File size: 21,452 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
from typing import List, Dict, Any, Tuple, Optional
from collections import namedtuple
import torch.nn.functional as F
import torch
import numpy as np
from ding.torch_utils import to_device
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_decollate
from .base_policy import Policy
@POLICY_REGISTRY.register('dt')
class DTPolicy(Policy):
"""
Overview:
Policy class of Decision Transformer algorithm in discrete environments.
Paper link: https://arxiv.org/abs/2106.01345.
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='dt',
# (bool) Whether to use cuda for network.
cuda=False,
# (bool) Whether the RL algorithm is on-policy or off-policy.
on_policy=False,
# (bool) Whether use priority(priority sample, IS weight, update priority)
priority=False,
# (int) N-step reward for target q_value estimation
obs_shape=4,
action_shape=2,
rtg_scale=1000, # normalize returns to go
max_eval_ep_len=1000, # max len of one episode
batch_size=64, # training batch size
wt_decay=1e-4, # decay weight in optimizer
warmup_steps=10000, # steps for learning rate warmup
context_len=20, # length of transformer input
learning_rate=1e-4,
)
def default_model(self) -> Tuple[str, List[str]]:
"""
Overview:
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \
automatically call this method to get the default model setting and create model.
Returns:
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.
.. note::
The user can define and use customized network model but must obey the same inferface definition indicated \
by import_names path. For example about DQN, its registered name is ``dqn`` and the import_names is \
``ding.model.template.q_learning``.
"""
return 'dt', ['ding.model.template.dt']
def _init_learn(self) -> None:
"""
Overview:
Initialize the learn mode of policy, including related attributes and modules. For Decision Transformer, \
it mainly contains the optimizer, algorithm-specific arguments such as rtg_scale and lr scheduler.
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.
.. note::
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
and ``_load_state_dict_learn`` methods.
.. note::
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.
.. note::
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
"""
# rtg_scale: scale of `return to go`
# rtg_target: max target of `return to go`
# Our goal is normalize `return to go` to (0, 1), which will favour the covergence.
# As a result, we usually set rtg_scale == rtg_target.
self.rtg_scale = self._cfg.rtg_scale # normalize returns to go
self.rtg_target = self._cfg.rtg_target # max target reward_to_go
self.max_eval_ep_len = self._cfg.max_eval_ep_len # max len of one episode
lr = self._cfg.learning_rate # learning rate
wt_decay = self._cfg.wt_decay # weight decay
warmup_steps = self._cfg.warmup_steps # warmup steps for lr scheduler
self.clip_grad_norm_p = self._cfg.clip_grad_norm_p
self.context_len = self._cfg.model.context_len # K in decision transformer
self.state_dim = self._cfg.model.state_dim
self.act_dim = self._cfg.model.act_dim
self._learn_model = self._model
self._atari_env = 'state_mean' not in self._cfg
self._basic_discrete_env = not self._cfg.model.continuous and 'state_mean' in self._cfg
if self._atari_env:
self._optimizer = self._learn_model.configure_optimizers(wt_decay, lr)
else:
self._optimizer = torch.optim.AdamW(self._learn_model.parameters(), lr=lr, weight_decay=wt_decay)
self._scheduler = torch.optim.lr_scheduler.LambdaLR(
self._optimizer, lambda steps: min((steps + 1) / warmup_steps, 1)
)
self.max_env_score = -1.0
def _forward_learn(self, data: List[torch.Tensor]) -> Dict[str, Any]:
"""
Overview:
Policy forward function of learn mode (training policy and updating parameters). Forward means \
that the policy inputs some training batch data from the offline dataset and then returns the output \
result, including various training information such as loss, current learning rate.
Arguments:
- data (:obj:`List[torch.Tensor]`): The input data used for policy forward, including a series of \
processed torch.Tensor data, i.e., timesteps, states, actions, returns_to_go, traj_mask.
