File size: 21,452 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
from typing import List, Dict, Any, Tuple, Optional
from collections import namedtuple
import torch.nn.functional as F
import torch
import numpy as np
from ding.torch_utils import to_device
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_decollate
from .base_policy import Policy


@POLICY_REGISTRY.register('dt')
class DTPolicy(Policy):
    """
    Overview:
        Policy class of Decision Transformer algorithm in discrete environments.
        Paper link: https://arxiv.org/abs/2106.01345.
    """
    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='dt',
        # (bool) Whether to use cuda for network.
        cuda=False,
        # (bool) Whether the RL algorithm is on-policy or off-policy.
        on_policy=False,
        # (bool) Whether use priority(priority sample, IS weight, update priority)
        priority=False,
        # (int) N-step reward for target q_value estimation
        obs_shape=4,
        action_shape=2,
        rtg_scale=1000,  # normalize returns to go
        max_eval_ep_len=1000,  # max len of one episode
        batch_size=64,  # training batch size
        wt_decay=1e-4,  # decay weight in optimizer
        warmup_steps=10000,  # steps for learning rate warmup
        context_len=20,  # length of transformer input
        learning_rate=1e-4,
    )

    def default_model(self) -> Tuple[str, List[str]]:
        """
        Overview:
            Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \
            automatically call this method to get the default model setting and create model.
        Returns:
            - model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.

        .. note::
            The user can define and use customized network model but must obey the same inferface definition indicated \
            by import_names path. For example about DQN, its registered name is ``dqn`` and the import_names is \
            ``ding.model.template.q_learning``.
        """
        return 'dt', ['ding.model.template.dt']

    def _init_learn(self) -> None:
        """
        Overview:
            Initialize the learn mode of policy, including related attributes and modules. For Decision Transformer, \
            it mainly contains the optimizer, algorithm-specific arguments such as rtg_scale and lr scheduler.
            This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.

        .. note::
            For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
            and ``_load_state_dict_learn`` methods.

        .. note::
            For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.

        .. note::
            If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
            with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
        """
        # rtg_scale: scale of `return to go`
        # rtg_target: max target of `return to go`
        # Our goal is normalize `return to go` to (0, 1), which will favour the covergence.
        # As a result, we usually set rtg_scale == rtg_target.
        self.rtg_scale = self._cfg.rtg_scale  # normalize returns to go
        self.rtg_target = self._cfg.rtg_target  # max target reward_to_go
        self.max_eval_ep_len = self._cfg.max_eval_ep_len  # max len of one episode

        lr = self._cfg.learning_rate  # learning rate
        wt_decay = self._cfg.wt_decay  # weight decay
        warmup_steps = self._cfg.warmup_steps  # warmup steps for lr scheduler

        self.clip_grad_norm_p = self._cfg.clip_grad_norm_p
        self.context_len = self._cfg.model.context_len  # K in decision transformer

        self.state_dim = self._cfg.model.state_dim
        self.act_dim = self._cfg.model.act_dim

        self._learn_model = self._model
        self._atari_env = 'state_mean' not in self._cfg
        self._basic_discrete_env = not self._cfg.model.continuous and 'state_mean' in self._cfg

        if self._atari_env:
            self._optimizer = self._learn_model.configure_optimizers(wt_decay, lr)
        else:
            self._optimizer = torch.optim.AdamW(self._learn_model.parameters(), lr=lr, weight_decay=wt_decay)

        self._scheduler = torch.optim.lr_scheduler.LambdaLR(
            self._optimizer, lambda steps: min((steps + 1) / warmup_steps, 1)
        )

        self.max_env_score = -1.0

    def _forward_learn(self, data: List[torch.Tensor]) -> Dict[str, Any]:
        """
        Overview:
            Policy forward function of learn mode (training policy and updating parameters). Forward means \
            that the policy inputs some training batch data from the offline dataset and then returns the output \
            result, including various training information such as loss, current learning rate.
        Arguments:
            - data (:obj:`List[torch.Tensor]`): The input data used for policy forward, including a series of \
                processed torch.Tensor data, i.e., timesteps, states, actions, returns_to_go, traj_mask.
        Returns:
            - info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \
                recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \
                detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        """
        self._learn_model.train()

