File size: 18,431 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
from typing import List, Dict, Any, Tuple, Union, Optional
from collections import namedtuple
import torch
import copy

from ding.torch_utils import Adam, to_device
from ding.rl_utils import coma_data, coma_error, get_train_sample
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate, timestep_collate
from .base_policy import Policy


@POLICY_REGISTRY.register('coma')
class COMAPolicy(Policy):
    r"""
    Overview:
        Policy class of COMA algorithm. COMA is a multi model reinforcement learning algorithm
    Interface:
        _init_learn, _data_preprocess_learn, _forward_learn, _reset_learn, _state_dict_learn, _load_state_dict_learn\
            _init_collect, _forward_collect, _reset_collect, _process_transition, _init_eval, _forward_eval\
            _reset_eval, _get_train_sample, default_model, _monitor_vars_learn
    Config:
        == ==================== ======== ============== ======================================== =======================
        ID Symbol               Type     Default Value  Description                              Other(Shape)
        == ==================== ======== ============== ======================================== =======================
        1  ``type``             str      coma           | RL policy register name, refer to      | this arg is optional,
                                                        | registry ``POLICY_REGISTRY``           | a placeholder
        2  ``cuda``             bool     False          | Whether to use cuda for network        | this arg can be diff-
                                                                                                 | erent from modes
        3  ``on_policy``        bool     True           | Whether the RL algorithm is on-policy
                                                        | or off-policy
        4. ``priority``         bool     False          | Whether use priority(PER)              | priority sample,
                                                                                                 | update priority
        5  | ``priority_``      bool     False          | Whether use Importance Sampling        | IS weight
           | ``IS_weight``                              | Weight to correct biased update.
        6  | ``learn.update``   int      1              | How many updates(iterations) to train  | this args can be vary
           | ``_per_collect``                           | after collector's one collection. Only | from envs. Bigger val
                                                        | valid in serial training               | means more off-policy
        7  | ``learn.target_``  float    0.001          | Target network update momentum         | between[0,1]
           | ``update_theta``                           | parameter.
        8  | ``learn.discount`` float    0.99           | Reward's future discount factor, aka.  | may be 1 when sparse
           | ``_factor``                                | gamma                                  | reward env
        9  | ``learn.td_``      float    0.8            | The trade-off factor of td-lambda,
           | ``lambda``                                 | which balances 1step td and mc
        10 | ``learn.value_``   float    1.0            | The loss weight of value network       | policy network weight
           | ``weight``                                                                          | is set to 1
        11 | ``learn.entropy_`` float    0.01           | The loss weight of entropy             | policy network weight
           | ``weight``                                 | regularization                         | is set to 1
        == ==================== ======== ============== ======================================== =======================
    """
    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='coma',
        # (bool) Whether to use cuda for network.
        cuda=False,
        # (bool) Whether the RL algorithm is on-policy or off-policy.
        on_policy=False,
        # (bool) Whether use priority(priority sample, IS weight, update priority)
        priority=False,
        # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
        priority_IS_weight=False,
        learn=dict(
            update_per_collect=20,
            batch_size=32,
            learning_rate=0.0005,
            # ==============================================================
            # The following configs is algorithm-specific
            # ==============================================================
            # (float) target network update weight, theta * new_w + (1 - theta) * old_w, defaults in [0, 0.1]
            target_update_theta=0.001,
            # (float) discount factor for future reward, defaults int [0, 1]
            discount_factor=0.99,
            # (float) the trade-off factor of td-lambda, which balances 1step td and mc(nstep td in practice)
            td_lambda=0.8,
            # (float) the loss weight of policy network network
            policy_weight=0.001,
            # (float) the loss weight of value network
            value_weight=1,
            # (float) the loss weight of entropy regularization
            entropy_weight=0.01,
        ),
        collect=dict(
            # (int) collect n_sample data, train model n_iteration time
            # n_episode=32,
            # (int) unroll length of a train iteration(gradient update step)
            unroll_len=20,
        ),
        eval=dict(),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        """
        Overview:
            Return this algorithm default model setting for demonstration.
        Returns:
            - model_info (:obj:`Tuple[str, List[str]]`): model name and mode import_names

        .. note::
            The user can define and use customized network model but must obey the same inferface definition indicated \
            by import_names path. For coma, ``ding.model.coma.coma``
        """
        return 'coma', ['ding.model.template.coma']

    def _init_learn(self) -> None:
        """
        Overview:
            Init the learner model of COMAPolicy

        Arguments:
            .. note::

                The _init_learn method takes the argument from the self._cfg.learn in the config file

