File size: 48,024 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
from typing import List, Dict, Any, Tuple
from collections import namedtuple
import copy
import torch

from ding.torch_utils import Adam, to_device, ContrastiveLoss
from ding.rl_utils import q_nstep_td_data, q_nstep_td_error, get_nstep_return_data, get_train_sample
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate

from .base_policy import Policy
from .common_utils import default_preprocess_learn


@POLICY_REGISTRY.register('dqn')
class DQNPolicy(Policy):
    """
    Overview:
        Policy class of DQN algorithm, extended by Double DQN/Dueling DQN/PER/multi-step TD.

    Config:
        == ===================== ======== ============== ======================================= =======================
        ID Symbol                Type     Default Value  Description                              Other(Shape)
        == ===================== ======== ============== ======================================= =======================
        1  ``type``              str      dqn            | RL policy register name, refer to     | This arg is optional,
                                                         | registry ``POLICY_REGISTRY``          | a placeholder
        2  ``cuda``              bool     False          | Whether to use cuda for network       | This arg can be diff-
                                                                                                 | erent from modes
        3  ``on_policy``         bool     False          | Whether the RL algorithm is on-policy
                                                         | or off-policy
        4  ``priority``          bool     False          | Whether use priority(PER)             | Priority sample,
                                                                                                 | update priority
        5  | ``priority_IS``     bool     False          | Whether use Importance Sampling
           | ``_weight``                                 | Weight to correct biased update. If
                                                         | True, priority must be True.
        6  | ``discount_``       float    0.97,          | Reward's future discount factor, aka. | May be 1 when sparse
           | ``factor``                   [0.95, 0.999]  | gamma                                 | reward env
        7  ``nstep``             int      1,             | N-step reward discount sum for target
                                          [3, 5]         | q_value estimation
        8  | ``model.dueling``   bool     True           | dueling head architecture
        9  | ``model.encoder``   list     [32, 64,       | Sequence of ``hidden_size`` of        | default kernel_size
           | ``_hidden``         (int)    64, 128]       | subsequent conv layers and the        | is [8, 4, 3]
           | ``_size_list``                              | final dense layer.                    | default stride is
                                                                                                 | [4, 2 ,1]
        10 | ``model.dropout``   float    None           | Dropout rate for dropout layers.      | [0,1]
                                                                                                 | If set to ``None``
                                                                                                 | means no dropout
        11 | ``learn.update``    int      3              | How many updates(iterations) to train | This args can be vary
           | ``per_collect``                             | after collector's one collection.     | from envs. Bigger val
                                                         | Only valid in serial training         | means more off-policy
        12 | ``learn.batch_``    int      64             | The number of samples of an iteration
           | ``size``
        13 | ``learn.learning``  float    0.001          | Gradient step length of an iteration.
           | ``_rate``
        14 | ``learn.target_``   int      100            | Frequence of target network update.   | Hard(assign) update
           | ``update_freq``
        15 | ``learn.target_``   float    0.005          | Frequence of target network update.   | Soft(assign) update
           | ``theta``                                   | Only one of [target_update_freq,
           |                                             | target_theta] should be set
        16 | ``learn.ignore_``   bool     False          | Whether ignore done for target value  | Enable it for some
           | ``done``                                    | calculation.                          | fake termination env
        17 ``collect.n_sample``  int      [8, 128]       | The number of training samples of a   | It varies from
                                                         | call of collector.                    | different envs
        18 ``collect.n_episode`` int      8              | The number of training episodes of a  | only one of [n_sample
                                                         | call of collector                     | ,n_episode] should
                                                         |                                       | be set
        19 | ``collect.unroll``  int      1              | unroll length of an iteration         | In RNN, unroll_len>1
           | ``_len``
        20 | ``other.eps.type``  str      exp            | exploration rate decay type           | Support ['exp',
                                                                                                 | 'linear'].
        21 | ``other.eps.``      float    0.95           | start value of exploration rate       | [0,1]
           | ``start``
        22 | ``other.eps.``      float    0.1            | end value of exploration rate         | [0,1]
           | ``end``
        23 | ``other.eps.``      int      10000          | decay length of exploration           | greater than 0. set
           | ``decay``                                                                           | decay=10000 means
                                                                                                 | the exploration rate
                                                                                                 | decay from start
                                                                                                 | value to end value
                                                                                                 | during decay length.
        == ===================== ======== ============== ======================================= =======================
    """

