File size: 19,714 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
from typing import List, Dict, Any, Tuple
from collections import namedtuple
import copy
import torch

from ding.torch_utils import Adam, to_device, ContrastiveLoss
from ding.rl_utils import q_nstep_td_data, bdq_nstep_td_error, get_nstep_return_data, get_train_sample
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate

from .base_policy import Policy
from .common_utils import default_preprocess_learn


@POLICY_REGISTRY.register('bdq')
class BDQPolicy(Policy):
    r"""
    Overview:
        Policy class of BDQ algorithm, extended by PER/multi-step TD. \
            referenced paper Action Branching Architectures for Deep Reinforcement Learning \
            <https://arxiv.org/pdf/1711.08946>
        .. note::
            BDQ algorithm contains a neural architecture featuring a shared decision module \
                followed by several network branches, one for each action dimension.
    Config:
        == ==================== ======== ============== ======================================== =======================
        ID Symbol               Type     Default Value  Description                              Other(Shape)
        == ==================== ======== ============== ======================================== =======================
        1  ``type``             str      bdq            | RL policy register name, refer to      | This arg is optional,
                                                        | registry ``POLICY_REGISTRY``           | a placeholder
        2  ``cuda``             bool     False          | Whether to use cuda for network        | This arg can be diff-
                                                                                                 | erent from modes
        3  ``on_policy``        bool     False          | Whether the RL algorithm is on-policy
                                                        | or off-policy
        4  ``priority``         bool     False          | Whether use priority(PER)              | Priority sample,
                                                                                                 | update priority
        5  | ``priority_IS``    bool     False          | Whether use Importance Sampling Weight
           | ``_weight``                                | to correct biased update. If True,
                                                        | priority must be True.
        6  | ``discount_``      float    0.97,          | Reward's future discount factor, aka.  | May be 1 when sparse
           | ``factor``                  [0.95, 0.999]  | gamma                                  | reward env
        7  ``nstep``            int      1,             | N-step reward discount sum for target
                                         [3, 5]         | q_value estimation
        8  | ``learn.update``   int      3              | How many updates(iterations) to train  | This args can be vary
           | ``per_collect``                            | after collector's one collection. Only | from envs. Bigger val
                                                        | valid in serial training               | means more off-policy
           | ``_gpu``
        10 | ``learn.batch_``   int      64             | The number of samples of an iteration
           | ``size``
        11 | ``learn.learning`` float    0.001          | Gradient step length of an iteration.
           | ``_rate``
        12 | ``learn.target_``  int      100            | Frequence of target network update.    | Hard(assign) update
           | ``update_freq``
        13 | ``learn.ignore_``  bool     False          | Whether ignore done for target value   | Enable it for some
           | ``done``                                   | calculation.                           | fake termination env
        14 ``collect.n_sample`` int      [8, 128]       | The number of training samples of a    | It varies from
                                                        | call of collector.                     | different envs
        15 | ``collect.unroll`` int      1              | unroll length of an iteration          | In RNN, unroll_len>1
           | ``_len``
        16 | ``other.eps.type`` str      exp            | exploration rate decay type            | Support ['exp',
                                                                                                 | 'linear'].
        17 | ``other.eps.``     float    0.95           | start value of exploration rate        | [0,1]
           | ``start``
        18 | ``other.eps.``     float    0.1            | end value of exploration rate          | [0,1]
           | ``end``
        19 | ``other.eps.``     int      10000          | decay length of exploration            | greater than 0. set
           | ``decay``                                                                           | decay=10000 means
                                                                                                 | the exploration rate
                                                                                                 | decay from start
                                                                                                 | value to end value
                                                                                                 | during decay length.
        == ==================== ======== ============== ======================================== =======================
    """

    config = dict(
        type='bdq',
        # (bool) Whether use cuda in policy
        cuda=False,
        # (bool) Whether learning policy is the same as collecting data policy(on-policy)
        on_policy=False,
        # (bool) Whether enable priority experience sample
        priority=False,
        # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
        priority_IS_weight=False,
        # (float) Discount factor(gamma) for returns
        discount_factor=0.97,
        # (int) The number of step for calculating target q_value
        nstep=1,
        learn=dict(

