File size: 28,541 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
from typing import List, Dict, Any, Tuple, Union, Optional
from collections import namedtuple
import torch
import copy

from ding.torch_utils import Adam, to_device
from ding.rl_utils import q_nstep_td_data, q_nstep_td_error, q_nstep_td_error_with_rescale, get_nstep_return_data, \
    get_train_sample
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import timestep_collate, default_collate, default_decollate
from .base_policy import Policy


@POLICY_REGISTRY.register('ngu')
class NGUPolicy(Policy):
    r"""
    Overview:
        Policy class of NGU. The corresponding paper is `never give up: learning directed exploration strategies`.

    Config:
        == ==================== ======== ============== ======================================== =======================
        ID Symbol               Type     Default Value  Description                              Other(Shape)
        == ==================== ======== ============== ======================================== =======================
        1  ``type``             str      dqn            | RL policy register name, refer to      | This arg is optional,
                                                        | registry ``POLICY_REGISTRY``           | a placeholder
        2  ``cuda``             bool     False          | Whether to use cuda for network        | This arg can be diff-
                                                                                                 | erent from modes
        3  ``on_policy``        bool     False          | Whether the RL algorithm is on-policy
                                                        | or off-policy
        4  ``priority``         bool     False          | Whether use priority(PER)              | Priority sample,
                                                                                                 | update priority
        5  | ``priority_IS``    bool     False          | Whether use Importance Sampling Weight
           | ``_weight``                                | to correct biased update. If True,
                                                        | priority must be True.
        6  | ``discount_``      float    0.997,         | Reward's future discount factor, aka.  | May be 1 when sparse
           | ``factor``                  [0.95, 0.999]  | gamma                                  | reward env
        7  ``nstep``            int      3,             | N-step reward discount sum for target
                                         [3, 5]         | q_value estimation
        8  ``burnin_step``      int      2              | The timestep of burnin operation,
                                                        | which is designed to RNN hidden state
                                                        | difference caused by off-policy
        9  | ``learn.update``   int      1              | How many updates(iterations) to train  | This args can be vary
           | ``per_collect``                            | after collector's one collection. Only | from envs. Bigger val
                                                        | valid in serial training               | means more off-policy
        10 | ``learn.batch_``   int      64             | The number of samples of an iteration
           | ``size``
        11 | ``learn.learning`` float    0.001          | Gradient step length of an iteration.
           | ``_rate``
        12 | ``learn.value_``   bool     True           | Whether use value_rescale function for
           | ``rescale``                                | predicted value
        13 | ``learn.target_``  int      100            | Frequence of target network update.    | Hard(assign) update
           | ``update_freq``
        14 | ``learn.ignore_``  bool     False          | Whether ignore done for target value   | Enable it for some
           | ``done``                                   | calculation.                           | fake termination env
        15 ``collect.n_sample`` int      [8, 128]       | The number of training samples of a    | It varies from
                                                        | call of collector.                     | different envs
        16 | ``collect.unroll`` int      1              | unroll length of an iteration          | In RNN, unroll_len>1
           | ``_len``
        == ==================== ======== ============== ======================================== =======================
    """
    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='ngu',
        # (bool) Whether to use cuda for network.
        cuda=False,
        # (bool) Whether the RL algorithm is on-policy or off-policy.
        on_policy=False,
        # (bool) Whether use priority(priority sample, IS weight, update priority)
        priority=True,
        # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
        priority_IS_weight=True,
        # ==============================================================
        # The following configs are algorithm-specific
        # ==============================================================
        # (float) Reward's future discount factor, aka. gamma.
        discount_factor=0.997,
        # (int) N-step reward for target q_value estimation
        nstep=5,
        # (int) the timestep of burnin operation, which is designed to RNN hidden state difference
        # caused by off-policy
        burnin_step=20,
        # (int) <learn_unroll_len> is the total length of [sequence sample] minus
        # the length of burnin part in [sequence sample],
        # i.e., <sequence sample length> = <unroll_len> = <burnin_step> + <learn_unroll_len>
        learn_unroll_len=80,  # set this key according to the episode length
        learn=dict(
            update_per_collect=1,
            batch_size=64,
            learning_rate=0.0001,
            # ==============================================================
            # The following configs are algorithm-specific
            # ==============================================================
            # (float type) target_update_theta: Used for soft update of the target network,
            # aka. Interpolation factor in polyak averaging for target networks.
            target_update_theta=0.001,
            # (bool) whether use value_rescale function for predicted value
            value_rescale=True,
            ignore_done=False,
        ),
        collect=dict(
            # NOTE: It is important that set key traj_len_inf=True here,
            # to make sure self._traj_len=INF in serial_sample_collector.py.
            # In sequence-based policy, for each collect_env,
            # we want to collect data of length self._traj_len=INF
            # unless the episode enters the 'done' state.
            # In each collect phase, we collect a total of <n_sample> sequence samples.
            n_sample=32,
            traj_len_inf=True,
            # `env_num` is used in hidden state, should equal to that one in env config.
            # User should specify this value in user config.
            env_num=None,
        ),
        eval=dict(
            # `env_num` is used in hidden state, should equal to that one in env config.
            # User should specify this value in user config.
            env_num=None,
        ),
        other=dict(
            eps=dict(
                type='exp',
                start=0.95,
                end=0.05,
                decay=10000,
            ),
            replay_buffer=dict(replay_buffer_size=10000, ),
        ),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        return 'ngu', ['ding.model.template.ngu']

