File size: 13,759 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
from typing import List, Dict, Any, Tuple, Union
from collections import namedtuple
import torch
from torch import nn
from copy import deepcopy
from ding.torch_utils import Adam, to_device
from ding.rl_utils import get_train_sample
from ding.utils import POLICY_REGISTRY, deep_merge_dicts
from ding.utils.data import default_collate, default_decollate
from ding.policy import Policy
from ding.model import model_wrap
from ding.policy.common_utils import default_preprocess_learn

from .utils import imagine, compute_target, compute_actor_loss, RewardEMA, tensorstats


@POLICY_REGISTRY.register('dreamer')
class DREAMERPolicy(Policy):
    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='dreamer',
        # (bool) Whether to use cuda for network and loss computation.
        cuda=False,
        # (int) Number of training samples (randomly collected) in replay buffer when training starts.
        random_collect_size=5000,
        # (bool) Whether to need policy-specific data in preprocess transition.
        transition_with_policy_data=False,
        # (int)
        imag_horizon=15,
        learn=dict(
            # (float) Lambda for TD-lambda return.
            lambda_=0.95,
            # (float) Max norm of gradients.
            grad_clip=100,
            learning_rate=3e-5,
            batch_size=16,
            batch_length=64,
            imag_sample=True,
            slow_value_target=True,
            slow_target_update=1,
            slow_target_fraction=0.02,
            discount=0.997,
            reward_EMA=True,
            actor_entropy=3e-4,
            actor_state_entropy=0.0,
            value_decay=0.0,
        ),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        return 'dreamervac', ['ding.model.template.vac']

    def _init_learn(self) -> None:
        r"""
        Overview:
            Learn mode init method. Called by ``self.__init__``.
            Init the optimizer, algorithm config, main and target models.
        """
        # Algorithm config
        self._lambda = self._cfg.learn.lambda_
        self._grad_clip = self._cfg.learn.grad_clip

        self._critic = self._model.critic
        self._actor = self._model.actor

        if self._cfg.learn.slow_value_target:
            self._slow_value = deepcopy(self._critic)
            self._updates = 0

        # Optimizer
        self._optimizer_value = Adam(
            self._critic.parameters(),
            lr=self._cfg.learn.learning_rate,
        )
        self._optimizer_actor = Adam(
            self._actor.parameters(),
            lr=self._cfg.learn.learning_rate,
        )

        self._learn_model = model_wrap(self._model, wrapper_name='base')
        self._learn_model.reset()

        self._forward_learn_cnt = 0

        if self._cfg.learn.reward_EMA:
            self.reward_ema = RewardEMA(device=self._device)

    def _forward_learn(self, start: dict, world_model, envstep) -> Dict[str, Any]:
        # log dict
        log_vars = {}
        self._learn_model.train()
        self._update_slow_target()

        self._actor.requires_grad_(requires_grad=True)
        # start is dict of {stoch, deter, logit}
        if self._cuda:
            start = to_device(start, self._device)

        # train self._actor
        imag_feat, imag_state, imag_action = imagine(
            self._cfg.learn, world_model, start, self._actor, self._cfg.imag_horizon
        )
        reward = world_model.heads["reward"](world_model.dynamics.get_feat(imag_state)).mode()
        actor_ent = self._actor(imag_feat).entropy()
        state_ent = world_model.dynamics.get_dist(imag_state).entropy()
        # this target is not scaled
        # slow is flag to indicate whether slow_target is used for lambda-return
        target, weights, base = compute_target(
            self._cfg.learn, world_model, self._critic, imag_feat, imag_state, reward, actor_ent, state_ent
        )
        actor_loss, mets = compute_actor_loss(
            self._cfg.learn,
            self._actor,
            self.reward_ema,
            imag_feat,
            imag_state,
            imag_action,
            target,
            actor_ent,
            state_ent,
            weights,
            base,
        )
        log_vars.update(mets)
        value_input = imag_feat
        self._actor.requires_grad_(requires_grad=False)

