File size: 12,436 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
from typing import List, Dict, Any, Tuple, Union
import copy
import torch
from ding.torch_utils import Adam, RMSprop, to_device
from ding.rl_utils import fqf_nstep_td_data, fqf_nstep_td_error, fqf_calculate_fraction_loss, \
get_train_sample, get_nstep_return_data
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate
from .dqn import DQNPolicy
from .common_utils import default_preprocess_learn
@POLICY_REGISTRY.register('fqf')
class FQFPolicy(DQNPolicy):
r"""
Overview:
Policy class of FQF algorithm.
Config:
== ==================== ======== ============== ======================================== =======================
ID Symbol Type Default Value Description Other(Shape)
== ==================== ======== ============== ======================================== =======================
1 ``type`` str fqf | RL policy register name, refer to | this arg is optional,
| registry ``POLICY_REGISTRY`` | a placeholder
2 ``cuda`` bool False | Whether to use cuda for network | this arg can be diff-
| erent from modes
3 ``on_policy`` bool False | Whether the RL algorithm is on-policy
| or off-policy
4 ``priority`` bool True | Whether use priority(PER) | priority sample,
| update priority
6 | ``other.eps`` float 0.05 | Start value for epsilon decay. It's
| ``.start`` | small because rainbow use noisy net.
7 | ``other.eps`` float 0.05 | End value for epsilon decay.
| ``.end``
8 | ``discount_`` float 0.97, | Reward's future discount factor, aka. | may be 1 when sparse
| ``factor`` [0.95, 0.999] | gamma | reward env
9 ``nstep`` int 3, | N-step reward discount sum for target
[3, 5] | q_value estimation
10 | ``learn.update`` int 3 | How many updates(iterations) to train | this args can be vary
| ``per_collect`` | after collector's one collection. Only | from envs. Bigger val
| valid in serial training | means more off-policy
11 ``learn.kappa`` float / | Threshold of Huber loss
== ==================== ======== ============== ======================================== =======================
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='fqf',
# (bool) Whether to use cuda for network.
cuda=False,
# (bool) Whether the RL algorithm is on-policy or off-policy.
on_policy=False,
# (bool) Whether use priority(priority sample, IS weight, update priority)
priority=False,
# (float) Reward's future discount factor, aka. gamma.
discount_factor=0.97,
# (int) N-step reward for target q_value estimation
nstep=1,
learn=dict(
# How many updates(iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
# collect data -> update policy-> collect data -> ...
update_per_collect=3,
batch_size=64,
learning_rate_fraction=2.5e-9,
learning_rate_quantile=0.00005,
# ==============================================================
# The following configs are algorithm-specific
# ==============================================================
# (int) Frequence of target network update.
target_update_freq=100,
# (float) Threshold of Huber loss. In the FQF paper, this is denoted by kappa. Default to 1.0.
kappa=1.0,
# (float) Coefficient of entropy_loss.
ent_coef=0,
# (bool) Whether ignore done(usually for max step termination env)
ignore_done=False,
),
# collect_mode config
collect=dict(
# (int) Only one of [n_sample, n_step, n_episode] shoule be set
# n_sample=8,
# (int) Cut trajectories into pieces with length "unroll_len".
unroll_len=1,
),
eval=dict(),
# other config
other=dict(
# Epsilon greedy with decay.
eps=dict(
# (str) Decay type. Support ['exp', 'linear'].
type='exp',
start=0.95,
end=0.1,
# (int) Decay length(env step)
decay=10000,
),
replay_buffer=dict(replay_buffer_size=10000, )
),
)
def default_model(self) -> Tuple[str, List[str]]:
return 'fqf', ['ding.model.template.q_learning']
def _init_learn(self) -> None:
r"""
Overview:
Learn mode init method. Called by ``self.__init__``.
Init the optimizer, algorithm config, main and target models.
"""
self._priority = self._cfg.priority
# Optimizer
self._fraction_loss_optimizer = RMSprop(
self._model.head.quantiles_proposal.parameters(),
lr=self._cfg.learn.learning_rate_fraction,
alpha=0.95,
eps=0.00001
)
self._quantile_loss_optimizer = Adam(
list(self._model.head.Q.parameters()) + list(self._model.head.fqf_fc.parameters()) +
list(self._model.encoder.parameters()),
lr=self._cfg.learn.learning_rate_quantile,
eps=1e-2 / self._cfg.learn.batch_size
)
self._gamma = self._cfg.discount_factor
self._nstep = self._cfg.nstep
self._kappa = self._cfg.learn.kappa
self._ent_coef = self._cfg.learn.ent_coef
# use model_wrapper for specialized demands of different modes
self._target_model = copy.deepcopy(self._model)
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='assign',
update_kwargs={'freq': self._cfg.learn.target_update_freq}
)
self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample')
self._learn_model.reset()
self._target_model.reset()
def _forward_learn(self, data: dict) -> Dict[str, Any]:
r"""
Overview:
Forward and backward function of learn mode.