    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='dqn',
        # (bool) Whether to use cuda in policy.
        cuda=False,
        # (bool) Whether learning policy is the same as collecting data policy(on-policy).
        on_policy=False,
        # (bool) Whether to enable priority experience sample.
        priority=False,
        # (bool) Whether to use Importance Sampling Weight to correct biased update. If True, priority must be True.
        priority_IS_weight=False,
        # (float) Discount factor(gamma) for returns.
        discount_factor=0.97,
        # (int) The number of step for calculating target q_value.
        nstep=1,
        model=dict(
            # (list(int)) Sequence of ``hidden_size`` of subsequent conv layers and the final dense layer.
            encoder_hidden_size_list=[128, 128, 64],
        ),
        # learn_mode config
        learn=dict(
            # (int) How many updates(iterations) to train after collector's one collection.
            # Bigger "update_per_collect" means bigger off-policy.
            # collect data -> update policy-> collect data -> ...
            update_per_collect=3,
            # (int) How many samples in a training batch.
            batch_size=64,
            # (float) The step size of gradient descent.
            learning_rate=0.001,
            # (int) Frequence of target network update.
            # Only one of [target_update_freq, target_theta] should be set.
            target_update_freq=100,
            # (float) : Used for soft update of the target network.
            # aka. Interpolation factor in EMA update for target network.
            # Only one of [target_update_freq, target_theta] should be set.
            target_theta=0.005,
            # (bool) Whether ignore done(usually for max step termination env).
            # Note: Gym wraps the MuJoCo envs by default with TimeLimit environment wrappers.
            # These limit HalfCheetah, and several other MuJoCo envs, to max length of 1000.
            # However, interaction with HalfCheetah always gets done with done is False,
            # Since we inplace done==True with done==False to keep
            # TD-error accurate computation(``gamma * (1 - done) * next_v + reward``),
            # when the episode step is greater than max episode step.
            ignore_done=False,
        ),
        # collect_mode config
        collect=dict(
            # (int) How many training samples collected in one collection procedure.
            # Only one of [n_sample, n_episode] shoule be set.
            n_sample=8,
            # (int) Split episodes or trajectories into pieces with length `unroll_len`.
            unroll_len=1,
        ),
        eval=dict(),  # for compability
        # other config
        other=dict(
            # Epsilon greedy with decay.
            eps=dict(
                # (str) Decay type. Support ['exp', 'linear'].
                type='exp',
                # (float) Epsilon start value.
                start=0.95,
                # (float) Epsilon end value.
                end=0.1,
                # (int) Decay length(env step).
                decay=10000,
            ),
            replay_buffer=dict(
                # (int) Maximum size of replay buffer. Usually, larger buffer size is better.
                replay_buffer_size=10000,
            ),
        ),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        """
        Overview:
            Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \
            automatically call this method to get the default model setting and create model.
        Returns:
            - model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.

        .. note::
            The user can define and use customized network model but must obey the same inferface definition indicated \
            by import_names path. For example about DQN, its registered name is ``dqn`` and the import_names is \
            ``ding.model.template.q_learning``.
        """
        return 'dqn', ['ding.model.template.q_learning']

    def _init_learn(self) -> None:
        """
        Overview:
            Initialize the learn mode of policy, including related attributes and modules. For DQN, it mainly contains \
            optimizer, algorithm-specific arguments such as nstep and gamma, main and target model.
            This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.

