File size: 6,988 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from typing import Dict, Any, List, Tuple
from collections import namedtuple
from easydict import EasyDict

import torch
import torch.nn.functional as F

from ding.model import model_wrap
from ding.torch_utils import to_device
from ding.utils.data import default_collate, default_decollate
from ding.utils import POLICY_REGISTRY
from .bc import BehaviourCloningPolicy
from ding.model.template.ebm import create_stochastic_optimizer
from ding.model.template.ebm import StochasticOptimizer, MCMC, AutoRegressiveDFO
from ding.torch_utils import unsqueeze_repeat
from ding.utils import EasyTimer


@POLICY_REGISTRY.register('ibc')
class IBCPolicy(BehaviourCloningPolicy):
    r"""
    Overview:
        Implicit Behavior Cloning
        https://arxiv.org/abs/2109.00137.pdf

    .. note::
        The code is adapted from the pytorch version of IBC https://github.com/kevinzakka/ibc,
            which only supports the derivative-free optimization (dfo) variants.
        This implementation moves a step forward and supports all variants of energy-based model
            mentioned in the paper (dfo, autoregressive dfo, and mcmc).
    """

    config = dict(
        type='ibc',
        cuda=False,
        on_policy=False,
        continuous=True,
        model=dict(stochastic_optim=dict(type='mcmc', )),
        learn=dict(
            train_epoch=30,
            batch_size=256,
            optim=dict(
                learning_rate=1e-5,
                weight_decay=0.0,
                beta1=0.9,
                beta2=0.999,
            ),
        ),
        eval=dict(evaluator=dict(eval_freq=10000, )),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        return 'ebm', ['ding.model.template.ebm']

    def _init_learn(self):
        self._timer = EasyTimer(cuda=self._cfg.cuda)
        self._sync_timer = EasyTimer(cuda=self._cfg.cuda)
        optim_cfg = self._cfg.learn.optim
        self._optimizer = torch.optim.AdamW(
            self._model.parameters(),
            lr=optim_cfg.learning_rate,
            weight_decay=optim_cfg.weight_decay,
            betas=(optim_cfg.beta1, optim_cfg.beta2),
        )
        self._stochastic_optimizer: StochasticOptimizer = \
            create_stochastic_optimizer(self._device, self._cfg.model.stochastic_optim)
        self._learn_model = model_wrap(self._model, 'base')
        self._learn_model.reset()

    def _forward_learn(self, data):
        with self._timer:
            data = default_collate(data)
            if self._cuda:
                data = to_device(data, self._device)
            self._learn_model.train()

            loss_dict = dict()

            # obs: (B, O)
            # action: (B, A)
            obs, action = data['obs'], data['action']
            # When action/observation space is 1, the action/observation dimension will
            # be squeezed in the first place, therefore unsqueeze there to make the data
            # compatiable with the ibc pipeline.
            if len(obs.shape) == 1:
                obs = obs.unsqueeze(-1)
            if len(action.shape) == 1:
                action = action.unsqueeze(-1)

            # N refers to the number of negative samples, i.e. self._stochastic_optimizer.inference_samples.
            # (B, N, O), (B, N, A)
            obs, negatives = self._stochastic_optimizer.sample(obs, self._learn_model)

            # (B, N+1, A)
            targets = torch.cat([action.unsqueeze(dim=1), negatives], dim=1)
            # (B, N+1, O)
            obs = torch.cat([obs[:, :1], obs], dim=1)

            permutation = torch.rand(targets.shape[0], targets.shape[1]).argsort(dim=1)
            targets = targets[torch.arange(targets.shape[0]).unsqueeze(-1), permutation]

            # (B, )
            ground_truth = (permutation == 0).nonzero()[:, 1].to(self._device)

            # (B, N+1) for ebm
            # (B, N+1, A) for autoregressive ebm
            energy = self._learn_model.forward(obs, targets)

            logits = -1.0 * energy
            if isinstance(self._stochastic_optimizer, AutoRegressiveDFO):
                # autoregressive case
                # (B, A)
                ground_truth = unsqueeze_repeat(ground_truth, logits.shape[-1], -1)
            loss = F.cross_entropy(logits, ground_truth)
            loss_dict['ebm_loss'] = loss.item()

            if isinstance(self._stochastic_optimizer, MCMC):
                grad_penalty = self._stochastic_optimizer.grad_penalty(obs, targets, self._learn_model)
                loss += grad_penalty
                loss_dict['grad_penalty'] = grad_penalty.item()
            loss_dict['total_loss'] = loss.item()

            self._optimizer.zero_grad()
            loss.backward()
            with self._sync_timer:
                if self._cfg.multi_gpu:
                    self.sync_gradients(self._learn_model)
            sync_time = self._sync_timer.value
            self._optimizer.step()

        total_time = self._timer.value

        return {
            'total_time': total_time,
            'sync_time': sync_time,
            **loss_dict,
        }

    def _monitor_vars_learn(self):
        if isinstance(self._stochastic_optimizer, MCMC):
            return ['total_loss', 'ebm_loss', 'grad_penalty', 'total_time', 'sync_time']
        else:
            return ['total_loss', 'ebm_loss', 'total_time', 'sync_time']

    def _init_eval(self):
        self._eval_model = model_wrap(self._model, wrapper_name='base')
        self._eval_model.reset()

    def _forward_eval(self, data: dict) -> dict:
        tensor_input = isinstance(data, torch.Tensor)
        if not tensor_input:
            data_id = list(data.keys())
            data = default_collate(list(data.values()))

        if self._cuda:
            data = to_device(data, self._device)

        self._eval_model.eval()
        output = self._stochastic_optimizer.infer(data, self._eval_model)
        output = dict(action=output)

        if self._cuda:
            output = to_device(output, 'cpu')
        if tensor_input:
            return output
        else:
            output = default_decollate(output)
            return {i: d for i, d in zip(data_id, output)}

    def set_statistic(self, statistics: EasyDict) -> None:
        self._stochastic_optimizer.set_action_bounds(statistics.action_bounds)

    # =================================================================== #
    # Implicit Behavioral Cloning does not need `collect`-related functions
    # =================================================================== #
    def _init_collect(self):
        raise NotImplementedError

    def _forward_collect(self, data: Dict[int, Any], eps: float) -> Dict[int, Any]:
        raise NotImplementedError

    def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict:
        raise NotImplementedError

    def _get_train_sample(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        raise NotImplementedError