File size: 12,526 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
from typing import List, Dict, Any, Tuple, Union
import copy
import torch
from ding.torch_utils import Adam, to_device
from ding.rl_utils import dist_nstep_td_data, dist_nstep_td_error, get_train_sample, get_nstep_return_data
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate
from .dqn import DQNPolicy
from .common_utils import default_preprocess_learn
@POLICY_REGISTRY.register('c51')
class C51Policy(DQNPolicy):
r"""
Overview:
Policy class of C51 algorithm.
Config:
== ==================== ======== ============== ======================================== =======================
ID Symbol Type Default Value Description Other(Shape)
== ==================== ======== ============== ======================================== =======================
1 ``type`` str c51 | RL policy register name, refer to | this arg is optional,
| registry ``POLICY_REGISTRY`` | a placeholder
2 ``cuda`` bool False | Whether to use cuda for network | this arg can be diff-
| erent from modes
3 ``on_policy`` bool False | Whether the RL algorithm is on-policy
| or off-policy
4 ``priority`` bool False | Whether use priority(PER) | priority sample,
| update priority
5 ``model.v_min`` float -10 | Value of the smallest atom
| in the support set.
6 ``model.v_max`` float 10 | Value of the largest atom
| in the support set.
7 ``model.n_atom`` int 51 | Number of atoms in the support set
| of the value distribution.
8 | ``other.eps`` float 0.95 | Start value for epsilon decay.
| ``.start`` |
9 | ``other.eps`` float 0.1 | End value for epsilon decay.
| ``.end``
10 | ``discount_`` float 0.97, | Reward's future discount factor, aka. | may be 1 when sparse
| ``factor`` [0.95, 0.999] | gamma | reward env
11 ``nstep`` int 1, | N-step reward discount sum for target
| q_value estimation
12 | ``learn.update`` int 3 | How many updates(iterations) to train | this args can be vary
| ``per_collect`` | after collector's one collection. Only | from envs. Bigger val
| valid in serial training | means more off-policy
== ==================== ======== ============== ======================================== =======================
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='c51',
# (bool) Whether to use cuda for network.
cuda=False,
# (bool) Whether the RL algorithm is on-policy or off-policy.
on_policy=False,
# (bool) Whether use priority(priority sample, IS weight, update priority)
priority=False,
# (float) Reward's future discount factor, aka. gamma.
discount_factor=0.97,
# (int) N-step reward for target q_value estimation
nstep=1,
model=dict(
v_min=-10,
v_max=10,
n_atom=51,
),
learn=dict(
# How many updates(iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
# collect data -> update policy-> collect data -> ...
update_per_collect=3,
batch_size=64,
learning_rate=0.001,
# ==============================================================
# The following configs are algorithm-specific
# ==============================================================
# (int) Frequence of target network update.
target_update_freq=100,
# (bool) Whether ignore done(usually for max step termination env)
ignore_done=False,
),
# collect_mode config
collect=dict(
# (int) Only one of [n_sample, n_step, n_episode] shoule be set
# n_sample=8,
# (int) Cut trajectories into pieces with length "unroll_len".
unroll_len=1,
),
eval=dict(),
# other config
other=dict(
# Epsilon greedy with decay.
eps=dict(
# (str) Decay type. Support ['exp', 'linear'].
type='exp',
start=0.95,
end=0.1,
# (int) Decay length(env step)
decay=10000,
),
replay_buffer=dict(replay_buffer_size=10000, )
),
)
def default_model(self) -> Tuple[str, List[str]]:
return 'c51dqn', ['ding.model.template.q_learning']
def _init_learn(self) -> None:
r"""
Overview:
Learn mode init method. Called by ``self.__init__``.
Init the optimizer, algorithm config, main and target models.
"""
self._priority = self._cfg.priority
# Optimizer
self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate)
self._gamma = self._cfg.discount_factor
self._nstep = self._cfg.nstep
self._v_max = self._cfg.model.v_max
self._v_min = self._cfg.model.v_min
self._n_atom = self._cfg.model.n_atom
# use wrapper instead of plugin
self._target_model = copy.deepcopy(self._model)
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='assign',
update_kwargs={'freq': self._cfg.learn.target_update_freq}
)
self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample')
self._learn_model.reset()
self._target_model.reset()
def _forward_learn(self, data: dict) -> Dict[str, Any]:
r"""
Overview:
Forward and backward function of learn mode.