        .. note::
            For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
            and ``_load_state_dict_learn`` methods.

        .. note::
            For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.

        .. note::
            If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
            with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
        """
        self._priority = self._cfg.priority
        self._priority_IS_weight = self._cfg.priority_IS_weight
        # Optimizer
        self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate)

        self._gamma = self._cfg.discount_factor
        self._nstep = self._cfg.nstep

        # use model_wrapper for specialized demands of different modes
        self._target_model = copy.deepcopy(self._model)
        if 'target_update_freq' in self._cfg.learn:
            self._target_model = model_wrap(
                self._target_model,
                wrapper_name='target',
                update_type='assign',
                update_kwargs={'freq': self._cfg.learn.target_update_freq}
            )
        elif 'target_theta' in self._cfg.learn:
            self._target_model = model_wrap(
                self._target_model,
                wrapper_name='target',
                update_type='momentum',
                update_kwargs={'theta': self._cfg.learn.target_theta}
            )
        else:
            raise RuntimeError("DQN needs target network, please either indicate target_update_freq or target_theta")
        self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample')
        self._learn_model.reset()
        self._target_model.reset()

    def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
        """
        Overview:
            Policy forward function of learn mode (training policy and updating parameters). Forward means \
            that the policy inputs some training batch data from the replay buffer and then returns the output \
            result, including various training information such as loss, q value, priority.
        Arguments:
            - data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \
                training samples. For each element in list, the key of the dict is the name of data items and the \
                value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \
                combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \
                dimension by some utility functions such as ``default_preprocess_learn``. \
                For DQN, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \
                ``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as ``weight`` \
                and ``value_gamma``.
        Returns:
            - info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \
                recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \
                detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for DQNPolicy: ``ding.policy.tests.test_dqn``.
        """
        # Data preprocessing operations, such as stack data, cpu to cuda device
        data = default_preprocess_learn(
            data,
            use_priority=self._priority,
            use_priority_IS_weight=self._cfg.priority_IS_weight,
            ignore_done=self._cfg.learn.ignore_done,
            use_nstep=True
        )
        if self._cuda:
            data = to_device(data, self._device)
        # Q-learning forward
        self._learn_model.train()
        self._target_model.train()
        # Current q value (main model)
        q_value = self._learn_model.forward(data['obs'])['logit']
        # Target q value
        with torch.no_grad():
            target_q_value = self._target_model.forward(data['next_obs'])['logit']
            # Max q value action (main model), i.e. Double DQN
            target_q_action = self._learn_model.forward(data['next_obs'])['action']

        data_n = q_nstep_td_data(
            q_value, target_q_value, data['action'], target_q_action, data['reward'], data['done'], data['weight']
        )
        value_gamma = data.get('value_gamma')
        loss, td_error_per_sample = q_nstep_td_error(data_n, self._gamma, nstep=self._nstep, value_gamma=value_gamma)

        # Update network parameters
        self._optimizer.zero_grad()
        loss.backward()
        if self._cfg.multi_gpu:
            self.sync_gradients(self._learn_model)
        self._optimizer.step()

        # Postprocessing operations, such as updating target model, return logged values and priority.
        self._target_model.update(self._learn_model.state_dict())
        return {
            'cur_lr': self._optimizer.defaults['lr'],
            'total_loss': loss.item(),
            'q_value': q_value.mean().item(),
            'target_q_value': target_q_value.mean().item(),
            'priority': td_error_per_sample.abs().tolist(),
            # Only discrete action satisfying len(data['action'])==1 can return this and draw histogram on tensorboard.
            # '[histogram]action_distribution': data['action'],
        }

    def _monitor_vars_learn(self) -> List[str]:
        """
        Overview:
            Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
            as text logger, tensorboard logger, will use these keys to save the corresponding data.
        Returns:
            - necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
        """
        return ['cur_lr', 'total_loss', 'q_value', 'target_q_value']

