File size: 21,034 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
from typing import List, Dict, Any, Tuple, Union, Optional
from collections import namedtuple
import torch
import copy
from ding.torch_utils import to_device, RMSprop
from ding.rl_utils import v_1step_td_data, v_1step_td_error, get_train_sample
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import timestep_collate, default_collate, default_decollate
from .base_policy import Policy
from .common_utils import default_preprocess_learn
@POLICY_REGISTRY.register('collaq')
class CollaQPolicy(Policy):
r"""
Overview:
Policy class of CollaQ algorithm. CollaQ is a multi-agent reinforcement learning algorithm
Interface:
_init_learn, _data_preprocess_learn, _forward_learn, _reset_learn, _state_dict_learn, _load_state_dict_learn\
_init_collect, _forward_collect, _reset_collect, _process_transition, _init_eval, _forward_eval\
_reset_eval, _get_train_sample, default_model
Config:
== ==================== ======== ============== ======================================== =======================
ID Symbol Type Default Value Description Other(Shape)
== ==================== ======== ============== ======================================== =======================
1 ``type`` str collaq | RL policy register name, refer to | this arg is optional,
| registry ``POLICY_REGISTRY`` | a placeholder
2 ``cuda`` bool True | Whether to use cuda for network | this arg can be diff-
| erent from modes
3 ``on_policy`` bool False | Whether the RL algorithm is on-policy
| or off-policy
4. ``priority`` bool False | Whether use priority(PER) | priority sample,
| update priority
5 | ``priority_`` bool False | Whether use Importance Sampling | IS weight
| ``IS_weight`` | Weight to correct biased update.
6 | ``learn.update_`` int 20 | How many updates(iterations) to train | this args can be vary
| ``per_collect`` | after collector's one collection. Only | from envs. Bigger val
| valid in serial training | means more off-policy
7 | ``learn.target_`` float 0.001 | Target network update momentum | between[0,1]
| ``update_theta`` | parameter.
8 | ``learn.discount`` float 0.99 | Reward's future discount factor, aka. | may be 1 when sparse
| ``_factor`` | gamma | reward env
9 | ``learn.collaq`` float 1.0 | The weight of collaq MARA loss
| ``_loss_weight``
== ==================== ======== ============== ======================================== =======================
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='collaq',
# (bool) Whether to use cuda for network.
cuda=True,
# (bool) Whether the RL algorithm is on-policy or off-policy.
on_policy=False,
# (bool) Whether use priority(priority sample, IS weight, update priority)
priority=False,
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=False,
learn=dict(
# (int) Collect n_episode data, update_model n_iteration times
update_per_collect=20,
# (int) The number of data for a train iteration
batch_size=32,
# (float) Gradient-descent step size
learning_rate=0.0005,
# ==============================================================
# The following configs is algorithm-specific
# ==============================================================
# (float) Target network update weight, theta * new_w + (1 - theta) * old_w, defaults in [0, 0.1]
target_update_theta=0.001,
# (float) Discount factor for future reward, defaults int [0, 1]
discount_factor=0.99,
# (float) The weight of collaq MARA loss
collaq_loss_weight=1.0,
# (float)
clip_value=100,
# (bool) Whether to use double DQN mechanism(target q for surpassing over estimation)
double_q=False,
),
collect=dict(
# (int) Only one of [n_sample, n_episode] shoule be set
# n_episode=32,
# (int) Cut trajectories into pieces with length "unroll_len", the length of timesteps
# in each forward when training. In qmix, it is greater than 1 because there is RNN.
unroll_len=10,
),
eval=dict(),
other=dict(
eps=dict(
# (str) Type of epsilon decay
type='exp',
# (float) Start value for epsilon decay, in [0, 1].
# 0 means not use epsilon decay.
start=1,
# (float) Start value for epsilon decay, in [0, 1].
end=0.05,
# (int) Decay length(env step)
decay=200000,
),
replay_buffer=dict(
# (int) max size of replay buffer
replay_buffer_size=5000,
max_reuse=10,
),
),
)
def default_model(self) -> Tuple[str, List[str]]:
"""
Overview:
Return this algorithm default model setting for demonstration.
Returns:
- model_info (:obj:`Tuple[str, List[str]]`): model name and mode import_names
.. note::
The user can define and use customized network model but must obey the same inferface definition indicated \
by import_names path. For collaq, ``ding.model.collaq.CollaQ`` .
"""
return 'collaq', ['ding.model.template.collaq']
def _init_learn(self) -> None:
"""
Overview:
Learn mode init method. Called by ``self.__init__``.
Init the learner model of CollaQPolicy
Arguments:
.. note::
The _init_learn method takes the argument from the self._cfg.learn in the config file
- learning_rate (:obj:`float`): The learning rate fo the optimizer
- gamma (:obj:`float`): The discount factor
- alpha (:obj:`float`): The collaQ loss factor, the weight for calculating MARL loss
- agent_num (:obj:`int`): Since this is a multi-agent algorithm, we need to input the agent num.
