File size: 20,541 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
from typing import List, Dict, Any, Tuple, Union
import torch
import copy

from ding.torch_utils import Adam, to_device
from ding.rl_utils import get_train_sample
from ding.rl_utils import dist_nstep_td_data, dist_nstep_td_error, get_nstep_return_data
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from .ddpg import DDPGPolicy
from .common_utils import default_preprocess_learn
import numpy as np


@POLICY_REGISTRY.register('d4pg')
class D4PGPolicy(DDPGPolicy):
    """
    Overview:
        Policy class of D4PG algorithm. D4PG is a variant of DDPG, which uses distributional critic. \
        The distributional critic is implemented by using quantile regression. \
        Paper link: https://arxiv.org/abs/1804.08617.

    Property:
        learn_mode, collect_mode, eval_mode
    Config:
        == ====================  ========    =============  =================================   =======================
        ID Symbol                Type        Default Value  Description                         Other(Shape)
        == ====================  ========    =============  =================================   =======================
        1  ``type``              str         d4pg           | RL policy register name, refer    | this arg is optional,
                                                            | to registry ``POLICY_REGISTRY``   | a placeholder
        2  ``cuda``              bool        True           | Whether to use cuda for network   |
        3  | ``random_``         int         25000          | Number of randomly collected      | Default to 25000 for
           | ``collect_size``                               | training samples in replay        | DDPG/TD3, 10000 for
           |                                                | buffer when training starts.      | sac.
        5  | ``learn.learning``  float       1e-3           | Learning rate for actor           |
           | ``_rate_actor``                                | network(aka. policy).             |
        6  | ``learn.learning``  float       1e-3           | Learning rates for critic         |
           | ``_rate_critic``                               | network (aka. Q-network).         |
        7  | ``learn.actor_``    int         1              | When critic network updates       | Default 1
           | ``update_freq``                                | once, how many times will actor   |
           |                                                | network update.                   |
        8  | ``learn.noise``     bool        False          | Whether to add noise on target    | Default False for
           |                                                | network's action.                 | D4PG.
           |                                                |                                   | Target Policy Smoo-
           |                                                |                                   | thing Regularization
           |                                                |                                   | in TD3 paper.
        9  | ``learn.-``         bool        False          | Determine whether to ignore       | Use ignore_done only
           | ``ignore_done``                                | done flag.                        | in halfcheetah env.
        10 | ``learn.-``         float       0.005          | Used for soft update of the       | aka. Interpolation
           | ``target_theta``                               | target network.                   | factor in polyak aver
           |                                                |                                   | aging for target
           |                                                |                                   | networks.
        11 | ``collect.-``       float       0.1            | Used for add noise during co-     | Sample noise from dis
           | ``noise_sigma``                                | llection, through controlling     | tribution, Gaussian
           |                                                | the sigma of distribution         | process.
        12 | ``model.v_min``      float      -10            | Value of the smallest atom        |
           |                                                | in the support set.               |
        13 | ``model.v_max``      float      10             | Value of the largest atom         |
           |                                                | in the support set.               |
        14 | ``model.n_atom``     int        51             | Number of atoms in the support    |
           |                                                | set of the value distribution.    |
        15 | ``nstep``            int        3, [1, 5]      | N-step reward discount sum for    |
           |                                                | target q_value estimation         |
        16 | ``priority``         bool       True           | Whether use priority(PER)         | priority sample,
                                                                                                | update priority
        == ====================  ========    =============  =================================   =======================
    """

    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='d4pg',
        # (bool) Whether to use cuda for network.
        cuda=False,
        # (bool type) on_policy: Determine whether on-policy or off-policy.
        # on-policy setting influences the behaviour of buffer.
        # Default False in D4PG.
        on_policy=False,
        # (bool) Whether use priority(priority sample, IS weight, update priority)
        # Default True in D4PG.
        priority=True,
        # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
        priority_IS_weight=True,
        # (int) Number of training samples(randomly collected) in replay buffer when training starts.
        # Default 25000 in D4PG.
        random_collect_size=25000,
        # (int) N-step reward for target q_value estimation
        nstep=3,
        # (str) Action space type
        action_space='continuous',  # ['continuous', 'hybrid']
        # (bool) Whether use batch normalization for reward
        reward_batch_norm=False,
        # (bool) Whether to need policy data in process transition
        transition_with_policy_data=False,
        model=dict(
            # (float) Value of the smallest atom in the support set.
            # Default to -10.0.
            v_min=-10,
            # (float) Value of the smallest atom in the support set.
            # Default to 10.0.
            v_max=10,
            # (int) Number of atoms in the support set of the
            # value distribution. Default to 51.
            n_atom=51
        ),
        learn=dict(

