File size: 12,526 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from typing import List, Dict, Any, Tuple, Union
import copy
import torch

from ding.torch_utils import Adam, to_device
from ding.rl_utils import dist_nstep_td_data, dist_nstep_td_error, get_train_sample, get_nstep_return_data
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate
from .dqn import DQNPolicy
from .common_utils import default_preprocess_learn


@POLICY_REGISTRY.register('c51')
class C51Policy(DQNPolicy):
    r"""
    Overview:
        Policy class of C51 algorithm.

    Config:
        == ==================== ======== ============== ======================================== =======================
        ID Symbol               Type     Default Value  Description                              Other(Shape)
        == ==================== ======== ============== ======================================== =======================
        1  ``type``             str      c51            | RL policy register name, refer to      | this arg is optional,
                                                        | registry ``POLICY_REGISTRY``           | a placeholder
        2  ``cuda``             bool     False          | Whether to use cuda for network        | this arg can be diff-
                                                                                                 | erent from modes
        3  ``on_policy``        bool     False          | Whether the RL algorithm is on-policy
                                                        | or off-policy
        4  ``priority``         bool     False          | Whether use priority(PER)              | priority sample,
                                                                                                 | update priority
        5  ``model.v_min``      float    -10            | Value of the smallest atom
                                                        | in the support set.
        6  ``model.v_max``      float    10             | Value of the largest atom
                                                        | in the support set.
        7  ``model.n_atom``     int      51             | Number of atoms in the support set
                                                        | of the value distribution.
        8  | ``other.eps``      float    0.95           | Start value for epsilon decay.
           | ``.start``                                 |
        9  | ``other.eps``      float    0.1            | End value for epsilon decay.
           | ``.end``
        10 | ``discount_``      float    0.97,          | Reward's future discount factor, aka.  | may be 1 when sparse
           | ``factor``                  [0.95, 0.999]  | gamma                                  | reward env
        11 ``nstep``            int      1,             | N-step reward discount sum for target
                                                        | q_value estimation
        12 | ``learn.update``   int      3              | How many updates(iterations) to train  | this args can be vary
           | ``per_collect``                            | after collector's one collection. Only | from envs. Bigger val
                                                        | valid in serial training               | means more off-policy
        == ==================== ======== ============== ======================================== =======================
    """

    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='c51',
        # (bool) Whether to use cuda for network.
        cuda=False,
        # (bool) Whether the RL algorithm is on-policy or off-policy.
        on_policy=False,
        # (bool) Whether use priority(priority sample, IS weight, update priority)
        priority=False,
        # (float) Reward's future discount factor, aka. gamma.
        discount_factor=0.97,
        # (int) N-step reward for target q_value estimation
        nstep=1,
        model=dict(
            v_min=-10,
            v_max=10,
            n_atom=51,
        ),
        learn=dict(

            # How many updates(iterations) to train after collector's one collection.
            # Bigger "update_per_collect" means bigger off-policy.
            # collect data -> update policy-> collect data -> ...
            update_per_collect=3,
            batch_size=64,
            learning_rate=0.001,
            # ==============================================================
            # The following configs are algorithm-specific
            # ==============================================================
            # (int) Frequence of target network update.
            target_update_freq=100,
            # (bool) Whether ignore done(usually for max step termination env)
            ignore_done=False,
        ),
        # collect_mode config
        collect=dict(
            # (int) Only one of [n_sample, n_step, n_episode] shoule be set
            # n_sample=8,
            # (int) Cut trajectories into pieces with length "unroll_len".
            unroll_len=1,
        ),
        eval=dict(),
        # other config
        other=dict(
            # Epsilon greedy with decay.
            eps=dict(
                # (str) Decay type. Support ['exp', 'linear'].
                type='exp',
                start=0.95,
                end=0.1,
                # (int) Decay length(env step)
                decay=10000,
            ),
            replay_buffer=dict(replay_buffer_size=10000, )
        ),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        return 'c51dqn', ['ding.model.template.q_learning']

    def _init_learn(self) -> None:
        r"""
        Overview:
            Learn mode init method. Called by ``self.__init__``.
            Init the optimizer, algorithm config, main and target models.
        """
        self._priority = self._cfg.priority
        # Optimizer
        self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate)

        self._gamma = self._cfg.discount_factor
        self._nstep = self._cfg.nstep
        self._v_max = self._cfg.model.v_max
        self._v_min = self._cfg.model.v_min
        self._n_atom = self._cfg.model.n_atom