    def _init_learn(self) -> None:
        r"""
        Overview:
            Init the learner model of R2D2Policy

        Arguments:
            .. note::

                The _init_learn method takes the argument from the self._cfg.learn in the config file

            - learning_rate (:obj:`float`): The learning rate fo the optimizer
            - gamma (:obj:`float`): The discount factor
            - nstep (:obj:`int`): The num of n step return
            - value_rescale (:obj:`bool`): Whether to use value rescaled loss in algorithm
            - burnin_step (:obj:`int`): The num of step of burnin
        """
        self._priority = self._cfg.priority
        self._priority_IS_weight = self._cfg.priority_IS_weight
        self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate)
        self._gamma = self._cfg.discount_factor
        self._nstep = self._cfg.nstep
        self._burnin_step = self._cfg.burnin_step
        self._value_rescale = self._cfg.learn.value_rescale

        self._target_model = copy.deepcopy(self._model)
        # here we should not adopt the 'assign' mode of target network here because the reset bug
        # self._target_model = model_wrap(
        #     self._target_model,
        #     wrapper_name='target',
        #     update_type='assign',
        #     update_kwargs={'freq': self._cfg.learn.target_update_freq}
        # )
        self._target_model = model_wrap(
            self._target_model,
            wrapper_name='target',
            update_type='momentum',
            update_kwargs={'theta': self._cfg.learn.target_update_theta}
        )
        self._target_model = model_wrap(
            self._target_model, wrapper_name='hidden_state', state_num=self._cfg.learn.batch_size, save_prev_state=True
        )
        self._learn_model = model_wrap(
            self._model, wrapper_name='hidden_state', state_num=self._cfg.learn.batch_size, save_prev_state=True
        )
        self._learn_model = model_wrap(self._learn_model, wrapper_name='argmax_sample')
        self._learn_model.reset()
        self._target_model.reset()

    def _data_preprocess_learn(self, data: List[Dict[str, Any]]) -> dict:
        r"""
        Overview:
            Preprocess the data to fit the required data format for learning

        Arguments:
            - data (:obj:`List[Dict[str, Any]]`): the data collected from collect function

        Returns:
            - data (:obj:`Dict[str, Any]`): the processed data, including at least \
                ['main_obs', 'target_obs', 'burnin_obs', 'action', 'reward', 'done', 'weight']
            - data_info (:obj:`dict`): the data info, such as replay_buffer_idx, replay_unique_id
        """

