File size: 20,541 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
from typing import List, Dict, Any, Tuple, Union
import torch
import copy
from ding.torch_utils import Adam, to_device
from ding.rl_utils import get_train_sample
from ding.rl_utils import dist_nstep_td_data, dist_nstep_td_error, get_nstep_return_data
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from .ddpg import DDPGPolicy
from .common_utils import default_preprocess_learn
import numpy as np
@POLICY_REGISTRY.register('d4pg')
class D4PGPolicy(DDPGPolicy):
"""
Overview:
Policy class of D4PG algorithm. D4PG is a variant of DDPG, which uses distributional critic. \
The distributional critic is implemented by using quantile regression. \
Paper link: https://arxiv.org/abs/1804.08617.
Property:
learn_mode, collect_mode, eval_mode
Config:
== ==================== ======== ============= ================================= =======================
ID Symbol Type Default Value Description Other(Shape)
== ==================== ======== ============= ================================= =======================
1 ``type`` str d4pg | RL policy register name, refer | this arg is optional,
| to registry ``POLICY_REGISTRY`` | a placeholder
2 ``cuda`` bool True | Whether to use cuda for network |
3 | ``random_`` int 25000 | Number of randomly collected | Default to 25000 for
| ``collect_size`` | training samples in replay | DDPG/TD3, 10000 for
| | buffer when training starts. | sac.
5 | ``learn.learning`` float 1e-3 | Learning rate for actor |
| ``_rate_actor`` | network(aka. policy). |
6 | ``learn.learning`` float 1e-3 | Learning rates for critic |
| ``_rate_critic`` | network (aka. Q-network). |
7 | ``learn.actor_`` int 1 | When critic network updates | Default 1
| ``update_freq`` | once, how many times will actor |
| | network update. |
8 | ``learn.noise`` bool False | Whether to add noise on target | Default False for
| | network's action. | D4PG.
| | | Target Policy Smoo-
| | | thing Regularization
| | | in TD3 paper.
9 | ``learn.-`` bool False | Determine whether to ignore | Use ignore_done only
| ``ignore_done`` | done flag. | in halfcheetah env.
10 | ``learn.-`` float 0.005 | Used for soft update of the | aka. Interpolation
| ``target_theta`` | target network. | factor in polyak aver
| | | aging for target
| | | networks.
11 | ``collect.-`` float 0.1 | Used for add noise during co- | Sample noise from dis
| ``noise_sigma`` | llection, through controlling | tribution, Gaussian
| | the sigma of distribution | process.
12 | ``model.v_min`` float -10 | Value of the smallest atom |
| | in the support set. |
13 | ``model.v_max`` float 10 | Value of the largest atom |
| | in the support set. |
14 | ``model.n_atom`` int 51 | Number of atoms in the support |
| | set of the value distribution. |
15 | ``nstep`` int 3, [1, 5] | N-step reward discount sum for |
| | target q_value estimation |
16 | ``priority`` bool True | Whether use priority(PER) | priority sample,
| update priority
== ==================== ======== ============= ================================= =======================
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='d4pg',
# (bool) Whether to use cuda for network.
cuda=False,
# (bool type) on_policy: Determine whether on-policy or off-policy.
# on-policy setting influences the behaviour of buffer.
# Default False in D4PG.
on_policy=False,
# (bool) Whether use priority(priority sample, IS weight, update priority)
# Default True in D4PG.
priority=True,
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=True,
# (int) Number of training samples(randomly collected) in replay buffer when training starts.
# Default 25000 in D4PG.
random_collect_size=25000,
# (int) N-step reward for target q_value estimation
nstep=3,
# (str) Action space type
action_space='continuous', # ['continuous', 'hybrid']