Returns:
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
"""
self._learn_model.train()
timesteps, states, actions, returns_to_go, traj_mask = data
# The shape of `returns_to_go` may differ with different dataset (B x T or B x T x 1),
# and we need a 3-dim tensor
if len(returns_to_go.shape) == 2:
returns_to_go = returns_to_go.unsqueeze(-1)
if self._basic_discrete_env:
actions = actions.to(torch.long)
actions = actions.squeeze(-1)
action_target = torch.clone(actions).detach().to(self._device)
if self._atari_env:
state_preds, action_preds, return_preds = self._learn_model.forward(
timesteps=timesteps, states=states, actions=actions, returns_to_go=returns_to_go, tar=1
)
else:
state_preds, action_preds, return_preds = self._learn_model.forward(
timesteps=timesteps, states=states, actions=actions, returns_to_go=returns_to_go
)
if self._atari_env:
action_loss = F.cross_entropy(action_preds.reshape(-1, action_preds.size(-1)), action_target.reshape(-1))
else:
traj_mask = traj_mask.view(-1, )
# only consider non padded elements
action_preds = action_preds.view(-1, self.act_dim)[traj_mask > 0]
if self._cfg.model.continuous:
action_target = action_target.view(-1, self.act_dim)[traj_mask > 0]
action_loss = F.mse_loss(action_preds, action_target)
else:
action_target = action_target.view(-1)[traj_mask > 0]
action_loss = F.cross_entropy(action_preds, action_target)
self._optimizer.zero_grad()
action_loss.backward()
if self._cfg.multi_gpu:
self.sync_gradients(self._learn_model)
torch.nn.utils.clip_grad_norm_(self._learn_model.parameters(), self.clip_grad_norm_p)
self._optimizer.step()
self._scheduler.step()
return {
'cur_lr': self._optimizer.state_dict()['param_groups'][0]['lr'],
'action_loss': action_loss.detach().cpu().item(),
'total_loss': action_loss.detach().cpu().item(),
}
def _init_eval(self) -> None:
"""
Overview:
Initialize the eval mode of policy, including related attributes and modules. For DQN, it contains the \
eval model, some algorithm-specific parameters such as context_len, max_eval_ep_len, etc.
This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``.
.. tip::
For the evaluation of complete episodes, we need to maintain some historical information for transformer \
inference. These variables need to be initialized in ``_init_eval`` and reset in ``_reset_eval`` when \
necessary.
.. note::
If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \
with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``.
"""
self._eval_model = self._model
# init data
self._device = torch.device(self._device)
self.rtg_scale = self._cfg.rtg_scale # normalize returns to go
self.rtg_target = self._cfg.rtg_target # max target reward_to_go
self.state_dim = self._cfg.model.state_dim
self.act_dim = self._cfg.model.act_dim
self.eval_batch_size = self._cfg.evaluator_env_num
self.max_eval_ep_len = self._cfg.max_eval_ep_len
self.context_len = self._cfg.model.context_len # K in decision transformer
self.t = [0 for _ in range(self.eval_batch_size)]
if self._cfg.model.continuous:
self.actions = torch.zeros(
(self.eval_batch_size, self.max_eval_ep_len, self.act_dim), dtype=torch.float32, device=self._device
)
else:
self.actions = torch.zeros(
(self.eval_batch_size, self.max_eval_ep_len, 1), dtype=torch.long, device=self._device
)
self._atari_env = 'state_mean' not in self._cfg
self._basic_discrete_env = not self._cfg.model.continuous and 'state_mean' in self._cfg
if self._atari_env:
self.states = torch.zeros(
(
self.eval_batch_size,
self.max_eval_ep_len,
) + tuple(self.state_dim),
dtype=torch.float32,
device=self._device
)
self.running_rtg = [self.rtg_target for _ in range(self.eval_batch_size)]
else:
self.running_rtg = [self.rtg_target / self.rtg_scale for _ in range(self.eval_batch_size)]
self.states = torch.zeros(
(self.eval_batch_size, self.max_eval_ep_len, self.state_dim), dtype=torch.float32, device=self._device
)
self.state_mean = torch.from_numpy(np.array(self._cfg.state_mean)).to(self._device)
self.state_std = torch.from_numpy(np.array(self._cfg.state_std)).to(self._device)
self.timesteps = torch.arange(
start=0, end=self.max_eval_ep_len, step=1
).repeat(self.eval_batch_size, 1).to(self._device)
self.rewards_to_go = torch.zeros(
(self.eval_batch_size, self.max_eval_ep_len, 1), dtype=torch.float32, device=self._device
)
def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]:
"""
Overview:
Policy forward function of eval mode (evaluation policy performance, such as interacting with envs. \
Forward means that the policy gets some input data (current obs/return-to-go and historical information) \
from the envs and then returns the output data, such as the action to interact with the envs. \
Arguments:
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs and \
reward to calculate running return-to-go. The key of the dict is environment id and the value is the \
corresponding data of the env.