        # data preprocess
        data = timestep_collate(data)
        if self._cuda:
            data = to_device(data, self._device)

        if self._priority_IS_weight:
            assert self._priority, "Use IS Weight correction, but Priority is not used."
        if self._priority and self._priority_IS_weight:
            data['weight'] = data['IS']
        else:
            data['weight'] = data.get('weight', None)

        bs = self._burnin_step

        # data['done'], data['weight'], data['value_gamma'] is used in def _forward_learn() to calculate
        # the q_nstep_td_error, should be length of [self._sequence_len-self._burnin_step]
        ignore_done = self._cfg.learn.ignore_done
        if ignore_done:
            data['done'] = [None for _ in range(self._sequence_len - bs - self._nstep)]
        else:
            data['done'] = data['done'][bs:].float()  # for computation of online model self._learn_model
            # NOTE that after the proprocessing of  get_nstep_return_data() in _get_train_sample
            # the data['done'] [t] is already the n-step done

        # if the data don't include 'weight' or 'value_gamma' then fill in None in a list
        # with length of [self._sequence_len-self._burnin_step],
        # below is two different implementation ways
        if 'value_gamma' not in data:
            data['value_gamma'] = [None for _ in range(self._sequence_len - bs)]
        else:
            data['value_gamma'] = data['value_gamma'][bs:]

        if 'weight' not in data:
            data['weight'] = [None for _ in range(self._sequence_len - bs)]
        else:
            data['weight'] = data['weight'] * torch.ones_like(data['done'])
            # every timestep in sequence has same weight, which is the _priority_IS_weight in PER

        # the burnin_nstep_obs is used to calculate the init hidden state of rnn for the calculation of the q_value,
        # target_q_value, and target_q_action
        data['burnin_nstep_obs'] = data['obs'][:bs + self._nstep]
        data['burnin_nstep_action'] = data['action'][:bs + self._nstep]
        data['burnin_nstep_reward'] = data['reward'][:bs + self._nstep]
        data['burnin_nstep_beta'] = data['beta'][:bs + self._nstep]

        # split obs into three parts 'burnin_obs' [0:bs], 'main_obs' [bs:bs+nstep], 'target_obs' [bs+nstep:]
        # data['burnin_obs'] = data['obs'][:bs]
        data['main_obs'] = data['obs'][bs:-self._nstep]
        data['target_obs'] = data['obs'][bs + self._nstep:]

        # data['burnin_action'] = data['action'][:bs]
        data['main_action'] = data['action'][bs:-self._nstep]
        data['target_action'] = data['action'][bs + self._nstep:]

        # data['burnin_reward'] = data['reward'][:bs]
        data['main_reward'] = data['reward'][bs:-self._nstep]
        data['target_reward'] = data['reward'][bs + self._nstep:]

        # data['burnin_beta'] = data['beta'][:bs]
        data['main_beta'] = data['beta'][bs:-self._nstep]
        data['target_beta'] = data['beta'][bs + self._nstep:]

        # Note that Must be here after the previous slicing operation
        data['action'] = data['action'][bs:-self._nstep]
        data['reward'] = data['reward'][bs:-self._nstep]

        return data

    def _forward_learn(self, data: dict) -> Dict[str, Any]:
        r"""
        Overview:
            Forward and backward function of learn mode.
            Acquire the data, calculate the loss and optimize learner model.

        Arguments:
            - data (:obj:`dict`): Dict type data, including at least \
                ['main_obs', 'target_obs', 'burnin_obs', 'action', 'reward', 'done', 'weight']

        Returns:
            - info_dict (:obj:`Dict[str, Any]`): Including cur_lr and total_loss
                - cur_lr (:obj:`float`): Current learning rate
                - total_loss (:obj:`float`): The calculated loss
        """
        # forward
        data = self._data_preprocess_learn(data)
        self._learn_model.train()
        self._target_model.train()
        # use the hidden state in timestep=0
        self._learn_model.reset(data_id=None, state=data['prev_state'][0])
        self._target_model.reset(data_id=None, state=data['prev_state'][0])