# (bool) Whether use batch normalization for reward
reward_batch_norm=False,
# (bool) Whether to need policy data in process transition
transition_with_policy_data=False,
model=dict(
# (float) Value of the smallest atom in the support set.
# Default to -10.0.
v_min=-10,
# (float) Value of the smallest atom in the support set.
# Default to 10.0.
v_max=10,
# (int) Number of atoms in the support set of the
# value distribution. Default to 51.
n_atom=51
),
learn=dict(
# How many updates(iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
# collect data -> update policy-> collect data -> ...
update_per_collect=1,
# (int) Minibatch size for gradient descent.
batch_size=256,
# Learning rates for actor network(aka. policy).
learning_rate_actor=1e-3,
# Learning rates for critic network(aka. Q-network).
learning_rate_critic=1e-3,
# (bool) Whether ignore done(usually for max step termination env. e.g. pendulum)
# Note: Gym wraps the MuJoCo envs by default with TimeLimit environment wrappers.
# These limit HalfCheetah, and several other MuJoCo envs, to max length of 1000.
# However, interaction with HalfCheetah always gets done with done is False,
# Since we inplace done==True with done==False to keep
# TD-error accurate computation(``gamma * (1 - done) * next_v + reward``),
# when the episode step is greater than max episode step.
ignore_done=False,
# (float type) target_theta: Used for soft update of the target network,
# aka. Interpolation factor in polyak averaging for target networks.
# Default to 0.005.
target_theta=0.005,
# (float) discount factor for the discounted sum of rewards, aka. gamma.
discount_factor=0.99,
# (int) When critic network updates once, how many times will actor network update.
actor_update_freq=1,
# (bool) Whether to add noise on target network's action.
# Target Policy Smoothing Regularization in original TD3 paper.
noise=False,
),
collect=dict(
# (int) Only one of [n_sample, n_episode] should be set
# n_sample=1,
# (int) Cut trajectories into pieces with length "unroll_len".
unroll_len=1,
# It is a must to add noise during collection. So here omits "noise" and only set "noise_sigma".
noise_sigma=0.1,
),
eval=dict(evaluator=dict(eval_freq=1000, ), ),
other=dict(
replay_buffer=dict(
# (int) Maximum size of replay buffer.
replay_buffer_size=1000000,
),
),
)
def default_model(self) -> Tuple[str, List[str]]:
"""
Overview:
Return the default neural network model class for D4PGPolicy. ``__init__`` method will \
automatically call this method to get the default model setting and create model.
Returns:
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.
"""
return 'qac_dist', ['ding.model.template.qac_dist']
def _init_learn(self) -> None:
"""
Overview:
Initialize the D4PG policy's learning mode, which involves setting up key components \
specific to the D4PG algorithm. This includes creating separate optimizers for the actor \
and critic networks, a distinctive trait of D4PG's actor-critic approach, and configuring \
algorithm-specific parameters such as v_min, v_max, and n_atom for the distributional aspect \
of the critic. Additionally, the method sets up the target model with momentum-based updates, \
crucial for stabilizing learning, and optionally integrates noise into the target model for \
effective exploration. This method is invoked during the '__init__' if 'learn' is specified \
in 'enable_field'.
.. note::
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
and ``_load_state_dict_learn`` methods.
.. note::
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.
.. note::
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
"""
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
# actor and critic optimizer
self._optimizer_actor = Adam(
self._model.actor.parameters(),
lr=self._cfg.learn.learning_rate_actor,
)
self._optimizer_critic = Adam(
self._model.critic.parameters(),
lr=self._cfg.learn.learning_rate_critic,
)
self._reward_batch_norm = self._cfg.reward_batch_norm
self._gamma = self._cfg.learn.discount_factor
self._nstep = self._cfg.nstep
self._actor_update_freq = self._cfg.learn.actor_update_freq
# main and target models
self._target_model = copy.deepcopy(self._model)
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='momentum',
update_kwargs={'theta': self._cfg.learn.target_theta}
)
if self._cfg.learn.noise:
self._target_model = model_wrap(
self._target_model,
wrapper_name='action_noise',
noise_type='gauss',
noise_kwargs={
'mu': 0.0,
'sigma': self._cfg.learn.noise_sigma
},
noise_range=self._cfg.learn.noise_range
)
self._learn_model = model_wrap(self._model, wrapper_name='base')
self._learn_model.reset()
self._target_model.reset()
self._v_max = self._cfg.model.v_max
self._v_min = self._cfg.model.v_min
self._n_atom = self._cfg.model.n_atom
self._forward_learn_cnt = 0 # count iterations
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Overview:
Policy forward function of learn mode (training policy and updating parameters). Forward means \
that the policy inputs some training batch data from the replay buffer and then returns the output \
result, including various training information such as different loss, actor and critic lr.
Arguments:
- data (:obj:`dict`): Input data used for policy forward, including the \
collected training samples from replay buffer. For each element in dict, the key of the \
dict is the name of data items and the value is the corresponding data. Usually, the value is \
torch.Tensor or np.ndarray or there dict/list combinations. In the ``_forward_learn`` method, data \
often need to first be stacked in the batch dimension by some utility functions such as \
``default_preprocess_learn``. \
For D4PG, each element in list is a dict containing at least the following keys: ``obs``, \
``action``, ``reward``, ``next_obs``. Sometimes, it also contains other keys such as ``weight``.
