit, self._trust_region_value
)
target_logit.backward(actor_gradients)
self._optimizer_actor.step()
# ====================
# critic update
# ====================
critic_loss = (acer_value_error(q_values, q_retraces, actions) * weights.unsqueeze(-1)).sum() / total_valid
self._optimizer_critic.zero_grad()
critic_loss.backward()
self._optimizer_critic.step()
self._target_model.update(self._learn_model.state_dict())
with torch.no_grad():
kl_div = torch.exp(avg_logit) * (avg_logit - target_logit)
kl_div = (kl_div.sum(-1) * weights).sum() / total_valid
return {
'cur_actor_lr': self._optimizer_actor.defaults['lr'],
'cur_critic_lr': self._optimizer_critic.defaults['lr'],
'actor_loss': (actor_loss.sum() / total_valid).item(),
'bc_loss': (bc_loss.sum() / total_valid).item(),
'policy_loss': total_actor_loss.item(),
'critic_loss': critic_loss.item(),
'entropy_loss': (entropy_loss.sum() / total_valid).item(),
'kl_div': kl_div.item()
}
def _reshape_data(
self, action_data: Dict[str, Any], avg_action_data: Dict[str, Any], q_value_data: Dict[str, Any],
data: Dict[str, Any]
) -> Tuple[Any, Any, Any, Any, Any, Any]:
r"""
Overview:
Obtain weights for loss calculating, where should be 0 for done positions
Update values and rewards with the weight
Arguments:
- output (:obj:`Dict[int, Any]`): Dict type data, output of learn_model forward. \
Values are torch.Tensor or np.ndarray or dict/list combinations,keys are value, logit.
- data (:obj:`Dict[int, Any]`): Dict type data, input of policy._forward_learn \
Values are torch.Tensor or np.ndarray or dict/list combinations. Keys includes at \
least ['logit', 'action', 'reward', 'done',]
Returns:
- data (:obj:`Tuple[Any]`): Tuple of target_logit, behaviour_logit, actions, \
values, rewards, weights
ReturnsShapes:
- target_logit (:obj:`torch.FloatTensor`): :math:`((T+1), B, Obs_Shape)`, where T is timestep,\
B is batch size and Obs_Shape is the shape of single env observation.
- behaviour_logit (:obj:`torch.FloatTensor`): :math:`(T, B, N)`, where N is action dim.
- avg_action_logit (:obj:`torch.FloatTensor`): :math: `(T+1, B, N)`, where N is action dim.
- actions (:obj:`torch.LongTensor`): :math:`(T, B)`
- values (:obj:`torch.FloatTensor`): :math:`(T+1, B)`
- rewards (:obj:`torch.FloatTensor`): :math:`(T, B)`
- weights (:obj:`torch.FloatTensor`): :math:`(T, B)`
"""
target_logit = action_data['logit'].reshape(
self._unroll_len + 1, -1, self._action_shape
) # shape (T+1),B,env_action_shape
behaviour_logit = data['logit'] # shape T,B,env_action_shape
avg_action_logit = avg_action_data['logit'].reshape(
self._unroll_len + 1, -1, self._action_shape
) # shape (T+1),B,env_action_shape
actions = data['action'] # shape T,B
values = q_value_data['q_value'].reshape(
self._unroll_len + 1, -1, self._action_shape
) # shape (T+1),B,env_action_shape
rewards = data['reward'] # shape T,B
weights_ = 1 - data['done'] # shape T,B
weights = torch.ones_like(rewards) # shape T,B
weights = weights_
return target_logit, behaviour_logit, avg_action_logit, actions, values, rewards, weights
def _state_dict_learn(self) -> Dict[str, Any]:
r"""
Overview:
Return the state_dict of learn mode, usually including model and optimizer.
Returns:
- state_dict (:obj:`Dict[str, Any]`): the dict of current policy learn state, for saving and restoring.
"""
return {
'model': self._learn_model.state_dict(),
'target_model': self._target_model.state_dict(),
'actor_optimizer': self._optimizer_actor.state_dict(),
'critic_optimizer': self._optimizer_critic.state_dict(),
}
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
r"""
Overview:
Load the state_dict variable into policy learn mode.