        if len(data['burnin_nstep_obs']) != 0:
            with torch.no_grad():
                inputs = {
                    'obs': data['burnin_nstep_obs'],
                    'action': data['burnin_nstep_action'],
                    'reward': data['burnin_nstep_reward'],
                    'beta': data['burnin_nstep_beta'],
                    'enable_fast_timestep': True
                }
                tmp = self._learn_model.forward(
                    inputs, saved_state_timesteps=[self._burnin_step, self._burnin_step + self._nstep]
                )
                tmp_target = self._target_model.forward(
                    inputs, saved_state_timesteps=[self._burnin_step, self._burnin_step + self._nstep]
                )

        inputs = {
            'obs': data['main_obs'],
            'action': data['main_action'],
            'reward': data['main_reward'],
            'beta': data['main_beta'],
            'enable_fast_timestep': True
        }
        self._learn_model.reset(data_id=None, state=tmp['saved_state'][0])
        q_value = self._learn_model.forward(inputs)['logit']

        self._learn_model.reset(data_id=None, state=tmp['saved_state'][1])
        self._target_model.reset(data_id=None, state=tmp_target['saved_state'][1])

        next_inputs = {
            'obs': data['target_obs'],
            'action': data['target_action'],
            'reward': data['target_reward'],
            'beta': data['target_beta'],
            'enable_fast_timestep': True
        }
        with torch.no_grad():
            target_q_value = self._target_model.forward(next_inputs)['logit']
            # argmax_action double_dqn
            target_q_action = self._learn_model.forward(next_inputs)['action']

        action, reward, done, weight = data['action'], data['reward'], data['done'], data['weight']
        value_gamma = [
            None for _ in range(self._sequence_len - self._burnin_step)
        ]  # NOTE this is important, because we use diffrent gamma according to their beta in NGU alg.

        # T, B, nstep -> T, nstep, B
        reward = reward.permute(0, 2, 1).contiguous()
        loss = []
        td_error = []
        self._gamma = [self.index_to_gamma[int(i)] for i in data['main_beta'][0]]  # T, B -> B, e.g. 75,64 -> 64

        # reward torch.Size([4, 5, 64])
        for t in range(self._sequence_len - self._burnin_step - self._nstep):
            # here t=0 means timestep <self._burnin_step> in the original sample sequence, we minus self._nstep
            # because for the last <self._nstep> timestep in the sequence, we don't have their target obs
            td_data = q_nstep_td_data(
                q_value[t], target_q_value[t], action[t], target_q_action[t], reward[t], done[t], weight[t]
            )
            if self._value_rescale:
                l, e = q_nstep_td_error_with_rescale(td_data, self._gamma, self._nstep, value_gamma=value_gamma[t])
                loss.append(l)
                td_error.append(e.abs())
            else:
                l, e = q_nstep_td_error(td_data, self._gamma, self._nstep, value_gamma=value_gamma[t])
                loss.append(l)
                td_error.append(e.abs())
        loss = sum(loss) / (len(loss) + 1e-8)

        # using the mixture of max and mean absolute n-step TD-errors as the priority of the sequence
        td_error_per_sample = 0.9 * torch.max(
            torch.stack(td_error), dim=0
        )[0] + (1 - 0.9) * (torch.sum(torch.stack(td_error), dim=0) / (len(td_error) + 1e-8))
        # td_error shape list(<self._sequence_len-self._burnin_step-self._nstep>, B),
        # for example, (75,64)
        # torch.sum(torch.stack(td_error), dim=0) can also be replaced with sum(td_error)

        # update
        self._optimizer.zero_grad()
        loss.backward()
        self._optimizer.step()
        # after update
        self._target_model.update(self._learn_model.state_dict())