    def _state_dict_learn(self) -> Dict[str, Any]:
        """
        Overview:
            Return the state_dict of learn mode, usually including model, target_model and optimizer.
        Returns:
            - state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn state, for saving and restoring.
        """
        return {
            'model': self._learn_model.state_dict(),
            'target_model': self._target_model.state_dict(),
            'optimizer': self._optimizer.state_dict(),
        }

    def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
        """
        Overview:
            Load the state_dict variable into policy learn mode.
        Arguments:
            - state_dict (:obj:`Dict[str, Any]`): The dict of policy learn state saved before.

        .. tip::
            If you want to only load some parts of model, you can simply set the ``strict`` argument in \
            load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \
            complicated operation.
        """
        self._learn_model.load_state_dict(state_dict['model'])
        self._target_model.load_state_dict(state_dict['target_model'])
        self._optimizer.load_state_dict(state_dict['optimizer'])

    def _init_collect(self) -> None:
        """
        Overview:
            Initialize the collect mode of policy, including related attributes and modules. For DQN, it contains the \
            collect_model to balance the exploration and exploitation with epsilon-greedy sample mechanism, and other \
            algorithm-specific arguments such as unroll_len and nstep.
            This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``.

        .. note::
            If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \
            with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``.

        .. tip::
            Some variables need to initialize independently in different modes, such as gamma and nstep in DQN. This \
            design is for the convenience of parallel execution of different policy modes.
        """
        self._unroll_len = self._cfg.collect.unroll_len
        self._gamma = self._cfg.discount_factor  # necessary for parallel
        self._nstep = self._cfg.nstep  # necessary for parallel
        self._collect_model = model_wrap(self._model, wrapper_name='eps_greedy_sample')
        self._collect_model.reset()

    def _forward_collect(self, data: Dict[int, Any], eps: float) -> Dict[int, Any]:
        """
        Overview:
            Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \
            that the policy gets some necessary data (mainly observation) from the envs and then returns the output \
            data, such as the action to interact with the envs. Besides, this policy also needs ``eps`` argument for \
            exploration, i.e., classic epsilon-greedy exploration strategy.
        Arguments:
            - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
                key of the dict is environment id and the value is the corresponding data of the env.
            - eps (:obj:`float`): The epsilon value for exploration.
        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \
                other necessary data for learn mode defined in ``self._process_transition`` method. The key of the \
                dict is the same as the input data, i.e. environment id.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for DQNPolicy: ``ding.policy.tests.test_dqn``.
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._collect_model.eval()
        with torch.no_grad():
            output = self._collect_model.forward(data, eps=eps)
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """
        Overview:
            For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \
            can be used for training directly. In DQN with nstep TD, a train sample is a processed transition. \
            This method is usually used in collectors to execute necessary \
            RL data preprocessing before training, which can help learner amortize revelant time consumption. \
            In addition, you can also implement this method as an identity function and do the data processing \
            in ``self._forward_learn`` method.
        Arguments:
            - transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \
                in the same format as the return value of ``self._process_transition`` method.
        Returns:
            - samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is similar in format \
                to input transitions, but may contain more data for training, such as nstep reward and target obs.
        """
        transitions = get_nstep_return_data(transitions, self._nstep, gamma=self._gamma)
        return get_train_sample(transitions, self._unroll_len)

    def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor],
                            timestep: namedtuple) -> Dict[str, torch.Tensor]:
        """
        Overview:
            Process and pack one timestep transition data into a dict, which can be directly used for training and \
            saved in replay buffer. For DQN, it contains obs, next_obs, action, reward, done.
        Arguments:
            - obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari.
            - policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \
                as input. For DQN, it contains the action and the logit (q_value) of the action.
            - timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \
                except all the elements have been transformed into tensor data. Usually, it contains the next obs, \
                reward, done, info, etc.
        Returns:
            - transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep.
        """
        transition = {
            'obs': obs,
            'next_obs': timestep.obs,
            'action': policy_output['action'],
            'reward': timestep.reward,
            'done': timestep.done,
        }
        return transition

    def _init_eval(self) -> None:
        """
        Overview:
            Initialize the eval mode of policy, including related attributes and modules. For DQN, it contains the \
            eval model to greedily select action with argmax q_value mechanism.
            This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``.