        self._critic.requires_grad_(requires_grad=True)
        value = self._critic(value_input[:-1].detach())
        # to do
        # target = torch.stack(target, dim=1)
        # (time, batch, 1), (time, batch, 1) -> (time, batch)
        value_loss = -value.log_prob(target.detach())
        slow_target = self._slow_value(value_input[:-1].detach())
        if self._cfg.learn.slow_value_target:
            value_loss = value_loss - value.log_prob(slow_target.mode().detach())
        if self._cfg.learn.value_decay:
            value_loss += self._cfg.learn.value_decay * value.mode()
        # (time, batch, 1), (time, batch, 1) -> (1,)
        value_loss = torch.mean(weights[:-1] * value_loss[:, :, None])
        self._critic.requires_grad_(requires_grad=False)

        log_vars.update(tensorstats(value.mode(), "value"))
        log_vars.update(tensorstats(target, "target"))
        log_vars.update(tensorstats(reward, "imag_reward"))
        log_vars.update(tensorstats(imag_action, "imag_action"))
        log_vars["actor_ent"] = torch.mean(actor_ent).detach().cpu().numpy().item()
        # ====================
        # actor-critic update
        # ====================
        self._model.requires_grad_(requires_grad=True)
        world_model.requires_grad_(requires_grad=True)

        loss_dict = {
            'critic_loss': value_loss,
            'actor_loss': actor_loss,
        }

        norm_dict = self._update(loss_dict)

        self._model.requires_grad_(requires_grad=False)
        world_model.requires_grad_(requires_grad=False)
        # =============
        # after update
        # =============
        self._forward_learn_cnt += 1

        return {
            **log_vars,
            **norm_dict,
            **loss_dict,
        }

    def _update(self, loss_dict):
        # update actor
        self._optimizer_actor.zero_grad()
        loss_dict['actor_loss'].backward()
        actor_norm = nn.utils.clip_grad_norm_(self._model.actor.parameters(), self._grad_clip)
        self._optimizer_actor.step()
        # update critic
        self._optimizer_value.zero_grad()
        loss_dict['critic_loss'].backward()
        critic_norm = nn.utils.clip_grad_norm_(self._model.critic.parameters(), self._grad_clip)
        self._optimizer_value.step()
        return {'actor_grad_norm': actor_norm, 'critic_grad_norm': critic_norm}

    def _update_slow_target(self):
        if self._cfg.learn.slow_value_target:
            if self._updates % self._cfg.learn.slow_target_update == 0:
                mix = self._cfg.learn.slow_target_fraction
                for s, d in zip(self._critic.parameters(), self._slow_value.parameters()):
                    d.data = mix * s.data + (1 - mix) * d.data
            self._updates += 1

    def _state_dict_learn(self) -> Dict[str, Any]:
        ret = {
            'model': self._learn_model.state_dict(),
            'optimizer_value': self._optimizer_value.state_dict(),
            'optimizer_actor': self._optimizer_actor.state_dict(),
        }
        return ret

    def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
        self._learn_model.load_state_dict(state_dict['model'])
        self._optimizer_value.load_state_dict(state_dict['optimizer_value'])
        self._optimizer_actor.load_state_dict(state_dict['optimizer_actor'])

    def _init_collect(self) -> None:
        self._unroll_len = self._cfg.collect.unroll_len
        self._collect_model = model_wrap(self._model, wrapper_name='base')
        self._collect_model.reset()

    def _forward_collect(self, data: dict, world_model, envstep, reset=None, state=None) -> dict:
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._collect_model.eval()

        if state is None:
            batch_size = len(data_id)
            latent = world_model.dynamics.initial(batch_size)  # {logit, stoch, deter}
            action = torch.zeros((batch_size, self._cfg.collect.action_size)).to(self._device)
        else:
            #state = default_collate(list(state.values()))
            latent = to_device(default_collate(list(zip(*state))[0]), self._device)
            action = to_device(default_collate(list(zip(*state))[1]), self._device)
            if len(action.shape) == 1:
                action = action.unsqueeze(-1)
            if reset.any():
                mask = 1 - reset
                for key in latent.keys():
                    for i in range(latent[key].shape[0]):
                        latent[key][i] *= mask[i]
                for i in range(len(action)):
                    action[i] *= mask[i]