        timesteps, states, actions, returns_to_go, traj_mask = data

        # The shape of `returns_to_go` may differ with different dataset (B x T or B x T x 1),
        # and we need a 3-dim tensor
        if len(returns_to_go.shape) == 2:
            returns_to_go = returns_to_go.unsqueeze(-1)

        if self._basic_discrete_env:
            actions = actions.to(torch.long)
            actions = actions.squeeze(-1)
        action_target = torch.clone(actions).detach().to(self._device)

        if self._atari_env:
            state_preds, action_preds, return_preds = self._learn_model.forward(
                timesteps=timesteps, states=states, actions=actions, returns_to_go=returns_to_go, tar=1
            )
        else:
            state_preds, action_preds, return_preds = self._learn_model.forward(
                timesteps=timesteps, states=states, actions=actions, returns_to_go=returns_to_go
            )

        if self._atari_env:
            action_loss = F.cross_entropy(action_preds.reshape(-1, action_preds.size(-1)), action_target.reshape(-1))
        else:
            traj_mask = traj_mask.view(-1, )

            # only consider non padded elements
            action_preds = action_preds.view(-1, self.act_dim)[traj_mask > 0]

            if self._cfg.model.continuous:
                action_target = action_target.view(-1, self.act_dim)[traj_mask > 0]
                action_loss = F.mse_loss(action_preds, action_target)
            else:
                action_target = action_target.view(-1)[traj_mask > 0]
                action_loss = F.cross_entropy(action_preds, action_target)

        self._optimizer.zero_grad()
        action_loss.backward()
        if self._cfg.multi_gpu:
            self.sync_gradients(self._learn_model)
        torch.nn.utils.clip_grad_norm_(self._learn_model.parameters(), self.clip_grad_norm_p)
        self._optimizer.step()
        self._scheduler.step()

        return {
            'cur_lr': self._optimizer.state_dict()['param_groups'][0]['lr'],
            'action_loss': action_loss.detach().cpu().item(),
            'total_loss': action_loss.detach().cpu().item(),
        }

    def _init_eval(self) -> None:
        """
        Overview:
            Initialize the eval mode of policy, including related attributes and modules. For DQN, it contains the \
            eval model, some algorithm-specific parameters such as context_len, max_eval_ep_len, etc.
            This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``.

        .. tip::
            For the evaluation of complete episodes, we need to maintain some historical information for transformer \
            inference. These variables need to be initialized in ``_init_eval`` and reset in ``_reset_eval`` when \
            necessary.

        .. note::
            If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \
            with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``.
        """
        self._eval_model = self._model
        # init data
        self._device = torch.device(self._device)
        self.rtg_scale = self._cfg.rtg_scale  # normalize returns to go
        self.rtg_target = self._cfg.rtg_target  # max target reward_to_go
        self.state_dim = self._cfg.model.state_dim
        self.act_dim = self._cfg.model.act_dim
        self.eval_batch_size = self._cfg.evaluator_env_num
        self.max_eval_ep_len = self._cfg.max_eval_ep_len
        self.context_len = self._cfg.model.context_len  # K in decision transformer

        self.t = [0 for _ in range(self.eval_batch_size)]
        if self._cfg.model.continuous:
            self.actions = torch.zeros(
                (self.eval_batch_size, self.max_eval_ep_len, self.act_dim), dtype=torch.float32, device=self._device
            )
        else:
            self.actions = torch.zeros(
                (self.eval_batch_size, self.max_eval_ep_len, 1), dtype=torch.long, device=self._device
            )
        self._atari_env = 'state_mean' not in self._cfg
        self._basic_discrete_env = not self._cfg.model.continuous and 'state_mean' in self._cfg
        if self._atari_env:
            self.states = torch.zeros(
                (
                    self.eval_batch_size,
                    self.max_eval_ep_len,
                ) + tuple(self.state_dim),
                dtype=torch.float32,
                device=self._device
            )
            self.running_rtg = [self.rtg_target for _ in range(self.eval_batch_size)]
        else:
            self.running_rtg = [self.rtg_target / self.rtg_scale for _ in range(self.eval_batch_size)]
            self.states = torch.zeros(
                (self.eval_batch_size, self.max_eval_ep_len, self.state_dim), dtype=torch.float32, device=self._device
            )
            self.state_mean = torch.from_numpy(np.array(self._cfg.state_mean)).to(self._device)
            self.state_std = torch.from_numpy(np.array(self._cfg.state_std)).to(self._device)
        self.timesteps = torch.arange(
            start=0, end=self.max_eval_ep_len, step=1
        ).repeat(self.eval_batch_size, 1).to(self._device)
        self.rewards_to_go = torch.zeros(
            (self.eval_batch_size, self.max_eval_ep_len, 1), dtype=torch.float32, device=self._device
        )