            # How many updates(iterations) to train after collector's one collection.
            # Bigger "update_per_collect" means bigger off-policy.
            # collect data -> update policy-> collect data -> ...
            update_per_collect=3,
            # (int) How many samples in a training batch
            batch_size=64,
            # (float) The step size of gradient descent
            learning_rate=0.001,
            # ==============================================================
            # The following configs are algorithm-specific
            # ==============================================================
            # (int) Frequence of target network update.
            target_update_freq=100,
            # (bool) Whether ignore done(usually for max step termination env)
            ignore_done=False,
        ),
        # collect_mode config
        collect=dict(
            # (int) Only one of [n_sample, n_episode] shoule be set
            # n_sample=8,
            # (int) Cut trajectories into pieces with length "unroll_len".
            unroll_len=1,
        ),
        eval=dict(),
        # other config
        other=dict(
            # Epsilon greedy with decay.
            eps=dict(
                # (str) Decay type. Support ['exp', 'linear'].
                type='exp',
                # (float) Epsilon start value
                start=0.95,
                # (float) Epsilon end value
                end=0.1,
                # (int) Decay length(env step)
                decay=10000,
            ),
            replay_buffer=dict(replay_buffer_size=10000, ),
        ),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        """
        Overview:
            Return this algorithm default model setting for demonstration.
        Returns:
            - model_info (:obj:`Tuple[str, List[str]]`): model name and mode import_names

        .. note::
            The user can define and use customized network model but must obey the same inferface definition indicated \
            by import_names path. For BDQ, ``ding.model.template.q_learning.BDQ``
        """
        return 'bdq', ['ding.model.template.q_learning']

    def _init_learn(self) -> None:
        """
        Overview:
            Learn mode init method. Called by ``self.__init__``, initialize the optimizer, algorithm arguments, main \
            and target model.
        """
        self._priority = self._cfg.priority
        self._priority_IS_weight = self._cfg.priority_IS_weight
        # Optimizer
        self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate)

        self._gamma = self._cfg.discount_factor
        self._nstep = self._cfg.nstep

        # use model_wrapper for specialized demands of different modes
        self._target_model = copy.deepcopy(self._model)
        self._target_model = model_wrap(
            self._target_model,
            wrapper_name='target',
            update_type='assign',
            update_kwargs={'freq': self._cfg.learn.target_update_freq}
        )
        self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample')
        self._learn_model.reset()
        self._target_model.reset()

    def _forward_learn(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """
        Overview:
            Forward computation graph of learn mode(updating policy).
        Arguments:
            - data (:obj:`Dict[str, Any]`): Dict type data, a batch of data for training, values are torch.Tensor or \
                np.ndarray or dict/list combinations.
        Returns:
            - info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \
                recorded in text log and tensorboard, values are python scalar or a list of scalars.
        ArgumentsKeys:
            - necessary: ``obs``, ``action``, ``reward``, ``next_obs``, ``done``
            - optional: ``value_gamma``, ``IS``
        ReturnsKeys:
            - necessary: ``cur_lr``, ``total_loss``, ``priority``
            - optional: ``action_distribution``
        """
        data = default_preprocess_learn(
            data,
            use_priority=self._priority,
            use_priority_IS_weight=self._cfg.priority_IS_weight,
            ignore_done=self._cfg.learn.ignore_done,
            use_nstep=True
        )

        if self._cuda:
            data = to_device(data, self._device)
        # ====================
        # Q-learning forward
        # ====================
        self._learn_model.train()
        self._target_model.train()
        # Current q value (main model)
        q_value = self._learn_model.forward(data['obs'])['logit']
        # Target q value
        with torch.no_grad():
            target_q_value = self._target_model.forward(data['next_obs'])['logit']
            # Max q value action (main model)
            target_q_action = self._learn_model.forward(data['next_obs'])['action']
        if data['action'].shape != target_q_action.shape:
            data['action'] = data['action'].unsqueeze(-1)

        data_n = q_nstep_td_data(
            q_value, target_q_value, data['action'], target_q_action, data['reward'], data['done'], data['weight']
        )
        value_gamma = data.get('value_gamma')
        loss, td_error_per_sample = bdq_nstep_td_error(data_n, self._gamma, nstep=self._nstep, value_gamma=value_gamma)

        # ====================
        # Q-learning update
        # ====================
        self._optimizer.zero_grad()
        loss.backward()
        if self._cfg.multi_gpu:
            self.sync_gradients(self._learn_model)
        self._optimizer.step()

        # =============
        # after update
        # =============
        self._target_model.update(self._learn_model.state_dict())
        update_info = {
            'cur_lr': self._optimizer.defaults['lr'],
            'total_loss': loss.item(),
            'q_value': q_value.mean().item(),
            'target_q_value': target_q_value.mean().item(),
            'priority': td_error_per_sample.abs().tolist(),
            # Only discrete action satisfying len(data['action'])==1 can return this and draw histogram on tensorboard.
            # '[histogram]action_distribution': data['action'],
        }
        q_value_per_branch = torch.mean(q_value, 2, keepdim=False)
        for i in range(self._model.num_branches):
            update_info['q_value_b_' + str(i)] = q_value_per_branch[:, i].mean().item()
        return update_info