        data = data - 0.5
        embed = world_model.encoder(data)
        latent, _ = world_model.dynamics.obs_step(latent, action, embed, self._cfg.collect.collect_dyn_sample)
        feat = world_model.dynamics.get_feat(latent)

        actor = self._actor(feat)
        action = actor.sample()
        logprob = actor.log_prob(action)
        latent = {k: v.detach() for k, v in latent.items()}
        action = action.detach()

        state = (latent, action)
        output = {"action": action, "logprob": logprob, "state": state}

        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict:
        r"""
        Overview:
            Generate dict type transition data from inputs.
        Arguments:
            - obs (:obj:`Any`): Env observation
            - model_output (:obj:`dict`): Output of collect model, including at least ['action']
            - timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done'] \
                (here 'obs' indicates obs after env step).
        Returns:
            - transition (:obj:`dict`): Dict type transition data.
        """
        transition = {
            'obs': obs,
            'action': model_output['action'],
            # TODO(zp) random_collect just have action
            #'logprob': model_output['logprob'],
            'reward': timestep.reward,
            'discount': timestep.info['discount'],
            'done': timestep.done,
        }
        return transition

    def _get_train_sample(self, data: list) -> Union[None, List[Any]]:
        return get_train_sample(data, self._unroll_len)

    def _init_eval(self) -> None:
        self._eval_model = model_wrap(self._model, wrapper_name='base')
        self._eval_model.reset()

    def _forward_eval(self, data: dict, world_model, reset=None, state=None) -> dict:
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._eval_model.eval()

        if state is None:
            batch_size = len(data_id)
            latent = world_model.dynamics.initial(batch_size)  # {logit, stoch, deter}
            action = torch.zeros((batch_size, self._cfg.collect.action_size)).to(self._device)
        else:
            #state = default_collate(list(state.values()))
            latent = to_device(default_collate(list(zip(*state))[0]), self._device)
            action = to_device(default_collate(list(zip(*state))[1]), self._device)
            if len(action.shape) == 1:
                action = action.unsqueeze(-1)
            if reset.any():
                mask = 1 - reset
                for key in latent.keys():
                    for i in range(latent[key].shape[0]):
                        latent[key][i] *= mask[i]
                for i in range(len(action)):
                    action[i] *= mask[i]

        data = data - 0.5
        embed = world_model.encoder(data)
        latent, _ = world_model.dynamics.obs_step(latent, action, embed, self._cfg.collect.collect_dyn_sample)
        feat = world_model.dynamics.get_feat(latent)

        actor = self._actor(feat)
        action = actor.mode()
        logprob = actor.log_prob(action)
        latent = {k: v.detach() for k, v in latent.items()}
        action = action.detach()

        state = (latent, action)
        output = {"action": action, "logprob": logprob, "state": state}

        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _monitor_vars_learn(self) -> List[str]:
        r"""
        Overview:
            Return variables' name if variables are to used in monitor.
        Returns:
            - vars (:obj:`List[str]`): Variables' name list.
        """
        return [
            'normed_target_mean', 'normed_target_std', 'normed_target_min', 'normed_target_max', 'EMA_005', 'EMA_095',
            'actor_entropy', 'actor_state_entropy', 'value_mean', 'value_std', 'value_min', 'value_max', 'target_mean',
            'target_std', 'target_min', 'target_max', 'imag_reward_mean', 'imag_reward_std', 'imag_reward_min',
            'imag_reward_max', 'imag_action_mean', 'imag_action_std', 'imag_action_min', 'imag_action_max', 'actor_ent',
            'actor_loss', 'critic_loss', 'actor_grad_norm', 'critic_grad_norm'
        ]