    def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]:
        """
        Overview:
            Policy forward function of eval mode (evaluation policy performance, such as interacting with envs. \
            Forward means that the policy gets some input data (current obs/return-to-go and historical information) \
            from the envs and then returns the output data, such as the action to interact with the envs. \
        Arguments:
            - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs and \
                reward to calculate running return-to-go. The key of the dict is environment id and the value is the \
                corresponding data of the env.
        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \
                key of the dict is the same as the input data, i.e. environment id.

        .. note::
            Decision Transformer will do different operations for different types of envs in evaluation.
        """
        # save and forward
        data_id = list(data.keys())

        self._eval_model.eval()
        with torch.no_grad():
            if self._atari_env:
                states = torch.zeros(
                    (
                        self.eval_batch_size,
                        self.context_len,
                    ) + tuple(self.state_dim),
                    dtype=torch.float32,
                    device=self._device
                )
                timesteps = torch.zeros((self.eval_batch_size, 1, 1), dtype=torch.long, device=self._device)
            else:
                states = torch.zeros(
                    (self.eval_batch_size, self.context_len, self.state_dim), dtype=torch.float32, device=self._device
                )
                timesteps = torch.zeros((self.eval_batch_size, self.context_len), dtype=torch.long, device=self._device)
            if not self._cfg.model.continuous:
                actions = torch.zeros(
                    (self.eval_batch_size, self.context_len, 1), dtype=torch.long, device=self._device
                )
            else:
                actions = torch.zeros(
                    (self.eval_batch_size, self.context_len, self.act_dim), dtype=torch.float32, device=self._device
                )
            rewards_to_go = torch.zeros(
                (self.eval_batch_size, self.context_len, 1), dtype=torch.float32, device=self._device
            )
            for i in data_id:
                if self._atari_env:
                    self.states[i, self.t[i]] = data[i]['obs'].to(self._device)
                else:
                    self.states[i, self.t[i]] = (data[i]['obs'].to(self._device) - self.state_mean) / self.state_std
                self.running_rtg[i] = self.running_rtg[i] - (data[i]['reward'] / self.rtg_scale).to(self._device)
                self.rewards_to_go[i, self.t[i]] = self.running_rtg[i]

                if self.t[i] <= self.context_len:
                    if self._atari_env:
                        timesteps[i] = min(self.t[i], self._cfg.model.max_timestep) * torch.ones(
                            (1, 1), dtype=torch.int64
                        ).to(self._device)
                    else:
                        timesteps[i] = self.timesteps[i, :self.context_len]
                    states[i] = self.states[i, :self.context_len]
                    actions[i] = self.actions[i, :self.context_len]
                    rewards_to_go[i] = self.rewards_to_go[i, :self.context_len]
                else:
                    if self._atari_env:
                        timesteps[i] = min(self.t[i], self._cfg.model.max_timestep) * torch.ones(
                            (1, 1), dtype=torch.int64
                        ).to(self._device)
                    else:
                        timesteps[i] = self.timesteps[i, self.t[i] - self.context_len + 1:self.t[i] + 1]
                    states[i] = self.states[i, self.t[i] - self.context_len + 1:self.t[i] + 1]
                    actions[i] = self.actions[i, self.t[i] - self.context_len + 1:self.t[i] + 1]
                    rewards_to_go[i] = self.rewards_to_go[i, self.t[i] - self.context_len + 1:self.t[i] + 1]
            if self._basic_discrete_env:
                actions = actions.squeeze(-1)
            _, act_preds, _ = self._eval_model.forward(timesteps, states, actions, rewards_to_go)
            del timesteps, states, actions, rewards_to_go