Arguments:
- state_dict (:obj:`Dict[str, Any]`): the dict of policy learn state saved before.
.. tip::
If you want to only load some parts of model, you can simply set the ``strict`` argument in \
load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \
complicated operation.
"""
self._learn_model.load_state_dict(state_dict['model'])
self._target_model.load_state_dict(state_dict['target_model'])
self._optimizer_actor.load_state_dict(state_dict['actor_optimizer'])
self._optimizer_critic.load_state_dict(state_dict['critic_optimizer'])
def _init_collect(self) -> None:
r"""
Overview:
Collect mode init method. Called by ``self.__init__``, initialize algorithm arguments and collect_model.
Use multinomial_sample to choose action.
"""
self._collect_unroll_len = self._cfg.collect.unroll_len
self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample')
self._collect_model.reset()
def _forward_collect(self, data: Dict[int, Any]) -> Dict[int, Dict[str, Any]]:
r"""
Overview:
Forward computation graph of collect mode(collect training data).
Arguments:
- data (:obj:`Dict[int, Any]`): Dict type data, stacked env data for predicting \
action, values are torch.Tensor or np.ndarray or dict/list combinations,keys \
are env_id indicated by integer.
Returns:
- output (:obj:`Dict[int, Dict[str,Any]]`): Dict of predicting policy_output(logit, action) for each env.
ReturnsKeys
- necessary: ``logit``, ``action``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._collect_model.eval()
with torch.no_grad():
output = self._collect_model.forward(data, mode='compute_actor')
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
output = {i: d for i, d in zip(data_id, output)}
return output
def _get_train_sample(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
r"""
Overview:
For a given trajectory(transitions, a list of transition) data, process it into a list of sample that \
can be used for training directly.
Arguments:
- data (:obj:`List[Dict[str, Any]`): The trajectory data(a list of transition), each element is the same \
format as the return value of ``self._process_transition`` method.
Returns:
- samples (:obj:`dict`): List of training samples.
.. note::
We will vectorize ``process_transition`` and ``get_train_sample`` method in the following release version. \
And the user can customize the this data processing procedure by overriding this two methods and collector \
itself.
"""
return get_train_sample(data, self._unroll_len)
def _process_transition(self, obs: Any, policy_output: Dict[str, Any], timestep: namedtuple) -> Dict[str, Any]:
r"""
Overview:
Generate dict type transition data from inputs.
Arguments:
- obs (:obj:`Any`): Env observation,can be torch.Tensor or np.ndarray or dict/list combinations.
- model_output (:obj:`dict`): Output of collect model, including ['logit','action']
- timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done']\
(here 'obs' indicates obs after env step).
Returns:
- transition (:obj:`dict`): Dict type transition data, including at least ['obs','next_obs', 'logit',\
'action','reward', 'done']
"""
transition = {
'obs': obs,
'next_obs': timestep.obs,
'logit': policy_output['logit'],
'action': policy_output['action'],
'reward': timestep.reward,
'done': timestep.done,
}
return transition
def _init_eval(self) -> None:
r"""
Overview:
Evaluate mode init method. Called by ``self.__init__``, initialize eval_model,
and use argmax_sample to choose action.
"""
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')
self._eval_model.reset()
def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]:
r"""
Overview:
Forward computation graph of eval mode(evaluate policy performance), at most cases, it is similar to \
``self._forward_collect``.
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
Returns:
- output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env.
ReturnsKeys
- necessary: ``action``
- optional: ``logit``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._eval_model.eval()
with torch.no_grad():
output = self._eval_model.forward(data, mode='compute_actor')
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
output = {i: d for i, d in zip(data_id, output)}
return output
def _monitor_vars_learn(self) -> List[str]:
r"""
Overview:
Return this algorithm default model setting for demonstration.
Returns:
- model_info (:obj:`Tuple[str, List[str]]`): model name and mode import_names
.. note::
The user can define and use customized network model but must obey the same interface definition indicated \
by import_names path. For IMPALA, ``ding.model.interface.IMPALA``
"""
return ['actor_loss', 'bc_loss', 'policy_loss', 'critic_loss', 'entropy_loss', 'kl_div']
|