Arguments:
- data (:obj:`dict`): Dict type data, including at least ['obs', 'action', 'reward', 'next_obs']
Returns:
- info_dict (:obj:`Dict[str, Any]`): Including current lr and loss.
"""
data = default_preprocess_learn(
data, use_priority=self._priority, ignore_done=self._cfg.learn.ignore_done, use_nstep=True
)
if self._cuda:
data = to_device(data, self._device)
# ====================
# Q-learning forward
# ====================
self._learn_model.train()
self._target_model.train()
# Current q value (main model)
output = self._learn_model.forward(data['obs'])
q_value = output['logit']
q_value_dist = output['distribution']
# Target q value
with torch.no_grad():
target_output = self._target_model.forward(data['next_obs'])
target_q_value_dist = target_output['distribution']
target_q_value = target_output['logit']
# Max q value action (main model)
target_q_action = self._learn_model.forward(data['next_obs'])['action']
data_n = dist_nstep_td_data(
q_value_dist, target_q_value_dist, data['action'], target_q_action, data['reward'], data['done'],
data['weight']
)
value_gamma = data.get('value_gamma')
loss, td_error_per_sample = dist_nstep_td_error(
data_n, self._gamma, self._v_min, self._v_max, self._n_atom, nstep=self._nstep, value_gamma=value_gamma
)
# ====================
# Q-learning update
# ====================
self._optimizer.zero_grad()
loss.backward()
if self._cfg.multi_gpu:
self.sync_gradients(self._learn_model)
self._optimizer.step()
# =============
# after update
# =============
self._target_model.update(self._learn_model.state_dict())
return {
'cur_lr': self._optimizer.defaults['lr'],
'total_loss': loss.item(),
'q_value': q_value.mean().item(),
'target_q_value': target_q_value.mean().item(),
'priority': td_error_per_sample.abs().tolist(),
# Only discrete action satisfying len(data['action'])==1 can return this and draw histogram on tensorboard.
# '[histogram]action_distribution': data['action'],
}
def _monitor_vars_learn(self) -> List[str]:
return ['cur_lr', 'total_loss', 'q_value', 'target_q_value']
def _state_dict_learn(self) -> Dict[str, Any]:
return {
'model': self._learn_model.state_dict(),
'target_model': self._target_model.state_dict(),
'optimizer': self._optimizer.state_dict(),
}
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
self._learn_model.load_state_dict(state_dict['model'])
self._target_model.load_state_dict(state_dict['target_model'])
self._optimizer.load_state_dict(state_dict['optimizer'])
def _init_collect(self) -> None:
"""
Overview:
Collect mode init method. Called by ``self.__init__``. Initialize necessary arguments for nstep return \
calculation and collect_model for exploration (eps_greedy_sample).
"""
self._unroll_len = self._cfg.collect.unroll_len
self._gamma = self._cfg.discount_factor # necessary for parallel
self._nstep = self._cfg.nstep # necessary for parallel
self._collect_model = model_wrap(self._model, wrapper_name='eps_greedy_sample')
self._collect_model.reset()
def _forward_collect(self, data: Dict[int, Any], eps: float) -> Dict[int, Any]:
"""
Overview:
Forward computation graph of collect mode(collect training data), with eps_greedy for exploration.
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
- eps (:obj:`float`): epsilon value for exploration, which is decayed by collected env step.
Returns:
- output (:obj:`Dict[int, Any]`): The dict of predicting policy_output(action) for the interaction with \
env and the constructing of transition.
ArgumentsKeys:
- necessary: ``obs``
ReturnsKeys
- necessary: ``logit``, ``action``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._collect_model.eval()
with torch.no_grad():
output = self._collect_model.forward(data, eps=eps)
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _get_train_sample(self, data: list) -> Union[None, List[Any]]:
"""
Overview:
Calculate nstep return data and transform a trajectory into many train samples.
Arguments:
- data (:obj:`list`): The collected data of a trajectory, which is a list that contains dict elements.
Returns:
- samples (:obj:`dict`): The training samples generated.
"""
data = get_nstep_return_data(data, self._nstep, gamma=self._gamma)
return get_train_sample(data, self._unroll_len)
|