Returns:
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \
key of the dict is the same as the input data, i.e. environment id.
.. note::
Decision Transformer will do different operations for different types of envs in evaluation.
"""
# save and forward
data_id = list(data.keys())
self._eval_model.eval()
with torch.no_grad():
if self._atari_env:
states = torch.zeros(
(
self.eval_batch_size,
self.context_len,
) + tuple(self.state_dim),
dtype=torch.float32,
device=self._device
)
timesteps = torch.zeros((self.eval_batch_size, 1, 1), dtype=torch.long, device=self._device)
else:
states = torch.zeros(
(self.eval_batch_size, self.context_len, self.state_dim), dtype=torch.float32, device=self._device
)
timesteps = torch.zeros((self.eval_batch_size, self.context_len), dtype=torch.long, device=self._device)
if not self._cfg.model.continuous:
actions = torch.zeros(
(self.eval_batch_size, self.context_len, 1), dtype=torch.long, device=self._device
)
else:
actions = torch.zeros(
(self.eval_batch_size, self.context_len, self.act_dim), dtype=torch.float32, device=self._device
)
rewards_to_go = torch.zeros(
(self.eval_batch_size, self.context_len, 1), dtype=torch.float32, device=self._device
)
for i in data_id:
if self._atari_env:
self.states[i, self.t[i]] = data[i]['obs'].to(self._device)
else:
self.states[i, self.t[i]] = (data[i]['obs'].to(self._device) - self.state_mean) / self.state_std
self.running_rtg[i] = self.running_rtg[i] - (data[i]['reward'] / self.rtg_scale).to(self._device)
self.rewards_to_go[i, self.t[i]] = self.running_rtg[i]
if self.t[i] <= self.context_len:
if self._atari_env:
timesteps[i] = min(self.t[i], self._cfg.model.max_timestep) * torch.ones(
(1, 1), dtype=torch.int64
).to(self._device)
else:
timesteps[i] = self.timesteps[i, :self.context_len]
states[i] = self.states[i, :self.context_len]
actions[i] = self.actions[i, :self.context_len]
rewards_to_go[i] = self.rewards_to_go[i, :self.context_len]
else:
if self._atari_env:
timesteps[i] = min(self.t[i], self._cfg.model.max_timestep) * torch.ones(
(1, 1), dtype=torch.int64
).to(self._device)
else:
timesteps[i] = self.timesteps[i, self.t[i] - self.context_len + 1:self.t[i] + 1]
states[i] = self.states[i, self.t[i] - self.context_len + 1:self.t[i] + 1]
actions[i] = self.actions[i, self.t[i] - self.context_len + 1:self.t[i] + 1]
rewards_to_go[i] = self.rewards_to_go[i, self.t[i] - self.context_len + 1:self.t[i] + 1]
if self._basic_discrete_env:
actions = actions.squeeze(-1)
_, act_preds, _ = self._eval_model.forward(timesteps, states, actions, rewards_to_go)
del timesteps, states, actions, rewards_to_go
logits = act_preds[:, -1, :]
if not self._cfg.model.continuous:
if self._atari_env:
probs = F.softmax(logits, dim=-1)
act = torch.zeros((self.eval_batch_size, 1), dtype=torch.long, device=self._device)
for i in data_id:
act[i] = torch.multinomial(probs[i], num_samples=1)
else:
act = torch.argmax(logits, axis=1).unsqueeze(1)
else:
act = logits
for i in data_id:
self.actions[i, self.t[i]] = act[i] # TODO: self.actions[i] should be a queue when exceed max_t
self.t[i] += 1
if self._cuda:
act = to_device(act, 'cpu')
output = {'action': act}
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _reset_eval(self, data_id: Optional[List[int]] = None) -> None:
"""
Overview:
Reset some stateful variables for eval mode when necessary, such as the historical info of transformer \
for decision transformer. If ``data_id`` is None, it means to reset all the stateful \
varaibles. Otherwise, it will reset the stateful variables according to the ``data_id``. For example, \
different environments/episodes in evaluation in ``data_id`` will have different history.