        # the information for debug
        batch_range = torch.arange(action[0].shape[0])
        q_s_a_t0 = q_value[0][batch_range, action[0]]
        target_q_s_a_t0 = target_q_value[0][batch_range, target_q_action[0]]

        return {
            'cur_lr': self._optimizer.defaults['lr'],
            'total_loss': loss.item(),
            'priority': td_error_per_sample.abs().tolist(),
            # the first timestep in the sequence, may not be the start of episode
            'q_s_taken-a_t0': q_s_a_t0.mean().item(),
            'target_q_s_max-a_t0': target_q_s_a_t0.mean().item(),
            'q_s_a-mean_t0': q_value[0].mean().item(),
        }

    def _reset_learn(self, data_id: Optional[List[int]] = None) -> None:
        self._learn_model.reset(data_id=data_id)

    def _state_dict_learn(self) -> Dict[str, Any]:
        return {
            'model': self._learn_model.state_dict(),
            'target_model': self._target_model.state_dict(),
            'optimizer': self._optimizer.state_dict(),
        }

    def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
        self._learn_model.load_state_dict(state_dict['model'])
        self._target_model.load_state_dict(state_dict['target_model'])
        self._optimizer.load_state_dict(state_dict['optimizer'])

    def _init_collect(self) -> None:
        r"""
        Overview:
            Collect mode init method. Called by ``self.__init__``.
            Init traj and unroll length, collect model.
        """
        assert 'unroll_len' not in self._cfg.collect, "ngu use default <unroll_len = learn_unroll_len + burnin_step>"
        self._nstep = self._cfg.nstep
        self._burnin_step = self._cfg.burnin_step
        self._gamma = self._cfg.discount_factor
        self._sequence_len = self._cfg.learn_unroll_len + self._cfg.burnin_step
        self._unroll_len = self._sequence_len
        self._collect_model = model_wrap(
            self._model, wrapper_name='hidden_state', state_num=self._cfg.collect.env_num, save_prev_state=True
        )
        self._collect_model = model_wrap(self._collect_model, wrapper_name='eps_greedy_sample')
        self._collect_model.reset()
        self.index_to_gamma = {  # NOTE
            i: 1 - torch.exp(
                (
                    (self._cfg.collect.env_num - 1 - i) * torch.log(torch.tensor(1 - 0.997)) +
                    i * torch.log(torch.tensor(1 - 0.99))
                ) / (self._cfg.collect.env_num - 1)
            )
            for i in range(self._cfg.collect.env_num)
        }
        # NOTE: for NGU policy collect phase
        self.beta_index = {
            i: torch.randint(0, self._cfg.collect.env_num, [1])
            for i in range(self._cfg.collect.env_num)
        }
        # epsilon=0.4, alpha=9
        self.eps = {i: 0.4 ** (1 + 8 * i / (self._cfg.collect.env_num - 1)) for i in range(self._cfg.collect.env_num)}

    def _forward_collect(self, data: dict) -> dict:
        r"""
        Overview:
            Collect output according to eps_greedy plugin

        Arguments:
            - data (:obj:`dict`): Dict type data, including at least ['obs'].

        Returns:
            - data (:obj:`dict`): The collected data
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))

        obs = data['obs']
        prev_action = data['prev_action'].long()
        prev_reward_extrinsic = data['prev_reward_extrinsic']

        beta_index = default_collate(list(self.beta_index.values()))
        if len(data_id) != self._cfg.collect.env_num:
            # in case, some env is in reset state and only return part data
            beta_index = beta_index[data_id]

        if self._cuda:
            obs = to_device(obs, self._device)
            beta_index = to_device(beta_index, self._device)
            prev_action = to_device(prev_action, self._device)
            prev_reward_extrinsic = to_device(prev_reward_extrinsic, self._device)
        # TODO(pu): add prev_reward_intrinsic to network input,
        #  reward uses some kind of embedding instead of 1D value
        data = {
            'obs': obs,
            'prev_action': prev_action,
            'prev_reward_extrinsic': prev_reward_extrinsic,
            'beta': beta_index
        }
        self._collect_model.eval()
        with torch.no_grad():
            output = self._collect_model.forward(data, data_id=data_id, eps=self.eps, inference=True)
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _reset_collect(self, data_id: Optional[List[int]] = None) -> None:
        self._collect_model.reset(data_id=data_id)
        # NOTE: for NGU policy, in collect phase, each episode, we sample a new beta for each env
        if data_id is not None:
            self.beta_index[data_id[0]] = torch.randint(0, self._cfg.collect.env_num, [1])