            logits = act_preds[:, -1, :]
            if not self._cfg.model.continuous:
                if self._atari_env:
                    probs = F.softmax(logits, dim=-1)
                    act = torch.zeros((self.eval_batch_size, 1), dtype=torch.long, device=self._device)
                    for i in data_id:
                        act[i] = torch.multinomial(probs[i], num_samples=1)
                else:
                    act = torch.argmax(logits, axis=1).unsqueeze(1)
            else:
                act = logits
            for i in data_id:
                self.actions[i, self.t[i]] = act[i]  # TODO: self.actions[i] should be a queue when exceed max_t
                self.t[i] += 1

        if self._cuda:
            act = to_device(act, 'cpu')
        output = {'action': act}
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _reset_eval(self, data_id: Optional[List[int]] = None) -> None:
        """
        Overview:
            Reset some stateful variables for eval mode when necessary, such as the historical info of transformer \
            for decision transformer. If ``data_id`` is None, it means to reset all the stateful \
            varaibles. Otherwise, it will reset the stateful variables according to the ``data_id``. For example, \
            different environments/episodes in evaluation in ``data_id`` will have different history.
        Arguments:
            - data_id (:obj:`Optional[List[int]]`): The id of the data, which is used to reset the stateful variables \
                specified by ``data_id``.
        """
        # clean data
        if data_id is None:
            self.t = [0 for _ in range(self.eval_batch_size)]
            self.timesteps = torch.arange(
                start=0, end=self.max_eval_ep_len, step=1
            ).repeat(self.eval_batch_size, 1).to(self._device)
            if not self._cfg.model.continuous:
                self.actions = torch.zeros(
                    (self.eval_batch_size, self.max_eval_ep_len, 1), dtype=torch.long, device=self._device
                )
            else:
                self.actions = torch.zeros(
                    (self.eval_batch_size, self.max_eval_ep_len, self.act_dim),
                    dtype=torch.float32,
                    device=self._device
                )
            if self._atari_env:
                self.states = torch.zeros(
                    (
                        self.eval_batch_size,
                        self.max_eval_ep_len,
                    ) + tuple(self.state_dim),
                    dtype=torch.float32,
                    device=self._device
                )
                self.running_rtg = [self.rtg_target for _ in range(self.eval_batch_size)]
            else:
                self.states = torch.zeros(
                    (self.eval_batch_size, self.max_eval_ep_len, self.state_dim),
                    dtype=torch.float32,
                    device=self._device
                )
                self.running_rtg = [self.rtg_target / self.rtg_scale for _ in range(self.eval_batch_size)]

            self.rewards_to_go = torch.zeros(
                (self.eval_batch_size, self.max_eval_ep_len, 1), dtype=torch.float32, device=self._device
            )
        else:
            for i in data_id:
                self.t[i] = 0
                if not self._cfg.model.continuous:
                    self.actions[i] = torch.zeros((self.max_eval_ep_len, 1), dtype=torch.long, device=self._device)
                else:
                    self.actions[i] = torch.zeros(
                        (self.max_eval_ep_len, self.act_dim), dtype=torch.float32, device=self._device
                    )
                if self._atari_env:
                    self.states[i] = torch.zeros(
                        (self.max_eval_ep_len, ) + tuple(self.state_dim), dtype=torch.float32, device=self._device
                    )
                    self.running_rtg[i] = self.rtg_target
                else:
                    self.states[i] = torch.zeros(
                        (self.max_eval_ep_len, self.state_dim), dtype=torch.float32, device=self._device
                    )
                    self.running_rtg[i] = self.rtg_target / self.rtg_scale
                    self.timesteps[i] = torch.arange(start=0, end=self.max_eval_ep_len, step=1).to(self._device)
                self.rewards_to_go[i] = torch.zeros((self.max_eval_ep_len, 1), dtype=torch.float32, device=self._device)

    def _monitor_vars_learn(self) -> List[str]:
        """
        Overview:
            Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
            as text logger, tensorboard logger, will use these keys to save the corresponding data.
        Returns:
            - necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
        """
        return ['cur_lr', 'action_loss']

    def _init_collect(self) -> None:
        pass

    def _forward_collect(self, data: Dict[int, Any], eps: float) -> Dict[int, Any]:
        pass

    def _get_train_sample(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        pass

    def _process_transition(self, obs: Any, policy_output: Dict[str, Any], timestep: namedtuple) -> Dict[str, Any]:
        pass