Arguments:
- data_id (:obj:`Optional[List[int]]`): The id of the data, which is used to reset the stateful variables \
specified by ``data_id``.
"""
# clean data
if data_id is None:
self.t = [0 for _ in range(self.eval_batch_size)]
self.timesteps = torch.arange(
start=0, end=self.max_eval_ep_len, step=1
).repeat(self.eval_batch_size, 1).to(self._device)
if not self._cfg.model.continuous:
self.actions = torch.zeros(
(self.eval_batch_size, self.max_eval_ep_len, 1), dtype=torch.long, device=self._device
)
else:
self.actions = torch.zeros(
(self.eval_batch_size, self.max_eval_ep_len, self.act_dim),
dtype=torch.float32,
device=self._device
)
if self._atari_env:
self.states = torch.zeros(
(
self.eval_batch_size,
self.max_eval_ep_len,
) + tuple(self.state_dim),
dtype=torch.float32,
device=self._device
)
self.running_rtg = [self.rtg_target for _ in range(self.eval_batch_size)]
else:
self.states = torch.zeros(
(self.eval_batch_size, self.max_eval_ep_len, self.state_dim),
dtype=torch.float32,
device=self._device
)
self.running_rtg = [self.rtg_target / self.rtg_scale for _ in range(self.eval_batch_size)]
self.rewards_to_go = torch.zeros(
(self.eval_batch_size, self.max_eval_ep_len, 1), dtype=torch.float32, device=self._device
)
else:
for i in data_id:
self.t[i] = 0
if not self._cfg.model.continuous:
self.actions[i] = torch.zeros((self.max_eval_ep_len, 1), dtype=torch.long, device=self._device)
else:
self.actions[i] = torch.zeros(
(self.max_eval_ep_len, self.act_dim), dtype=torch.float32, device=self._device
)
if self._atari_env:
self.states[i] = torch.zeros(
(self.max_eval_ep_len, ) + tuple(self.state_dim), dtype=torch.float32, device=self._device
)
self.running_rtg[i] = self.rtg_target
else:
self.states[i] = torch.zeros(
(self.max_eval_ep_len, self.state_dim), dtype=torch.float32, device=self._device
)
self.running_rtg[i] = self.rtg_target / self.rtg_scale
self.timesteps[i] = torch.arange(start=0, end=self.max_eval_ep_len, step=1).to(self._device)
self.rewards_to_go[i] = torch.zeros((self.max_eval_ep_len, 1), dtype=torch.float32, device=self._device)
def _monitor_vars_learn(self) -> List[str]:
"""
Overview:
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
as text logger, tensorboard logger, will use these keys to save the corresponding data.
Returns:
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
"""
return ['cur_lr', 'action_loss']
def _init_collect(self) -> None:
pass
def _forward_collect(self, data: Dict[int, Any], eps: float) -> Dict[int, Any]:
pass
def _get_train_sample(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
pass
def _process_transition(self, obs: Any, policy_output: Dict[str, Any], timestep: namedtuple) -> Dict[str, Any]:
pass
|