        .. note::
            If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \
            with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``.
        """
        self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')
        self._eval_model.reset()

    def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]:
        """
        Overview:
            Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \
            means that the policy gets some necessary data (mainly observation) from the envs and then returns the \
            action to interact with the envs.
        Arguments:
            - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
                key of the dict is environment id and the value is the corresponding data of the env.
        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \
                key of the dict is the same as the input data, i.e. environment id.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for DQNPolicy: ``ding.policy.tests.test_dqn``.
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._eval_model.eval()
        with torch.no_grad():
            output = self._eval_model.forward(data)
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def calculate_priority(self, data: Dict[int, Any], update_target_model: bool = False) -> Dict[str, Any]:
        """
        Overview:
            Calculate priority for replay buffer.
        Arguments:
            - data (:obj:`Dict[str, Any]`): Dict type data, a batch of data for training.
            - update_target_model (:obj:`bool`): Whether to update target model.
        Returns:
            - priority (:obj:`Dict[str, Any]`): Dict type priority data, values are python scalar or a list of scalars.
        ArgumentsKeys:
            - necessary: ``obs``, ``action``, ``reward``, ``next_obs``, ``done``
            - optional: ``value_gamma``
        ReturnsKeys:
            - necessary: ``priority``
        """

        if update_target_model:
            self._target_model.load_state_dict(self._learn_model.state_dict())

        data = default_preprocess_learn(
            data,
            use_priority=False,
            use_priority_IS_weight=False,
            ignore_done=self._cfg.learn.ignore_done,
            use_nstep=True
        )
        if self._cuda:
            data = to_device(data, self._device)
        # ====================
        # Q-learning forward
        # ====================
        self._learn_model.eval()
        self._target_model.eval()
        with torch.no_grad():
            # Current q value (main model)
            q_value = self._learn_model.forward(data['obs'])['logit']
            # Target q value
            target_q_value = self._target_model.forward(data['next_obs'])['logit']
            # Max q value action (main model), i.e. Double DQN
            target_q_action = self._learn_model.forward(data['next_obs'])['action']
            data_n = q_nstep_td_data(
                q_value, target_q_value, data['action'], target_q_action, data['reward'], data['done'], data['weight']
            )
            value_gamma = data.get('value_gamma')
            loss, td_error_per_sample = q_nstep_td_error(
                data_n, self._gamma, nstep=self._nstep, value_gamma=value_gamma
            )
        return {'priority': td_error_per_sample.abs().tolist()}