- batch_size (:obj:`int`): Need batch size info to init hidden_state plugins
"""
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
self._optimizer = RMSprop(
params=self._model.parameters(), lr=self._cfg.learn.learning_rate, alpha=0.99, eps=0.00001
)
self._gamma = self._cfg.learn.discount_factor
self._alpha = self._cfg.learn.collaq_loss_weight
self._target_model = copy.deepcopy(self._model)
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='momentum',
update_kwargs={'theta': self._cfg.learn.target_update_theta}
)
self._target_model = model_wrap(
self._target_model,
wrapper_name='hidden_state',
state_num=self._cfg.learn.batch_size,
init_fn=lambda: [[None for _ in range(self._cfg.model.agent_num)] for _ in range(3)]
)
self._learn_model = model_wrap(
self._model,
wrapper_name='hidden_state',
state_num=self._cfg.learn.batch_size,
init_fn=lambda: [[None for _ in range(self._cfg.model.agent_num)] for _ in range(3)]
)
self._learn_model.reset()
self._target_model.reset()
def _data_preprocess_learn(
self,
data: List[Any],
use_priority_IS_weight: bool = False,
use_priority: bool = False,
) -> dict:
r"""
Overview:
Preprocess the data to fit the required data format for learning
Arguments:
- data (:obj:`List[Dict[str, Any]]`): the data collected from collect function
Returns:
- data (:obj:`Dict[str, Any]`): the processed data, from \
[len=B, ele={dict_key: [len=T, ele=Tensor(any_dims)]}] -> {dict_key: Tensor([T, B, any_dims])}
"""
# data preprocess
data = timestep_collate(data)
if self._cuda:
data = to_device(data, self._device)
if use_priority_IS_weight:
assert use_priority, "Use IS Weight correction, but Priority is not used."
if use_priority and use_priority_IS_weight:
if 'priority_IS' in data:
data['weight'] = data['priority_IS']
else: # for compability
data['weight'] = data['IS']
else:
data['weight'] = data.get('weight', None)
data['done'] = data['done'].float()
return data
def _forward_learn(self, data: dict) -> Dict[str, Any]:
r"""
Overview:
Forward and backward function of learn mode.
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, a batch of data for training, values are torch.Tensor or \
np.ndarray or dict/list combinations.
Returns:
- info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \
recorded in text log and tensorboard, values are python scalar or a list of scalars.
ArgumentsKeys:
- necessary: ``obs``, ``next_obs``, ``action``, ``reward``, ``weight``, ``prev_state``, ``done``
ReturnsKeys:
- necessary: ``cur_lr``, ``total_loss``
- cur_lr (:obj:`float`): Current learning rate
- total_loss (:obj:`float`): The calculated loss
"""
data = self._data_preprocess_learn(data, self.cfg.priority_IS_weight, self.cfg.priority)
# ====================
# CollaQ forward
# ====================
self._learn_model.train()
self._target_model.train()
# for hidden_state plugin, we need to reset the main model and target model
self._learn_model.reset(state=data['prev_state'][0])
self._target_model.reset(state=data['prev_state'][0])
inputs = {'obs': data['obs'], 'action': data['action']}
ret = self._learn_model.forward(inputs, single_step=False)
total_q = ret['total_q']
agent_colla_alone_q = ret['agent_colla_alone_q'].sum(-1).sum(-1)
if self._cfg.learn.double_q:
next_inputs = {'obs': data['next_obs']}
logit_detach = self._learn_model.forward(next_inputs, single_step=False)['logit'].clone().detach()
next_inputs = {'obs': data['next_obs'], 'action': logit_detach.argmax(dim=-1)}
else:
next_inputs = {'obs': data['next_obs']}
with torch.no_grad():
target_total_q = self._target_model.forward(next_inputs, single_step=False)['total_q']
# td_loss calculation
td_data = v_1step_td_data(total_q, target_total_q, data['reward'], data['done'], data['weight'])
td_loss, td_error_per_sample = v_1step_td_error(td_data, self._gamma)
# collaQ loss calculation
colla_loss = (agent_colla_alone_q ** 2).mean()
# combine loss with factor
loss = colla_loss * self._alpha + td_loss
# ====================
# CollaQ update
# ====================
self._optimizer.zero_grad()
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(self._model.parameters(), self._cfg.learn.clip_value)
self._optimizer.step()
# =============
# after update
# =============
self._target_model.update(self._learn_model.state_dict())
return {
'cur_lr': self._optimizer.defaults['lr'],
'total_loss': loss.item(),
'colla_loss': colla_loss.item(),
'td_loss': td_loss.item(),
'grad_norm': grad_norm,
'priority': torch.mean(td_error_per_sample.abs(), dim=0).tolist(),
}
def _reset_learn(self, data_id: Optional[List[int]] = None) -> None:
r"""
Overview:
Reset learn model to the state indicated by data_id
Arguments:
- data_id (:obj:`Optional[List[int]]`): The id that store the state and we will reset\
the model state to the state indicated by data_id
"""
self._learn_model.reset(data_id=data_id)
def _state_dict_learn(self) -> Dict[str, Any]:
r"""
Overview:
Return the state_dict of learn mode, usually including model and optimizer.