            - learning_rate (:obj:`float`): The learning rate fo the optimizer
            - gamma (:obj:`float`): The discount factor
            - lambda (:obj:`float`): The lambda factor, determining the mix of bootstrapping\
                vs further accumulation of multistep returns at each timestep,
            - value_wight(:obj:`float`): The weight of value loss in total loss
            - entropy_weight(:obj:`float`): The weight of entropy loss in total loss
            - agent_num (:obj:`int`): Since this is a multi-agent algorithm, we need to input the agent num.
            - batch_size (:obj:`int`): Need batch size info to init hidden_state plugins
        """
        self._priority = self._cfg.priority
        self._priority_IS_weight = self._cfg.priority_IS_weight
        assert not self._priority, "not implemented priority in COMA"
        self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate)
        self._gamma = self._cfg.learn.discount_factor
        self._lambda = self._cfg.learn.td_lambda
        self._policy_weight = self._cfg.learn.policy_weight
        self._value_weight = self._cfg.learn.value_weight
        self._entropy_weight = self._cfg.learn.entropy_weight

        self._target_model = copy.deepcopy(self._model)
        self._target_model = model_wrap(
            self._target_model,
            wrapper_name='target',
            update_type='momentum',
            update_kwargs={'theta': self._cfg.learn.target_update_theta}
        )
        self._target_model = model_wrap(
            self._target_model,
            wrapper_name='hidden_state',
            state_num=self._cfg.learn.batch_size,
            init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)]
        )
        self._learn_model = model_wrap(
            self._model,
            wrapper_name='hidden_state',
            state_num=self._cfg.learn.batch_size,
            init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)]
        )
        self._learn_model.reset()
        self._target_model.reset()

    def _data_preprocess_learn(self, data: List[Any]) -> dict:
        r"""
        Overview:
            Preprocess the data to fit the required data format for learning

        Arguments:
            - data (:obj:`List[Dict[str, Any]]`): the data collected from collect function, the Dict
                in data should contain keys including at least ['obs', 'action', 'reward']

        Returns:
            - data (:obj:`Dict[str, Any]`): the processed data, including at least \
                ['obs', 'action', 'reward', 'done', 'weight']
        """
        # data preprocess
        data = timestep_collate(data)
        assert set(data.keys()) > set(['obs', 'action', 'reward'])
        if self._cuda:
            data = to_device(data, self._device)
        data['weight'] = data.get('weight', None)
        data['done'] = data['done'].float()
        return data

    def _forward_learn(self, data: dict) -> Dict[str, Any]:
        r"""
        Overview:
            Forward and backward function of learn mode, acquire the data and calculate the loss and\
            optimize learner model
        Arguments:
            - data (:obj:`Dict[str, Any]`): Dict type data, a batch of data for training, values are torch.Tensor or \
                np.ndarray or dict/list combinations.
        Returns:
            - info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \
                recorded in text log and tensorboard, values are python scalar or a list of scalars.
        ArgumentsKeys:
            - necessary: ``obs``, ``action``, ``reward``, ``done``, ``weight``
        ReturnsKeys:
            - necessary: ``cur_lr``, ``total_loss``, ``policy_loss``, ``value_loss``, ``entropy_loss``
                - cur_lr (:obj:`float`): Current learning rate
                - total_loss (:obj:`float`): The calculated loss
                - policy_loss (:obj:`float`): The policy(actor) loss of coma
                - value_loss (:obj:`float`): The value(critic) loss of coma
                - entropy_loss (:obj:`float`): The entropy loss
        """
        data = self._data_preprocess_learn(data)
        # forward
        self._learn_model.train()
        self._target_model.train()
        self._learn_model.reset(state=data['prev_state'][0])
        self._target_model.reset(state=data['prev_state'][0])
        q_value = self._learn_model.forward(data, mode='compute_critic')['q_value']
        with torch.no_grad():
            target_q_value = self._target_model.forward(data, mode='compute_critic')['q_value']
        logit = self._learn_model.forward(data, mode='compute_actor')['logit']
        logit[data['obs']['action_mask'] == 0.0] = -9999999

        data = coma_data(logit, data['action'], q_value, target_q_value, data['reward'], data['weight'])
        coma_loss = coma_error(data, self._gamma, self._lambda)
        total_loss = self._policy_weight * coma_loss.policy_loss + self._value_weight * coma_loss.q_value_loss - \
            self._entropy_weight * coma_loss.entropy_loss