Arguments:
- data (:obj:`dict`): Dict type data, including at least ['obs', 'action', 'reward', 'next_obs']
Returns:
- info_dict (:obj:`Dict[str, Any]`): Including current lr and loss.
"""
data = default_preprocess_learn(
data, use_priority=self._priority, ignore_done=self._cfg.learn.ignore_done, use_nstep=True
)
if self._cuda:
data = to_device(data, self._device)
# ====================
# Q-learning forward
# ====================
self._learn_model.train()
self._target_model.train()
# Current q value (main model)
ret = self._learn_model.forward(data['obs'])
logit = ret['logit'] # [batch, action_dim(64)]
q_value = ret['q'] # [batch, num_quantiles, action_dim(64)]
quantiles = ret['quantiles'] # [batch, num_quantiles+1]
quantiles_hats = ret['quantiles_hats'] # [batch, num_quantiles], requires_grad = False
q_tau_i = ret['q_tau_i'] # [batch_size, num_quantiles-1, action_dim(64)]
entropies = ret['entropies'] # [batch, 1]
# Target q value
with torch.no_grad():
target_q_value = self._target_model.forward(data['next_obs'])['q']
# Max q value action (main model)
target_q_action = self._learn_model.forward(data['next_obs'])['action']
data_n = fqf_nstep_td_data(
q_value, target_q_value, data['action'], target_q_action, data['reward'], data['done'], quantiles_hats,
data['weight']
)
value_gamma = data.get('value_gamma')
entropy_loss = -self._ent_coef * entropies.mean()
fraction_loss = fqf_calculate_fraction_loss(q_tau_i.detach(), q_value, quantiles, data['action']) + entropy_loss
quantile_loss, td_error_per_sample = fqf_nstep_td_error(
data_n, self._gamma, nstep=self._nstep, kappa=self._kappa, value_gamma=value_gamma
)
# compute grad norm of a network's parameters
def compute_grad_norm(model):
return torch.norm(torch.stack([torch.norm(p.grad.detach(), 2.0) for p in model.parameters()]), 2.0)
# ====================
# fraction_proposal network update
# ====================
self._fraction_loss_optimizer.zero_grad()
fraction_loss.backward(retain_graph=True)
if self._cfg.multi_gpu:
self.sync_gradients(self._learn_model)
with torch.no_grad():
total_norm_quantiles_proposal = compute_grad_norm(self._model.head.quantiles_proposal)
self._fraction_loss_optimizer.step()
# ====================
# Q-learning update
# ====================
self._quantile_loss_optimizer.zero_grad()
quantile_loss.backward()
if self._cfg.multi_gpu:
self.sync_gradients(self._learn_model)
with torch.no_grad():
total_norm_Q = compute_grad_norm(self._model.head.Q)
total_norm_fqf_fc = compute_grad_norm(self._model.head.fqf_fc)
total_norm_encoder = compute_grad_norm(self._model.encoder)
self._quantile_loss_optimizer.step()
# =============
# after update
# =============
self._target_model.update(self._learn_model.state_dict())
return {
'cur_lr_fraction_loss': self._fraction_loss_optimizer.defaults['lr'],
'cur_lr_quantile_loss': self._quantile_loss_optimizer.defaults['lr'],
'logit': logit.mean().item(),
'fraction_loss': fraction_loss.item(),
'quantile_loss': quantile_loss.item(),
'total_norm_quantiles_proposal': total_norm_quantiles_proposal,
'total_norm_Q': total_norm_Q,
'total_norm_fqf_fc': total_norm_fqf_fc,
'total_norm_encoder': total_norm_encoder,
'priority': td_error_per_sample.abs().tolist(),
# Only discrete action satisfying len(data['action'])==1 can return this and draw histogram on tensorboard.
'[histogram]action_distribution': data['action'],
'[histogram]quantiles_hats': quantiles_hats[0], # quantiles_hats.requires_grad = False
}
def _monitor_vars_learn(self) -> List[str]:
return [
'cur_lr_fraction_loss', 'cur_lr_quantile_loss', 'logit', 'fraction_loss', 'quantile_loss',
'total_norm_quantiles_proposal', 'total_norm_Q', 'total_norm_fqf_fc', 'total_norm_encoder'
]
def _state_dict_learn(self) -> Dict[str, Any]:
return {
'model': self._learn_model.state_dict(),
'target_model': self._target_model.state_dict(),
'optimizer_fraction_loss': self._fraction_loss_optimizer.state_dict(),
'optimizer_quantile_loss': self._quantile_loss_optimizer.state_dict(),
}
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
self._learn_model.load_state_dict(state_dict['model'])
self._target_model.load_state_dict(state_dict['target_model'])
self._fraction_loss_optimizer.load_state_dict(state_dict['optimizer_fraction_loss'])
self._quantile_loss_optimizer.load_state_dict(state_dict['optimizer_quantile_loss'])
|