Returns:
- state_dict (:obj:`Dict[str, Any]`): the dict of current policy learn state, for saving and restoring.
"""
return {
'model': self._learn_model.state_dict(),
'target_model': self._target_model.state_dict(),
'optimizer': self._optimizer.state_dict(),
}
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
r"""
Overview:
Load the state_dict variable into policy learn mode.
Arguments:
- state_dict (:obj:`Dict[str, Any]`): the dict of policy learn state saved before.
.. tip::
If you want to only load some parts of model, you can simply set the ``strict`` argument in \
load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \
complicated operation.
"""
self._learn_model.load_state_dict(state_dict['model'])
self._target_model.load_state_dict(state_dict['target_model'])
self._optimizer.load_state_dict(state_dict['optimizer'])
def _init_collect(self) -> None:
r"""
Overview:
Collect mode init method. Called by ``self.__init__``.
Init traj and unroll length, collect model.
Enable the eps_greedy_sample and the hidden_state plugin.
"""
self._unroll_len = self._cfg.collect.unroll_len
self._collect_model = model_wrap(
self._model,
wrapper_name='hidden_state',
state_num=self._cfg.collect.env_num,
save_prev_state=True,
init_fn=lambda: [[None for _ in range(self._cfg.model.agent_num)] for _ in range(3)]
)
self._collect_model = model_wrap(self._collect_model, wrapper_name='eps_greedy_sample')
self._collect_model.reset()
def _forward_collect(self, data: dict, eps: float) -> dict:
r"""
Overview:
Forward function for collect mode with eps_greedy
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
- eps (:obj:`float`): epsilon value for exploration, which is decayed by collected env step.
Returns:
- output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs.
ReturnsKeys
- necessary: ``action``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
data = {'obs': data}
self._collect_model.eval()
with torch.no_grad():
output = self._collect_model.forward(data, eps=eps, data_id=data_id)
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _reset_collect(self, data_id: Optional[List[int]] = None) -> None:
r"""
Overview:
Reset collect model to the state indicated by data_id
Arguments:
- data_id (:obj:`Optional[List[int]]`): The id that store the state and we will reset\
the model state to the state indicated by data_id
"""
self._collect_model.reset(data_id=data_id)
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict:
r"""
Overview:
Generate dict type transition data from inputs.
Arguments:
- obs (:obj:`Any`): Env observation
- model_output (:obj:`dict`): Output of collect model, including at least \
['action', 'prev_state', 'agent_colla_alone_q']
- timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done']\
(here 'obs' indicates obs after env step).
Returns:
- transition (:obj:`dict`): Dict type transition data.
"""
transition = {
'obs': obs,
'next_obs': timestep.obs,
'prev_state': model_output['prev_state'],
'action': model_output['action'],
'agent_colla_alone_q': model_output['agent_colla_alone_q'],
'reward': timestep.reward,
'done': timestep.done,
}
return transition
def _init_eval(self) -> None:
r"""
Overview:
Evaluate mode init method. Called by ``self.__init__``.
Init eval model with argmax strategy and the hidden_state plugin.
"""
self._eval_model = model_wrap(
self._model,
wrapper_name='hidden_state',
state_num=self._cfg.eval.env_num,
save_prev_state=True,
init_fn=lambda: [[None for _ in range(self._cfg.model.agent_num)] for _ in range(3)]
)
self._eval_model = model_wrap(self._eval_model, wrapper_name='argmax_sample')
self._eval_model.reset()
def _forward_eval(self, data: dict) -> dict:
r"""
Overview:
Forward function for eval mode, similar to ``self._forward_collect``.
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
Returns:
- output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env.
ReturnsKeys
- necessary: ``action``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
data = {'obs': data}
self._eval_model.eval()
with torch.no_grad():
output = self._eval_model.forward(data, data_id=data_id)
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _reset_eval(self, data_id: Optional[List[int]] = None) -> None:
r"""
Overview:
Reset eval model to the state indicated by data_id
Arguments:
- data_id (:obj:`Optional[List[int]]`): The id that store the state and we will reset\
the model state to the state indicated by data_id
"""
self._eval_model.reset(data_id=data_id)
def _get_train_sample(self, data: list) -> Union[None, List[Any]]:
r"""
Overview:
Get the train sample from trajectory.
Arguments:
- data (:obj:`list`): The trajectory's cache
Returns:
- samples (:obj:`dict`): The training samples generated
"""
return get_train_sample(data, self._unroll_len)
def _monitor_vars_learn(self) -> List[str]:
r"""
Overview:
Return variables' name if variables are to used in monitor.
Returns:
- vars (:obj:`List[str]`): Variables' name list.
"""
return ['cur_lr', 'total_loss', 'colla_loss', 'td_loss', 'grad_norm']
|