Returns:
- info_dict (:obj:`Dict[str, Any]`): The output result dict of forward learn, containing at \
least the "cur_lr_actor", "cur_lr_critic", "different losses", "q_value", "action", "priority", \
keys. Additionally, loss_dict also contains other keys, which are mainly used for monitoring and \
debugging. "q_value_dict" is used to record the q_value statistics.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
.. note::
For more detailed examples, please refer to our unittest for D4PGPolicy: ``ding.policy.tests.test_d4pg``.
"""
loss_dict = {}
data = default_preprocess_learn(
data,
use_priority=self._cfg.priority,
use_priority_IS_weight=self._cfg.priority_IS_weight,
ignore_done=self._cfg.learn.ignore_done,
use_nstep=True
)
if self._cuda:
data = to_device(data, self._device)
# ====================
# critic learn forward
# ====================
self._learn_model.train()
self._target_model.train()
next_obs = data.get('next_obs')
reward = data.get('reward')
if self._reward_batch_norm:
reward = (reward - reward.mean()) / (reward.std() + 1e-8)
# current q value
q_value = self._learn_model.forward(data, mode='compute_critic')
q_value_dict = {}
q_dist = q_value['distribution']
q_value_dict['q_value'] = q_value['q_value'].mean()
# target q value.
with torch.no_grad():
next_action = self._target_model.forward(next_obs, mode='compute_actor')['action']
next_data = {'obs': next_obs, 'action': next_action}
target_q_dist = self._target_model.forward(next_data, mode='compute_critic')['distribution']
value_gamma = data.get('value_gamma')
action_index = np.zeros(next_action.shape[0])
# since the action is a scalar value, action index is set to 0 which is the only possible choice
td_data = dist_nstep_td_data(
q_dist, target_q_dist, action_index, action_index, reward, data['done'], data['weight']
)
critic_loss, td_error_per_sample = dist_nstep_td_error(
td_data, self._gamma, self._v_min, self._v_max, self._n_atom, nstep=self._nstep, value_gamma=value_gamma
)
loss_dict['critic_loss'] = critic_loss
# ================
# critic update
# ================
self._optimizer_critic.zero_grad()
for k in loss_dict:
if 'critic' in k:
loss_dict[k].backward()
self._optimizer_critic.step()
# ===============================
# actor learn forward and update
# ===============================
# actor updates every ``self._actor_update_freq`` iters
if (self._forward_learn_cnt + 1) % self._actor_update_freq == 0:
actor_data = self._learn_model.forward(data['obs'], mode='compute_actor')
actor_data['obs'] = data['obs']
actor_loss = -self._learn_model.forward(actor_data, mode='compute_critic')['q_value'].mean()
loss_dict['actor_loss'] = actor_loss
# actor update
self._optimizer_actor.zero_grad()
actor_loss.backward()
self._optimizer_actor.step()
# =============
# after update
# =============
loss_dict['total_loss'] = sum(loss_dict.values())
self._forward_learn_cnt += 1
self._target_model.update(self._learn_model.state_dict())
return {
'cur_lr_actor': self._optimizer_actor.defaults['lr'],
'cur_lr_critic': self._optimizer_critic.defaults['lr'],
'q_value': q_value['q_value'].mean().item(),
'action': data['action'].mean().item(),
'priority': td_error_per_sample.abs().tolist(),
**loss_dict,
**q_value_dict,
}
def _get_train_sample(self, traj: list) -> Union[None, List[Any]]:
"""
Overview:
Process the data of a given trajectory (transitions, a list of transition) into a list of sample that \
can be used for training directly. The sample is generated by the following steps: \
1. Calculate the nstep return data. \
2. Sample the data from the nstep return data. \
3. Stack the data in the batch dimension. \
4. Return the sample data. \
For D4PG, the nstep return data is generated by ``get_nstep_return_data`` and the sample data is \
generated by ``get_train_sample``.
Arguments:
- traj (:obj:`list`): The trajectory data (a list of transition), each element is \
the same format as the return value of ``self._process_transition`` method.
Returns:
- samples (:obj:`dict`): The training samples generated, including at least the following keys: \
``'obs'``, ``'next_obs'``, ``'action'``, ``'reward'``, ``'done'``, ``'weight'``, ``'value_gamma'``. \
For more information, please refer to the ``get_train_sample`` method.
"""
data = get_nstep_return_data(traj, self._nstep, gamma=self._gamma)
return get_train_sample(data, self._unroll_len)
def _monitor_vars_learn(self) -> List[str]:
"""
Overview:
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
as text logger, tensorboard logger, will use these keys to save the corresponding data.
Returns:
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
"""
ret = ['cur_lr_actor', 'cur_lr_critic', 'critic_loss', 'actor_loss', 'total_loss', 'q_value', 'action']
return ret
|