File size: 16,332 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
from typing import List, Dict, Any, Optional, Tuple, Union
from collections import namedtuple, defaultdict
import copy
import numpy as np
import torch
import torch.nn.functional as F
from torch.distributions import Normal, Independent

from ding.torch_utils import Adam, to_device
from ding.rl_utils import v_1step_td_data, v_1step_td_error, get_train_sample, \
    qrdqn_nstep_td_data, qrdqn_nstep_td_error, get_nstep_return_data
from ding.policy import Policy
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY, DatasetNormalizer
from ding.utils.data import default_collate, default_decollate
from .common_utils import default_preprocess_learn


@POLICY_REGISTRY.register('pd')
class PDPolicy(Policy):
    r"""
    Overview:
        Implicit Plan Diffuser
        https://arxiv.org/pdf/2205.09991.pdf

    """
    config = dict(
        type='pd',
        # (bool) Whether to use cuda for network.
        cuda=False,
        # (bool type) priority: Determine whether to use priority in buffer sample.
        # Default False in SAC.
        priority=False,
        # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
        priority_IS_weight=False,
        # (int) Number of training samples(randomly collected) in replay buffer when training starts.
        # Default 10000 in SAC.
        random_collect_size=10000,
        nstep=1,
        # normalizer type
        normalizer='GaussianNormalizer',
        model=dict(
            diffuser_model='GaussianDiffusion',
            diffuser_model_cfg=dict(
                # the type of model
                model='TemporalUnet',
                # config of model
                model_cfg=dict(
                    # model dim, In GaussianInvDynDiffusion, it is obs_dim. In others, it is obs_dim + action_dim
                    transition_dim=23,
                    dim=32,
                    dim_mults=[1, 2, 4, 8],
                    # whether use return as a condition
                    returns_condition=False,
                    condition_dropout=0.1,
                    # whether use calc energy
                    calc_energy=False,
                    kernel_size=5,
                    # whether use attention
                    attention=False,
                ),
                # horizon of tarjectory which generated by model
                horizon=80,
                # timesteps of diffusion
                n_timesteps=1000,
                # hidden dim of action model
                # Whether predict epsilon
                predict_epsilon=True,
                # discount of loss
                loss_discount=1.0,
                # whether clip denoise
                clip_denoised=False,
                action_weight=10,
            ),
            value_model='ValueDiffusion',
            value_model_cfg=dict(
                # the type of model
                model='TemporalValue',
                # config of model
                model_cfg=dict(
                    horizon=4,
                    # model dim, In GaussianInvDynDiffusion, it is obs_dim. In others, it is obs_dim + action_dim
                    transition_dim=23,
                    dim=32,
                    dim_mults=[1, 2, 4, 8],
                    # whether use calc energy
                    kernel_size=5,
                ),
                # horizon of tarjectory which generated by model
                horizon=80,
                # timesteps of diffusion
                n_timesteps=1000,
                # hidden dim of action model
                predict_epsilon=True,
                # discount of loss
                loss_discount=1.0,
                # whether clip denoise
                clip_denoised=False,
                action_weight=1.0,
            ),
            # guide_steps for p sample
            n_guide_steps=2,
            # scale of grad for p sample
            scale=0.1,
            # t of stopgrad for p sample
            t_stopgrad=2,
            # whether use std as a scale for grad
            scale_grad_by_std=True,
        ),
        learn=dict(

            # How many updates(iterations) to train after collector's one collection.
            # Bigger "update_per_collect" means bigger off-policy.
            # collect data -> update policy-> collect data -> ...
            update_per_collect=1,
            # (int) Minibatch size for gradient descent.
            batch_size=100,

            # (float type) learning_rate_q: Learning rate for model.
            # Default to 3e-4.
            # Please set to 1e-3, when model.value_network is True.
            learning_rate=3e-4,
            # (bool) Whether ignore done(usually for max step termination env. e.g. pendulum)
            # Note: Gym wraps the MuJoCo envs by default with TimeLimit environment wrappers.
            # These limit HalfCheetah, and several other MuJoCo envs, to max length of 1000.
            # However, interaction with HalfCheetah always gets done with done is False,
            # Since we inplace done==True with done==False to keep
            # TD-error accurate computation(``gamma * (1 - done) * next_v + reward``),
            # when the episode step is greater than max episode step.
            ignore_done=False,

            # (float type) target_theta: Used for soft update of the target network,
            # aka. Interpolation factor in polyak averaging for target networks.
            # Default to 0.005.
            target_theta=0.005,
            # (float) discount factor for the discounted sum of rewards, aka. gamma.
            discount_factor=0.99,
            gradient_accumulate_every=2,
            # train_epoch = train_epoch * gradient_accumulate_every
            train_epoch=60000,
            # batch_size of every env when eval
            plan_batch_size=64,

