File size: 8,926 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from typing import List, Dict, Any, Tuple, Union
from collections import namedtuple
import torch
import treetensor as ttorch

from ding.rl_utils import get_gae_with_default_last_value, get_train_sample
from ding.torch_utils import Adam, to_device
from ding.utils import POLICY_REGISTRY, split_data_generator
from ding.utils.data import default_collate, default_decollate
from .base_policy import Policy
from .common_utils import default_preprocess_learn


@POLICY_REGISTRY.register('pg')
class PGPolicy(Policy):
    r"""
    Overview:
        Policy class of Policy Gradient (REINFORCE) algorithm.
    """
    config = dict(
        # (string) RL policy register name (refer to function "register_policy").
        type='pg',
        # (bool) whether to use cuda for network.
        cuda=False,
        # (bool) whether use on-policy training pipeline(behaviour policy and training policy are the same)
        on_policy=True,  # for pg strictly on policy algorithm, this line should not be modified by users
        # (str) action space type: ['discrete', 'continuous']
        action_space='discrete',
        # (bool) whether to use deterministic action for evaluation.
        deterministic_eval=True,
        learn=dict(

            # (int) the number of samples for one update.
            batch_size=64,
            # (float) the step size of one gradient descend.
            learning_rate=0.001,
            # ==============================================================
            # The following configs is algorithm-specific
            # ==============================================================
            # (float) loss weight of the entropy regularization, the weight of policy network is set to 1
            entropy_weight=0.01,
            # (float) max grad norm value.
            grad_norm=5,
            # (bool) whether to ignore done signal for non-termination env.
            ignore_done=False,
        ),
        collect=dict(
            # (int) collect n_sample data, train model n_iteration times
            # n_episode=8,
            # (int) trajectory unroll length
            unroll_len=1,
            # ==============================================================
            # The following configs is algorithm-specific
            # ==============================================================
            # (float) discount factor for future reward, defaults int [0, 1]
            discount_factor=0.99,
            collector=dict(get_train_sample=True),
        ),
        eval=dict(),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        return 'pg', ['ding.model.template.pg']

    def _init_learn(self) -> None:
        r"""
        Overview:
            Learn mode init method. Called by ``self.__init__``.
            Init the optimizer, algorithm config, main and target models.
        """
        # Optimizer
        self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate)

        self._entropy_weight = self._cfg.learn.entropy_weight
        self._grad_norm = self._cfg.learn.grad_norm
        self._learn_model = self._model  # for compatibility

    def _forward_learn(self, data: dict) -> Dict[str, Any]:
        r"""
        Overview:
            Forward and backward function of learn mode.
        Arguments:
            - data (:obj:`dict`): Dict type data, including at least ['obs', 'action', 'reward', 'next_obs','adv']
        Returns:
            - info_dict (:obj:`Dict[str, Any]`): Including current lr and loss.
        """
        data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=False)
        if self._cuda:
            data = to_device(data, self._device)
        self._model.train()

        return_infos = []
        for batch in split_data_generator(data, self._cfg.learn.batch_size, shuffle=True):
            # forward
            output = self._learn_model.forward(batch['obs'])
            return_ = batch['return']
            dist = output['dist']
            # calculate PG loss
            log_prob = dist.log_prob(batch['action'])
            policy_loss = -(log_prob * return_).mean()
            entropy_loss = -self._cfg.learn.entropy_weight * dist.entropy().mean()
            total_loss = policy_loss + entropy_loss

            # update
            self._optimizer.zero_grad()
            total_loss.backward()

            grad_norm = torch.nn.utils.clip_grad_norm_(
                list(self._learn_model.parameters()),
                max_norm=self._grad_norm,
            )
            self._optimizer.step()

            # only record last updates information in logger
            return_info = {
                'cur_lr': self._optimizer.param_groups[0]['lr'],
                'total_loss': total_loss.item(),
                'policy_loss': policy_loss.item(),
                'entropy_loss': entropy_loss.item(),
                'return_abs_max': return_.abs().max().item(),
                'grad_norm': grad_norm,
            }
            return_infos.append(return_info)
        return return_infos

    def _init_collect(self) -> None:
        self._unroll_len = self._cfg.collect.unroll_len
        self._gamma = self._cfg.collect.discount_factor

    def _forward_collect(self, data: dict) -> dict:
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._model.eval()
        with torch.no_grad():
            output = self._model.forward(data)
            output['action'] = output['dist'].sample()
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict:
        r"""
        Overview:
            Generate dict type transition data from inputs.
        Arguments:
            - obs (:obj:`Any`): Env observation
            - model_output (:obj:`dict`): Output of collect model, including at least ['action']
            - timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done'] \
                (here 'obs' indicates obs after env step).
        Returns:
            - transition (:obj:`dict`): Dict type transition data.
        """
        return {
            'obs': obs,
            'action': model_output['action'],
            'reward': timestep.reward,
            'done': timestep.done,
        }

    def _get_train_sample(self, data: list) -> Union[None, List[Any]]:
        r"""
        Overview:
            Get the trajectory and the n step return data, then sample from the n_step return data
        Arguments:
            - data (:obj:`list`): The trajectory's buffer list
        Returns:
            - samples (:obj:`dict`): The training samples generated
        """
        assert data[-1]['done'], "PG needs a complete epsiode"

        if self._cfg.learn.ignore_done:
            raise NotImplementedError

        R = 0.
        if isinstance(data, list):
            for i in reversed(range(len(data))):
                R = self._gamma * R + data[i]['reward']
                data[i]['return'] = R
            return get_train_sample(data, self._unroll_len)
        elif isinstance(data, ttorch.Tensor):
            data_size = data['done'].shape[0]
            data['return'] = ttorch.torch.zeros(data_size)
            for i in reversed(range(data_size)):
                R = self._gamma * R + data['reward'][i]
                data['return'][i] = R
            return get_train_sample(data, self._unroll_len)
        else:
            raise ValueError

    def _init_eval(self) -> None:
        pass

    def _forward_eval(self, data: dict) -> dict:
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._model.eval()
        with torch.no_grad():
            output = self._model.forward(data)
            if self._cfg.deterministic_eval:
                if self._cfg.action_space == 'discrete':
                    output['action'] = output['logit'].argmax(dim=-1)
                elif self._cfg.action_space == 'continuous':
                    output['action'] = output['logit']['mu']
                else:
                    raise KeyError("invalid action_space: {}".format(self._cfg.action_space))
            else:
                output['action'] = output['dist'].sample()
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _monitor_vars_learn(self) -> List[str]:
        return super()._monitor_vars_learn() + ['policy_loss', 'entropy_loss', 'return_abs_max', 'grad_norm']