    def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple, env_id) -> dict:
        r"""
        Overview:
            Generate dict type transition data from inputs.
        Arguments:
            - obs (:obj:`Any`): Env observation
            - model_output (:obj:`dict`): Output of collect model, including at least ['action', 'prev_state']
            - timestep (:obj:`namedtuple`): Output after env step, including at least ['reward', 'done'] \
                (here 'obs' indicates obs after env step).
        Returns:
            - transition (:obj:`dict`): Dict type transition data.
        """
        if hasattr(timestep, 'null'):
            transition = {
                'beta': self.beta_index[env_id],
                'obs': obs['obs'],  # NOTE: input obs including obs, prev_action, prev_reward_extrinsic
                'action': model_output['action'],
                'prev_state': model_output['prev_state'],
                'reward': timestep.reward,
                'done': timestep.done,
                'null': timestep.null,
            }
        else:
            transition = {
                'beta': self.beta_index[env_id],
                'obs': obs['obs'],  # NOTE: input obs including obs, prev_action, prev_reward_extrinsic
                'action': model_output['action'],
                'prev_state': model_output['prev_state'],
                'reward': timestep.reward,
                'done': timestep.done,
                'null': False,
            }
        return transition

    def _get_train_sample(self, data: list) -> Union[None, List[Any]]:
        r"""
        Overview:
            Get the trajectory and the n step return data, then sample from the n_step return data

        Arguments:
            - data (:obj:`list`): The trajectory's cache

        Returns:
            - samples (:obj:`dict`): The training samples generated
        """
        data = get_nstep_return_data(data, self._nstep, gamma=self.index_to_gamma[int(data[0]['beta'])].item())
        return get_train_sample(data, self._sequence_len)

    def _init_eval(self) -> None:
        r"""
        Overview:
            Evaluate mode init method. Called by ``self.__init__``.
            Init eval model with argmax strategy.
        """
        self._eval_model = model_wrap(self._model, wrapper_name='hidden_state', state_num=self._cfg.eval.env_num)
        self._eval_model = model_wrap(self._eval_model, wrapper_name='argmax_sample')
        self._eval_model.reset()
        # NOTE: for NGU policy eval phase
        # beta_index = 0 -> beta is approximately 0
        self.beta_index = {i: torch.tensor([0]) for i in range(self._cfg.eval.env_num)}

    def _forward_eval(self, data: dict) -> dict:
        r"""
        Overview:
            Forward function of collect mode, similar to ``self._forward_collect``.

        Arguments:
            - data (:obj:`dict`): Dict type data, including at least ['obs'].

        Returns:
            - output (:obj:`dict`): Dict type data, including at least inferred action according to input obs.
        """

        data_id = list(data.keys())
        data = default_collate(list(data.values()))

        obs = data['obs']
        prev_action = data['prev_action'].long()
        prev_reward_extrinsic = data['prev_reward_extrinsic']

        beta_index = default_collate(list(self.beta_index.values()))
        if len(data_id) != self._cfg.collect.env_num:
            # in case, some env is in reset state and only return part data
            beta_index = beta_index[data_id]

        if self._cuda:
            obs = to_device(obs, self._device)
            beta_index = to_device(beta_index, self._device)
            prev_action = to_device(prev_action, self._device)
            prev_reward_extrinsic = to_device(prev_reward_extrinsic, self._device)
        # TODO(pu): add prev_reward_intrinsic to network input,
        #  reward uses some kind of embedding instead of 1D value
        data = {
            'obs': obs,
            'prev_action': prev_action,
            'prev_reward_extrinsic': prev_reward_extrinsic,
            'beta': beta_index
        }

        self._eval_model.eval()
        with torch.no_grad():
            output = self._eval_model.forward(data, data_id=data_id, inference=True)
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _reset_eval(self, data_id: Optional[List[int]] = None) -> None:
        self._eval_model.reset(data_id=data_id)

    def _monitor_vars_learn(self) -> List[str]:
        return super()._monitor_vars_learn() + [
            'total_loss', 'priority', 'q_s_taken-a_t0', 'target_q_s_max-a_t0', 'q_s_a-mean_t0'
        ]