            # step start update target model and frequence
            step_start_update_target=2000,
            update_target_freq=10,
            # update weight of target net
            target_weight=0.995,
            value_step=200e3,

            # dataset weight include returns
            include_returns=True,

            # (float) Weight uniform initialization range in the last output layer
            init_w=3e-3,
        ),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        return 'pd', ['ding.model.template.diffusion']

    def _init_learn(self) -> None:
        r"""
        Overview:
            Learn mode init method. Called by ``self.__init__``.
            Init q, value and policy's optimizers, algorithm config, main and target models.
        """
        # Init
        self._priority = self._cfg.priority
        self._priority_IS_weight = self._cfg.priority_IS_weight
        self.action_dim = self._cfg.model.diffuser_model_cfg.action_dim
        self.obs_dim = self._cfg.model.diffuser_model_cfg.obs_dim
        self.n_timesteps = self._cfg.model.diffuser_model_cfg.n_timesteps
        self.gradient_accumulate_every = self._cfg.learn.gradient_accumulate_every
        self.plan_batch_size = self._cfg.learn.plan_batch_size
        self.gradient_steps = 1
        self.update_target_freq = self._cfg.learn.update_target_freq
        self.step_start_update_target = self._cfg.learn.step_start_update_target
        self.target_weight = self._cfg.learn.target_weight
        self.value_step = self._cfg.learn.value_step
        self.use_target = False
        self.horizon = self._cfg.model.diffuser_model_cfg.horizon
        self.include_returns = self._cfg.learn.include_returns

        # Optimizers
        self._plan_optimizer = Adam(
            self._model.diffuser.model.parameters(),
            lr=self._cfg.learn.learning_rate,
        )
        if self._model.value:
            self._value_optimizer = Adam(
                self._model.value.model.parameters(),
                lr=self._cfg.learn.learning_rate,
            )

        # Algorithm config
        self._gamma = self._cfg.learn.discount_factor

        # Main and target models
        self._target_model = copy.deepcopy(self._model)
        # self._target_model = model_wrap(
        #     self._target_model,
        #     wrapper_name='target',
        #     update_type='momentum',
        #     update_kwargs={'theta': self._cfg.learn.target_theta}
        # )
        self._learn_model = model_wrap(self._model, wrapper_name='base')
        self._learn_model.reset()
        # self._target_model.reset()

        self._forward_learn_cnt = 0

    def _forward_learn(self, data: dict) -> Dict[str, Any]:
        loss_dict = {}

        data = default_preprocess_learn(
            data,
            use_priority=self._priority,
            use_priority_IS_weight=self._cfg.priority_IS_weight,
            ignore_done=self._cfg.learn.ignore_done,
            use_nstep=False
        )

        conds = {}
        vals = data['condition_val']
        ids = data['condition_id']
        for i in range(len(ids)):
            conds[ids[i][0].item()] = vals[i]
        if len(ids) > 1:
            self.use_target = True
        data['conditions'] = conds
        if 'returns' in data.keys():
            data['returns'] = data['returns'].unsqueeze(-1)
        if self._cuda:
            data = to_device(data, self._device)

        self._learn_model.train()
        # self._target_model.train()
        x = data['trajectories']

        batch_size = len(x)
        t = torch.randint(0, self.n_timesteps, (batch_size, ), device=x.device).long()
        cond = data['conditions']
        if 'returns' in data.keys():
            target = data['returns']
        loss_dict['diffuse_loss'], loss_dict['a0_loss'] = self._model.diffuser_loss(x, cond, t)
        loss_dict['diffuse_loss'] = loss_dict['diffuse_loss'] / self.gradient_accumulate_every
        loss_dict['diffuse_loss'].backward()
        if self._forward_learn_cnt < self.value_step and self._model.value:
            loss_dict['value_loss'], logs = self._model.value_loss(x, cond, target, t)
            loss_dict['value_loss'] = loss_dict['value_loss'] / self.gradient_accumulate_every
            loss_dict['value_loss'].backward()
            loss_dict.update(logs)

        if self.gradient_steps >= self.gradient_accumulate_every:
            self._plan_optimizer.step()
            self._plan_optimizer.zero_grad()
            if self._forward_learn_cnt < self.value_step and self._model.value:
                self._value_optimizer.step()
                self._value_optimizer.zero_grad()
            self.gradient_steps = 1
        else:
            self.gradient_steps += 1
        self._forward_learn_cnt += 1
        if self._forward_learn_cnt % self.update_target_freq == 0:
            if self._forward_learn_cnt < self.step_start_update_target:
                self._target_model.load_state_dict(self._model.state_dict())
            else:
                self.update_model_average(self._target_model, self._learn_model)