        # update
        self._optimizer.zero_grad()
        total_loss.backward()
        self._optimizer.step()
        # after update
        self._target_model.update(self._learn_model.state_dict())
        return {
            'cur_lr': self._optimizer.defaults['lr'],
            'total_loss': total_loss.item(),
            'policy_loss': coma_loss.policy_loss.item(),
            'value_loss': coma_loss.q_value_loss.item(),
            'entropy_loss': coma_loss.entropy_loss.item(),
        }

    def _reset_learn(self, data_id: Optional[List[int]] = None) -> None:
        self._learn_model.reset(data_id=data_id)

    def _state_dict_learn(self) -> Dict[str, Any]:
        return {
            'model': self._learn_model.state_dict(),
            'target_model': self._target_model.state_dict(),
            'optimizer': self._optimizer.state_dict(),
        }

    def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
        self._learn_model.load_state_dict(state_dict['model'])
        self._target_model.load_state_dict(state_dict['target_model'])
        self._optimizer.load_state_dict(state_dict['optimizer'])

    def _init_collect(self) -> None:
        r"""
        Overview:
            Collect mode init moethod. Called by ``self.__init__``.
            Init traj and unroll length, collect model.
            Model has eps_greedy_sample wrapper and hidden state wrapper
        """
        self._unroll_len = self._cfg.collect.unroll_len
        self._collect_model = model_wrap(
            self._model,
            wrapper_name='hidden_state',
            state_num=self._cfg.collect.env_num,
            save_prev_state=True,
            init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)]
        )
        self._collect_model = model_wrap(self._collect_model, wrapper_name='eps_greedy_sample')
        self._collect_model.reset()

    def _forward_collect(self, data: dict, eps: float) -> dict:
        r"""
        Overview:
            Collect output according to eps_greedy plugin

        Arguments:
            - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
                values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
            - eps (:obj:`float`): epsilon value for exploration, which is decayed by collected env step.
        Returns:
            - output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs.
        ReturnsKeys
            - necessary: ``action``
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        data = {'obs': data}
        self._collect_model.eval()
        with torch.no_grad():
            output = self._collect_model.forward(data, eps=eps, data_id=data_id, mode='compute_actor')
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _reset_collect(self, data_id: Optional[List[int]] = None) -> None:
        self._collect_model.reset(data_id=data_id)

    def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict:
        r"""
        Overview:
            Generate dict type transition data from inputs.
        Arguments:
            - obs (:obj:`Any`): Env observation
            - model_output (:obj:`dict`): Output of collect model, including at least ['action', 'prev_state']
            - timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done'] \
                (here 'obs' indicates obs after env step).
        Returns:
            - transition (:obj:`dict`): Dict type transition data.
        """
        transition = {
            'obs': obs,
            'next_obs': timestep.obs,
            'prev_state': model_output['prev_state'],
            'action': model_output['action'],
            'reward': timestep.reward,
            'done': timestep.done,
        }
        return transition

    def _init_eval(self) -> None:
        r"""
        Overview:
            Evaluate mode init method. Called by ``self.__init__``.
            Init eval model with argmax strategy and hidden_state plugin.
        """
        self._eval_model = model_wrap(
            self._model,
            wrapper_name='hidden_state',
            state_num=self._cfg.eval.env_num,
            save_prev_state=True,
            init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)]
        )
        self._eval_model = model_wrap(self._eval_model, wrapper_name='argmax_sample')
        self._eval_model.reset()

    def _forward_eval(self, data: dict) -> dict:
        r"""
        Overview:
            Forward function of eval mode, similar to ``self._forward_collect``.
        Arguments:
            - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
                values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
        Returns:
            - output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env.
        ReturnsKeys
            - necessary: ``action``
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        data = {'obs': data}
        self._eval_model.eval()
        with torch.no_grad():
            output = self._eval_model.forward(data, data_id=data_id, mode='compute_actor')
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _reset_eval(self, data_id: Optional[List[int]] = None) -> None:
        self._eval_model.reset(data_id=data_id)

    def _get_train_sample(self, data: list) -> Union[None, List[Any]]:
        r"""
        Overview:
            Get the train sample from trajectory

        Arguments:
            - data (:obj:`list`): The trajectory's cache

        Returns:
            - samples (:obj:`dict`): The training samples generated
        """
        return get_train_sample(data, self._unroll_len)

    def _monitor_vars_learn(self) -> List[str]:
        r"""
        Overview:
            Return variables' name if variables are to used in monitor.
        Returns:
            - vars (:obj:`List[str]`): Variables' name list.
        """
        return super()._monitor_vars_learn() + ['policy_loss', 'value_loss', 'entropy_loss']