@POLICY_REGISTRY.register('dqn_stdim')
class DQNSTDIMPolicy(DQNPolicy):
    """
    Overview:
        Policy class of DQN algorithm, extended by ST-DIM auxiliary objectives.
        ST-DIM paper link: https://arxiv.org/abs/1906.08226.
    Config:
        == ==================== ======== ============== ======================================== =======================
        ID Symbol               Type     Default Value  Description                              Other(Shape)
        == ==================== ======== ============== ======================================== =======================
        1  ``type``             str      dqn_stdim      | RL policy register name, refer to      | This arg is optional,
                                                        | registry ``POLICY_REGISTRY``           | a placeholder
        2  ``cuda``             bool     False          | Whether to use cuda for network        | This arg can be diff-
                                                                                                 | erent from modes
        3  ``on_policy``        bool     False          | Whether the RL algorithm is on-policy
                                                        | or off-policy
        4  ``priority``         bool     False          | Whether use priority(PER)              | Priority sample,
                                                                                                 | update priority
        5  | ``priority_IS``    bool     False          | Whether use Importance Sampling Weight
           | ``_weight``                                | to correct biased update. If True,
                                                        | priority must be True.
        6  | ``discount_``      float    0.97,          | Reward's future discount factor, aka.  | May be 1 when sparse
           | ``factor``                  [0.95, 0.999]  | gamma                                  | reward env
        7  ``nstep``            int      1,             | N-step reward discount sum for target
                                         [3, 5]         | q_value estimation
        8  | ``learn.update``   int      3              | How many updates(iterations) to train  | This args can be vary
           | ``per_collect``                            | after collector's one collection. Only | from envs. Bigger val
                                                        | valid in serial training               | means more off-policy
           | ``_gpu``
        10 | ``learn.batch_``   int      64             | The number of samples of an iteration
           | ``size``
        11 | ``learn.learning`` float    0.001          | Gradient step length of an iteration.
           | ``_rate``
        12 | ``learn.target_``  int      100            | Frequence of target network update.    | Hard(assign) update
           | ``update_freq``
        13 | ``learn.ignore_``  bool     False          | Whether ignore done for target value   | Enable it for some
           | ``done``                                   | calculation.                           | fake termination env
        14 ``collect.n_sample`` int      [8, 128]       | The number of training samples of a    | It varies from
                                                        | call of collector.                     | different envs
        15 | ``collect.unroll`` int      1              | unroll length of an iteration          | In RNN, unroll_len>1
           | ``_len``
        16 | ``other.eps.type`` str      exp            | exploration rate decay type            | Support ['exp',
                                                                                                 | 'linear'].
        17 | ``other.eps.``     float    0.95           | start value of exploration rate        | [0,1]
           | ``start``
        18 | ``other.eps.``     float    0.1            | end value of exploration rate          | [0,1]
           | ``end``
        19 | ``other.eps.``     int      10000          | decay length of exploration            | greater than 0. set
           | ``decay``                                                                           | decay=10000 means
                                                                                                 | the exploration rate
                                                                                                 | decay from start
                                                                                                 | value to end value
                                                                                                 | during decay length.
        20 | ``aux_loss``       float    0.001          | the ratio of the auxiliary loss to     | any real value,
           | ``_weight``                                | the TD loss                            | typically in
                                                                                                 | [-0.1, 0.1].
        == ==================== ======== ============== ======================================== =======================
    """

    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='dqn_stdim',
        # (bool) Whether to use cuda in policy.
        cuda=False,
        # (bool) Whether to learning policy is the same as collecting data policy (on-policy).
        on_policy=False,
        # (bool) Whether to enable priority experience sample.
        priority=False,
        # (bool) Whether to use Importance Sampling Weight to correct biased update. If True, priority must be True.
        priority_IS_weight=False,
        # (float) Discount factor(gamma) for returns.
        discount_factor=0.97,
        # (int) The number of step for calculating target q_value.
        nstep=1,
        # (float) The weight of auxiliary loss to main loss.
        aux_loss_weight=0.001,
        # learn_mode config
        learn=dict(
            # How many updates(iterations) to train after collector's one collection.
            # Bigger "update_per_collect" means bigger off-policy.
            # collect data -> update policy-> collect data -> ...
            update_per_collect=3,
            # (int) How many samples in a training batch.
            batch_size=64,
            # (float) The step size of gradient descent.
            learning_rate=0.001,
            # (int) Frequence of target network update.
            target_update_freq=100,
            # (bool) Whether ignore done(usually for max step termination env).
            ignore_done=False,
        ),
        # collect_mode config
        collect=dict(
            # (int) How many training samples collected in one collection procedure.
            # Only one of [n_sample, n_episode] shoule be set.
            # n_sample=8,
            # (int) Cut trajectories into pieces with length "unroll_len".
            unroll_len=1,
        ),
        eval=dict(),  # for compability
        # other config
        other=dict(
            # Epsilon greedy with decay.
            eps=dict(
                # (str) Decay type. Support ['exp', 'linear'].
                type='exp',
                # (float) Epsilon start value.
                start=0.95,
                # (float) Epsilon end value.
                end=0.1,
                # (int) Decay length (env step).
                decay=10000,
            ),
            replay_buffer=dict(
                # (int) Maximum size of replay buffer. Usually, larger buffer size is better.
                replay_buffer_size=10000,
            ),
        ),
    )