            # How many updates(iterations) to train after collector's one collection.
            # Bigger "update_per_collect" means bigger off-policy.
            # collect data -> update policy-> collect data -> ...
            update_per_collect=1,
            # (int) Minibatch size for gradient descent.
            batch_size=256,
            # Learning rates for actor network(aka. policy).
            learning_rate_actor=1e-3,
            # Learning rates for critic network(aka. Q-network).
            learning_rate_critic=1e-3,
            # (bool) Whether ignore done(usually for max step termination env. e.g. pendulum)
            # Note: Gym wraps the MuJoCo envs by default with TimeLimit environment wrappers.
            # These limit HalfCheetah, and several other MuJoCo envs, to max length of 1000.
            # However, interaction with HalfCheetah always gets done with done is False,
            # Since we inplace done==True with done==False to keep
            # TD-error accurate computation(``gamma * (1 - done) * next_v + reward``),
            # when the episode step is greater than max episode step.
            ignore_done=False,
            # (float type) target_theta: Used for soft update of the target network,
            # aka. Interpolation factor in polyak averaging for target networks.
            # Default to 0.005.
            target_theta=0.005,
            # (float) discount factor for the discounted sum of rewards, aka. gamma.
            discount_factor=0.99,
            # (int) When critic network updates once, how many times will actor network update.
            actor_update_freq=1,
            # (bool) Whether to add noise on target network's action.
            # Target Policy Smoothing Regularization in original TD3 paper.
            noise=False,
        ),
        collect=dict(
            # (int) Only one of [n_sample, n_episode] should be set
            # n_sample=1,
            # (int) Cut trajectories into pieces with length "unroll_len".
            unroll_len=1,
            # It is a must to add noise during collection. So here omits "noise" and only set "noise_sigma".
            noise_sigma=0.1,
        ),
        eval=dict(evaluator=dict(eval_freq=1000, ), ),
        other=dict(
            replay_buffer=dict(
                # (int) Maximum size of replay buffer.
                replay_buffer_size=1000000,
            ),
        ),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        """
        Overview:
            Return the default neural network model class for D4PGPolicy. ``__init__`` method will \
            automatically call this method to get the default model setting and create model.

        Returns:
            - model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.
        """
        return 'qac_dist', ['ding.model.template.qac_dist']

    def _init_learn(self) -> None:
        """
        Overview:
            Initialize the D4PG policy's learning mode, which involves setting up key components \
            specific to the D4PG algorithm. This includes creating separate optimizers for the actor \
            and critic networks, a distinctive trait of D4PG's actor-critic approach, and configuring \
            algorithm-specific parameters such as v_min, v_max, and n_atom for the distributional aspect \
            of the critic. Additionally, the method sets up the target model with momentum-based updates, \
            crucial for stabilizing learning, and optionally integrates noise into the target model for \
            effective exploration. This method is invoked during the '__init__' if 'learn' is specified \
            in 'enable_field'.

        .. note::
            For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
            and ``_load_state_dict_learn`` methods.

        .. note::
            For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.

        .. note::
            If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
            with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
        """
        self._priority = self._cfg.priority
        self._priority_IS_weight = self._cfg.priority_IS_weight
        # actor and critic optimizer
        self._optimizer_actor = Adam(
            self._model.actor.parameters(),
            lr=self._cfg.learn.learning_rate_actor,
        )
        self._optimizer_critic = Adam(
            self._model.critic.parameters(),
            lr=self._cfg.learn.learning_rate_critic,
        )
        self._reward_batch_norm = self._cfg.reward_batch_norm

        self._gamma = self._cfg.learn.discount_factor
        self._nstep = self._cfg.nstep
        self._actor_update_freq = self._cfg.learn.actor_update_freq

        # main and target models
        self._target_model = copy.deepcopy(self._model)
        self._target_model = model_wrap(
            self._target_model,
            wrapper_name='target',
            update_type='momentum',
            update_kwargs={'theta': self._cfg.learn.target_theta}
        )
        if self._cfg.learn.noise:
            self._target_model = model_wrap(
                self._target_model,
                wrapper_name='action_noise',
                noise_type='gauss',
                noise_kwargs={
                    'mu': 0.0,
                    'sigma': self._cfg.learn.noise_sigma
                },
                noise_range=self._cfg.learn.noise_range
            )
        self._learn_model = model_wrap(self._model, wrapper_name='base')
        self._learn_model.reset()
        self._target_model.reset()

        self._v_max = self._cfg.model.v_max
        self._v_min = self._cfg.model.v_min
        self._n_atom = self._cfg.model.n_atom

        self._forward_learn_cnt = 0  # count iterations

    def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
        """
        Overview:
            Policy forward function of learn mode (training policy and updating parameters). Forward means \
            that the policy inputs some training batch data from the replay buffer and then returns the output \
            result, including various training information such as different loss, actor and critic lr.
        Arguments:
            - data (:obj:`dict`): Input data used for policy forward, including the \
                collected training samples from replay buffer. For each element in dict, the key of the \
                dict is the name of data items and the value is the corresponding data. Usually, the value is \
                torch.Tensor or np.ndarray or there dict/list combinations. In the ``_forward_learn`` method, data \
                often need to first be stacked in the batch dimension by some utility functions such as \
                ``default_preprocess_learn``. \
                For D4PG, each element in list is a dict containing at least the following keys: ``obs``, \
                ``action``, ``reward``, ``next_obs``. Sometimes, it also contains other keys such as ``weight``.