    def _monitor_vars_learn(self) -> List[str]:
        return ['cur_lr', 'total_loss', 'q_value'] + ['q_value_b_' + str(i) for i in range(self._model.num_branches)]

    def _state_dict_learn(self) -> Dict[str, Any]:
        """
        Overview:
            Return the state_dict of learn mode, usually including model and optimizer.
        Returns:
            - state_dict (:obj:`Dict[str, Any]`): the dict of current policy learn state, for saving and restoring.
        """
        return {
            'model': self._learn_model.state_dict(),
            'target_model': self._target_model.state_dict(),
            'optimizer': self._optimizer.state_dict(),
        }

    def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
        """
        Overview:
            Load the state_dict variable into policy learn mode.
        Arguments:
            - state_dict (:obj:`Dict[str, Any]`): the dict of policy learn state saved before.

        .. tip::
            If you want to only load some parts of model, you can simply set the ``strict`` argument in \
            load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \
            complicated operation.
        """
        self._learn_model.load_state_dict(state_dict['model'])
        self._target_model.load_state_dict(state_dict['target_model'])
        self._optimizer.load_state_dict(state_dict['optimizer'])

    def _init_collect(self) -> None:
        """
        Overview:
            Collect mode init method. Called by ``self.__init__``, initialize algorithm arguments and collect_model, \
            enable the eps_greedy_sample for exploration.
        """
        self._unroll_len = self._cfg.collect.unroll_len
        self._gamma = self._cfg.discount_factor  # necessary for parallel
        self._nstep = self._cfg.nstep  # necessary for parallel
        self._collect_model = model_wrap(self._model, wrapper_name='eps_greedy_sample')
        self._collect_model.reset()

    def _forward_collect(self, data: Dict[int, Any], eps: float) -> Dict[int, Any]:
        """
        Overview:
            Forward computation graph of collect mode(collect training data), with eps_greedy for exploration.
        Arguments:
            - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
                values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
            - eps (:obj:`float`): epsilon value for exploration, which is decayed by collected env step.
        Returns:
            - output (:obj:`Dict[int, Any]`): The dict of predicting policy_output(action) for the interaction with \
                env and the constructing of transition.
        ArgumentsKeys:
            - necessary: ``obs``
        ReturnsKeys
            - necessary: ``logit``, ``action``
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._collect_model.eval()
        with torch.no_grad():
            output = self._collect_model.forward(data, eps=eps)
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _get_train_sample(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """
        Overview:
            For a given trajectory(transitions, a list of transition) data, process it into a list of sample that \
            can be used for training directly. A train sample can be a processed transition(BDQ with nstep TD).
        Arguments:
            - data (:obj:`List[Dict[str, Any]`): The trajectory data(a list of transition), each element is the same \
                format as the return value of ``self._process_transition`` method.
        Returns:
            - samples (:obj:`dict`): The list of training samples.

        .. note::
            We will vectorize ``process_transition`` and ``get_train_sample`` method in the following release version. \
            And the user can customize the this data processing procecure by overriding this two methods and collector \
            itself.
        """
        data = get_nstep_return_data(data, self._nstep, gamma=self._gamma)
        return get_train_sample(data, self._unroll_len)

    def _process_transition(self, obs: Any, policy_output: Dict[str, Any], timestep: namedtuple) -> Dict[str, Any]:
        """
        Overview:
            Generate a transition(e.g.: <s, a, s', r, d>) for this algorithm training.
        Arguments:
            - obs (:obj:`Any`): Env observation.
            - policy_output (:obj:`Dict[str, Any]`): The output of policy collect mode(``self._forward_collect``),\
                including at least ``action``.
            - timestep (:obj:`namedtuple`): The output after env step(execute policy output action), including at \
                least ``obs``, ``reward``, ``done``, (here obs indicates obs after env step).
        Returns:
            - transition (:obj:`dict`): Dict type transition data.
        """
        transition = {
            'obs': obs,
            'next_obs': timestep.obs,
            'action': policy_output['action'],
            'reward': timestep.reward,
            'done': timestep.done,
        }
        return transition

    def _init_eval(self) -> None:
        r"""
        Overview:
            Evaluate mode init method. Called by ``self.__init__``, initialize eval_model.
        """
        self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')
        self._eval_model.reset()

    def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]:
        """
        Overview:
            Forward computation graph of eval mode(evaluate policy performance), at most cases, it is similar to \
            ``self._forward_collect``.
        Arguments:
            - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
                values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
        Returns:
            - output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env.
        ArgumentsKeys:
            - necessary: ``obs``
        ReturnsKeys
            - necessary: ``action``
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._eval_model.eval()
        with torch.no_grad():
            output = self._eval_model.forward(data)
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}