        if 'returns' in data.keys():
            loss_dict['max_return'] = target.max().item()
            loss_dict['min_return'] = target.min().item()
            loss_dict['mean_return'] = target.mean().item()
        loss_dict['max_traj'] = x.max().item()
        loss_dict['min_traj'] = x.min().item()
        loss_dict['mean_traj'] = x.mean().item()
        return loss_dict

    def update_model_average(self, ma_model, current_model):
        for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
            old_weight, up_weight = ma_params.data, current_params.data
            if old_weight is None:
                ma_params.data = up_weight
            else:
                old_weight * self.target_weight + (1 - self.target_weight) * up_weight

    def _monitor_vars_learn(self) -> List[str]:
        return [
            'diffuse_loss',
            'value_loss',
            'max_return',
            'min_return',
            'mean_return',
            'max_traj',
            'min_traj',
            'mean_traj',
            'mean_pred',
            'max_pred',
            'min_pred',
            'a0_loss',
        ]

    def _state_dict_learn(self) -> Dict[str, Any]:
        if self._model.value:
            return {
                'model': self._learn_model.state_dict(),
                'target_model': self._target_model.state_dict(),
                'plan_optimizer': self._plan_optimizer.state_dict(),
                'value_optimizer': self._value_optimizer.state_dict(),
            }
        else:
            return {
                'model': self._learn_model.state_dict(),
                'target_model': self._target_model.state_dict(),
                'plan_optimizer': self._plan_optimizer.state_dict(),
            }

    def _init_eval(self):
        self._eval_model = model_wrap(self._target_model, wrapper_name='base')
        self._eval_model.reset()
        if self.use_target:
            self._plan_seq = []

    def init_data_normalizer(self, normalizer: DatasetNormalizer = None):
        self.normalizer = normalizer

    def _forward_eval(self, data: dict) -> Dict[str, Any]:
        data_id = list(data.keys())
        data = default_collate(list(data.values()))

        self._eval_model.eval()
        if self.use_target:
            cur_obs = self.normalizer.normalize(data[:, :self.obs_dim], 'observations')
            target_obs = self.normalizer.normalize(data[:, self.obs_dim:], 'observations')
        else:
            obs = self.normalizer.normalize(data, 'observations')
        with torch.no_grad():
            if self.use_target:
                cur_obs = torch.tensor(cur_obs)
                target_obs = torch.tensor(target_obs)
                if self._cuda:
                    cur_obs = to_device(cur_obs, self._device)
                    target_obs = to_device(target_obs, self._device)
                conditions = {0: cur_obs, self.horizon - 1: target_obs}
            else:
                obs = torch.tensor(obs)
                if self._cuda:
                    obs = to_device(obs, self._device)
                conditions = {0: obs}

            if self.use_target:
                if self._plan_seq == [] or 0 in self._eval_t:
                    plan_traj = self._eval_model.get_eval(conditions, self.plan_batch_size)
                    plan_traj = to_device(plan_traj, 'cpu').numpy()
                    if self._plan_seq == []:
                        self._plan_seq = plan_traj
                        self._eval_t = [0] * len(data_id)
                    else:
                        for id in data_id:
                            if self._eval_t[id] == 0:
                                self._plan_seq[id] = plan_traj[id]
                action = []
                for id in data_id:
                    if self._eval_t[id] < len(self._plan_seq[id]) - 1:
                        next_waypoint = self._plan_seq[id][self._eval_t[id] + 1]
                    else:
                        next_waypoint = self._plan_seq[id][-1].copy()
                        next_waypoint[2:] = 0
                    cur_ob = cur_obs[id]
                    cur_ob = to_device(cur_ob, 'cpu').numpy()
                    act = next_waypoint[:2] - cur_ob[:2] + (next_waypoint[2:] - cur_ob[2:])
                    action.append(act)
                    self._eval_t[id] += 1
            else:
                action = self._eval_model.get_eval(conditions, self.plan_batch_size)
                if self._cuda:
                    action = to_device(action, 'cpu')
                action = self.normalizer.unnormalize(action, 'actions')
            action = torch.tensor(action).to('cpu')
        output = {'action': action}
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _reset_eval(self, data_id: Optional[List[int]] = None) -> None:
        if self.use_target and data_id:
            for id in data_id:
                self._eval_t[id] = 0

    def _init_collect(self) -> None:
        pass

    def _forward_collect(self, data: dict, **kwargs) -> dict:
        pass

    def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict:
        pass

    def _get_train_sample(self, data: list) -> Union[None, List[Any]]:
        pass