        Returns:
            - info_dict (:obj:`Dict[str, Any]`): The output result dict of forward learn, containing at \
                least the "cur_lr_actor", "cur_lr_critic", "different losses", "q_value", "action", "priority", \
                keys. Additionally, loss_dict also contains other keys, which are mainly used for monitoring and \
                debugging. "q_value_dict" is used to record the q_value statistics.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for D4PGPolicy: ``ding.policy.tests.test_d4pg``.
        """
        loss_dict = {}
        data = default_preprocess_learn(
            data,
            use_priority=self._cfg.priority,
            use_priority_IS_weight=self._cfg.priority_IS_weight,
            ignore_done=self._cfg.learn.ignore_done,
            use_nstep=True
        )
        if self._cuda:
            data = to_device(data, self._device)
        # ====================
        # critic learn forward
        # ====================
        self._learn_model.train()
        self._target_model.train()
        next_obs = data.get('next_obs')
        reward = data.get('reward')
        if self._reward_batch_norm:
            reward = (reward - reward.mean()) / (reward.std() + 1e-8)
        # current q value
        q_value = self._learn_model.forward(data, mode='compute_critic')
        q_value_dict = {}
        q_dist = q_value['distribution']
        q_value_dict['q_value'] = q_value['q_value'].mean()
        # target q value.
        with torch.no_grad():
            next_action = self._target_model.forward(next_obs, mode='compute_actor')['action']
            next_data = {'obs': next_obs, 'action': next_action}
            target_q_dist = self._target_model.forward(next_data, mode='compute_critic')['distribution']

        value_gamma = data.get('value_gamma')
        action_index = np.zeros(next_action.shape[0])
        # since the action is a scalar value, action index is set to 0 which is the only possible choice
        td_data = dist_nstep_td_data(
            q_dist, target_q_dist, action_index, action_index, reward, data['done'], data['weight']
        )
        critic_loss, td_error_per_sample = dist_nstep_td_error(
            td_data, self._gamma, self._v_min, self._v_max, self._n_atom, nstep=self._nstep, value_gamma=value_gamma
        )
        loss_dict['critic_loss'] = critic_loss
        # ================
        # critic update
        # ================
        self._optimizer_critic.zero_grad()
        for k in loss_dict:
            if 'critic' in k:
                loss_dict[k].backward()
        self._optimizer_critic.step()
        # ===============================
        # actor learn forward and update
        # ===============================
        # actor updates every ``self._actor_update_freq`` iters
        if (self._forward_learn_cnt + 1) % self._actor_update_freq == 0:
            actor_data = self._learn_model.forward(data['obs'], mode='compute_actor')
            actor_data['obs'] = data['obs']
            actor_loss = -self._learn_model.forward(actor_data, mode='compute_critic')['q_value'].mean()

            loss_dict['actor_loss'] = actor_loss
            # actor update
            self._optimizer_actor.zero_grad()
            actor_loss.backward()
            self._optimizer_actor.step()
        # =============
        # after update
        # =============
        loss_dict['total_loss'] = sum(loss_dict.values())
        self._forward_learn_cnt += 1
        self._target_model.update(self._learn_model.state_dict())
        return {
            'cur_lr_actor': self._optimizer_actor.defaults['lr'],
            'cur_lr_critic': self._optimizer_critic.defaults['lr'],
            'q_value': q_value['q_value'].mean().item(),
            'action': data['action'].mean().item(),
            'priority': td_error_per_sample.abs().tolist(),
            **loss_dict,
            **q_value_dict,
        }

    def _get_train_sample(self, traj: list) -> Union[None, List[Any]]:
        """
        Overview:
            Process the data of a given trajectory (transitions, a list of transition) into a list of sample that \
            can be used for training directly. The sample is generated by the following steps: \
            1. Calculate the nstep return data. \
            2. Sample the data from the nstep return data. \
            3. Stack the data in the batch dimension. \
            4. Return the sample data. \
            For D4PG, the nstep return data is generated by ``get_nstep_return_data`` and the sample data is \
            generated by ``get_train_sample``.

        Arguments:
            - traj (:obj:`list`): The trajectory data (a list of transition), each element is \
            the same format as the return value of ``self._process_transition`` method.

        Returns:
            - samples (:obj:`dict`): The training samples generated, including at least the following keys: \
            ``'obs'``, ``'next_obs'``, ``'action'``, ``'reward'``, ``'done'``, ``'weight'``, ``'value_gamma'``. \
            For more information, please refer to the ``get_train_sample`` method.
        """
        data = get_nstep_return_data(traj, self._nstep, gamma=self._gamma)
        return get_train_sample(data, self._unroll_len)

    def _monitor_vars_learn(self) -> List[str]:
        """
        Overview:
            Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
            as text logger, tensorboard logger, will use these keys to save the corresponding data.
        Returns:
            - necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
        """
        ret = ['cur_lr_actor', 'cur_lr_critic', 'critic_loss', 'actor_loss', 'total_loss', 'q_value', 'action']
        return ret