    def _init_learn(self) -> None:
        """
        Overview:
            Initialize the learn mode of policy, including related attributes and modules. For DQNSTDIM, it first \
            call super class's ``_init_learn`` method, then initialize extra auxiliary model, its optimizer, and the \
            loss weight. This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.

        .. note::
            For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
            and ``_load_state_dict_learn`` methods.

        .. note::
            For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.

        .. note::
            If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
            with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
        """
        super()._init_learn()
        x_size, y_size = self._get_encoding_size()
        self._aux_model = ContrastiveLoss(x_size, y_size, **self._cfg.aux_model)
        if self._cuda:
            self._aux_model.cuda()
        self._aux_optimizer = Adam(self._aux_model.parameters(), lr=self._cfg.learn.learning_rate)
        self._aux_loss_weight = self._cfg.aux_loss_weight

    def _get_encoding_size(self) -> Tuple[Tuple[int], Tuple[int]]:
        """
        Overview:
            Get the input encoding size of the ST-DIM axuiliary model.
        Returns:
            - info_dict (:obj:`Tuple[Tuple[int], Tuple[int]]`): The encoding size without the first (Batch) dimension.
        """
        obs = self._cfg.model.obs_shape
        if isinstance(obs, int):
            obs = [obs]
        test_data = {
            "obs": torch.randn(1, *obs),
            "next_obs": torch.randn(1, *obs),
        }
        if self._cuda:
            test_data = to_device(test_data, self._device)
        with torch.no_grad():
            x, y = self._model_encode(test_data)
        return x.size()[1:], y.size()[1:]

    def _model_encode(self, data: dict) -> Tuple[torch.Tensor]:
        """
        Overview:
            Get the encoding of the main model as input for the auxiliary model.
        Arguments:
            - data (:obj:`dict`): Dict type data, same as the _forward_learn input.
        Returns:
            - (:obj:`Tuple[torch.Tensor]`): the tuple of two tensors to apply contrastive embedding learning. \
                In ST-DIM algorithm, these two variables are the dqn encoding of `obs` and `next_obs` respectively.
        """
        assert hasattr(self._model, "encoder")
        x = self._model.encoder(data["obs"])
        y = self._model.encoder(data["next_obs"])
        return x, y

    def _forward_learn(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """
        Overview:
            Policy forward function of learn mode (training policy and updating parameters). Forward means \
            that the policy inputs some training batch data from the replay buffer and then returns the output \
            result, including various training information such as loss, q value, priority, aux_loss.
        Arguments:
            - data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \
                training samples. For each element in list, the key of the dict is the name of data items and the \
                value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \
                combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \
                dimension by some utility functions such as ``default_preprocess_learn``. \
                For DQNSTDIM, each element in list is a dict containing at least the following keys: ``obs``, \
                ``action``, ``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as \
                ``weight`` and ``value_gamma``.
        Returns:
            - info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \
                recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \
                detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.
        """
        data = default_preprocess_learn(
            data,
            use_priority=self._priority,
            use_priority_IS_weight=self._cfg.priority_IS_weight,
            ignore_done=self._cfg.learn.ignore_done,
            use_nstep=True
        )
        if self._cuda:
            data = to_device(data, self._device)