        # use wrapper instead of plugin
        self._target_model = copy.deepcopy(self._model)
        self._target_model = model_wrap(
            self._target_model,
            wrapper_name='target',
            update_type='assign',
            update_kwargs={'freq': self._cfg.learn.target_update_freq}
        )
        self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample')
        self._learn_model.reset()
        self._target_model.reset()

    def _forward_learn(self, data: dict) -> Dict[str, Any]:
        r"""
        Overview:
            Forward and backward function of learn mode.
        Arguments:
            - data (:obj:`dict`): Dict type data, including at least ['obs', 'action', 'reward', 'next_obs']
        Returns:
            - info_dict (:obj:`Dict[str, Any]`): Including current lr and loss.
        """
        data = default_preprocess_learn(
            data, use_priority=self._priority, ignore_done=self._cfg.learn.ignore_done, use_nstep=True
        )
        if self._cuda:
            data = to_device(data, self._device)
        # ====================
        # Q-learning forward
        # ====================
        self._learn_model.train()
        self._target_model.train()
        # Current q value (main model)
        output = self._learn_model.forward(data['obs'])
        q_value = output['logit']
        q_value_dist = output['distribution']
        # Target q value
        with torch.no_grad():
            target_output = self._target_model.forward(data['next_obs'])
            target_q_value_dist = target_output['distribution']
            target_q_value = target_output['logit']
            # Max q value action (main model)
            target_q_action = self._learn_model.forward(data['next_obs'])['action']

        data_n = dist_nstep_td_data(
            q_value_dist, target_q_value_dist, data['action'], target_q_action, data['reward'], data['done'],
            data['weight']
        )
        value_gamma = data.get('value_gamma')
        loss, td_error_per_sample = dist_nstep_td_error(
            data_n, self._gamma, self._v_min, self._v_max, self._n_atom, nstep=self._nstep, value_gamma=value_gamma
        )

        # ====================
        # Q-learning update
        # ====================
        self._optimizer.zero_grad()
        loss.backward()
        if self._cfg.multi_gpu:
            self.sync_gradients(self._learn_model)
        self._optimizer.step()

        # =============
        # after update
        # =============
        self._target_model.update(self._learn_model.state_dict())
        return {
            'cur_lr': self._optimizer.defaults['lr'],
            'total_loss': loss.item(),
            'q_value': q_value.mean().item(),
            'target_q_value': target_q_value.mean().item(),
            'priority': td_error_per_sample.abs().tolist(),
            # Only discrete action satisfying len(data['action'])==1 can return this and draw histogram on tensorboard.
            # '[histogram]action_distribution': data['action'],
        }

    def _monitor_vars_learn(self) -> List[str]:
        return ['cur_lr', 'total_loss', 'q_value', 'target_q_value']

    def _state_dict_learn(self) -> Dict[str, Any]:
        return {
            'model': self._learn_model.state_dict(),
            'target_model': self._target_model.state_dict(),
            'optimizer': self._optimizer.state_dict(),
        }

    def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
        self._learn_model.load_state_dict(state_dict['model'])
        self._target_model.load_state_dict(state_dict['target_model'])
        self._optimizer.load_state_dict(state_dict['optimizer'])

    def _init_collect(self) -> None:
        """
        Overview:
            Collect mode init method. Called by ``self.__init__``. Initialize necessary arguments for nstep return \
            calculation and collect_model for exploration (eps_greedy_sample).
        """
        self._unroll_len = self._cfg.collect.unroll_len
        self._gamma = self._cfg.discount_factor  # necessary for parallel
        self._nstep = self._cfg.nstep  # necessary for parallel
        self._collect_model = model_wrap(self._model, wrapper_name='eps_greedy_sample')
        self._collect_model.reset()

    def _forward_collect(self, data: Dict[int, Any], eps: float) -> Dict[int, Any]:
        """
        Overview:
            Forward computation graph of collect mode(collect training data), with eps_greedy for exploration.
        Arguments:
            - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
                values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
            - eps (:obj:`float`): epsilon value for exploration, which is decayed by collected env step.
        Returns:
            - output (:obj:`Dict[int, Any]`): The dict of predicting policy_output(action) for the interaction with \
                env and the constructing of transition.
        ArgumentsKeys:
            - necessary: ``obs``
        ReturnsKeys
            - necessary: ``logit``, ``action``
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._collect_model.eval()
        with torch.no_grad():
            output = self._collect_model.forward(data, eps=eps)
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _get_train_sample(self, data: list) -> Union[None, List[Any]]:
        """
        Overview:
            Calculate nstep return data and transform a trajectory into many train samples.
        Arguments:
            - data (:obj:`list`): The collected data of a trajectory, which is a list that contains dict elements.
        Returns:
            - samples (:obj:`dict`): The training samples generated.
        """
        data = get_nstep_return_data(data, self._nstep, gamma=self._gamma)
        return get_train_sample(data, self._unroll_len)