        # ======================
        # Auxiliary model update
        # ======================
        # RL network encoding
        # To train the auxiliary network, the gradients of x, y should be 0.
        with torch.no_grad():
            x_no_grad, y_no_grad = self._model_encode(data)
        # the forward function of the auxiliary network
        self._aux_model.train()
        aux_loss_learn = self._aux_model.forward(x_no_grad, y_no_grad)
        # the BP process of the auxiliary network
        self._aux_optimizer.zero_grad()
        aux_loss_learn.backward()
        if self._cfg.multi_gpu:
            self.sync_gradients(self._aux_model)
        self._aux_optimizer.step()

        # ====================
        # Q-learning forward
        # ====================
        self._learn_model.train()
        self._target_model.train()
        # Current q value (main model)
        q_value = self._learn_model.forward(data['obs'])['logit']
        # Target q value
        with torch.no_grad():
            target_q_value = self._target_model.forward(data['next_obs'])['logit']
            # Max q value action (main model)
            target_q_action = self._learn_model.forward(data['next_obs'])['action']

        data_n = q_nstep_td_data(
            q_value, target_q_value, data['action'], target_q_action, data['reward'], data['done'], data['weight']
        )
        value_gamma = data.get('value_gamma')
        bellman_loss, td_error_per_sample = q_nstep_td_error(
            data_n, self._gamma, nstep=self._nstep, value_gamma=value_gamma
        )

        # ======================
        # Compute auxiliary loss
        # ======================
        x, y = self._model_encode(data)
        self._aux_model.eval()
        aux_loss_eval = self._aux_model.forward(x, y) * self._aux_loss_weight
        loss = aux_loss_eval + bellman_loss

        # ====================
        # Q-learning update
        # ====================
        self._optimizer.zero_grad()
        loss.backward()
        if self._cfg.multi_gpu:
            self.sync_gradients(self._learn_model)
        self._optimizer.step()

        # =============
        # after update
        # =============
        self._target_model.update(self._learn_model.state_dict())
        return {
            'cur_lr': self._optimizer.defaults['lr'],
            'bellman_loss': bellman_loss.item(),
            'aux_loss_learn': aux_loss_learn.item(),
            'aux_loss_eval': aux_loss_eval.item(),
            'total_loss': loss.item(),
            'q_value': q_value.mean().item(),
            'priority': td_error_per_sample.abs().tolist(),
            # Only discrete action satisfying len(data['action'])==1 can return this and draw histogram on tensorboard.
            # '[histogram]action_distribution': data['action'],
        }

    def _monitor_vars_learn(self) -> List[str]:
        """
        Overview:
            Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
            as text logger, tensorboard logger, will use these keys to save the corresponding data.
        Returns:
            - necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
        """
        return ['cur_lr', 'bellman_loss', 'aux_loss_learn', 'aux_loss_eval', 'total_loss', 'q_value']

    def _state_dict_learn(self) -> Dict[str, Any]:
        """
        Overview:
            Return the state_dict of learn mode, usually including model and optimizer.
        Returns:
            - state_dict (:obj:`Dict[str, Any]`): the dict of current policy learn state, for saving and restoring.
        """
        return {
            'model': self._learn_model.state_dict(),
            'target_model': self._target_model.state_dict(),
            'optimizer': self._optimizer.state_dict(),
            'aux_optimizer': self._aux_optimizer.state_dict(),
        }

    def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
        """
        Overview:
            Load the state_dict variable into policy learn mode.
        Arguments:
            - state_dict (:obj:`Dict[str, Any]`): the dict of policy learn state saved before.

        .. tip::
            If you want to only load some parts of model, you can simply set the ``strict`` argument in \
            load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \
            complicated operation.
        """
        self._learn_model.load_state_dict(state_dict['model'])
        self._target_model.load_state_dict(state_dict['target_model'])
        self._optimizer.load_state_dict(state_dict['optimizer'])
        self._aux_optimizer.load_state_dict(state_dict['aux_optimizer'])