File size: 69,700 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
from typing import List, Dict, Any, Tuple, Union
from collections import namedtuple
import copy
import torch
from torch.utils.data import Dataset, DataLoader

from ding.utils import POLICY_REGISTRY, split_data_generator, RunningMeanStd
from ding.utils.data import default_collate, default_decollate
from ding.torch_utils import Adam, to_device
from ding.rl_utils import get_gae_with_default_last_value, get_train_sample, gae, gae_data, get_gae, \
    ppo_policy_data, ppo_policy_error, ppo_value_data, ppo_value_error, ppg_data, ppg_joint_error
from ding.model import model_wrap
from .base_policy import Policy


class ExperienceDataset(Dataset):
    """
    Overview:
        A dataset class for storing and accessing experience data.

    Interface:
        ``__init__``, ``__len__``, ``__getitem__``.
    """

    def __init__(self, data):
        """
        Arguments:
            - data (:obj:`dict`): A dictionary containing the experience data, where the keys represent the data types \
                and the values are the corresponding data arrays.
        """
        super().__init__()
        self.data = data

    def __len__(self):
        return list(self.data.values())[0].shape[0]

    def __getitem__(self, ind):
        data = {}
        for key in self.data.keys():
            data[key] = self.data[key][ind]
        return data


def create_shuffled_dataloader(data, batch_size):
    ds = ExperienceDataset(data)
    return DataLoader(ds, batch_size=batch_size, shuffle=True)


@POLICY_REGISTRY.register('ppg')
class PPGPolicy(Policy):
    """
    Overview:
        Policy class of PPG algorithm. PPG is a policy gradient algorithm with auxiliary phase training. \
        The auxiliary phase training is proposed to distill the value into the policy network, \
        while making sure the policy network does not change the action predictions (kl div loss). \
        Paper link: https://arxiv.org/abs/2009.04416.

    Interface:
        ``_init_learn``, ``_data_preprocess_learn``, ``_forward_learn``, ``_state_dict_learn``, \
        ``_load_state_dict_learn``, ``_init_collect``, ``_forward_collect``, ``_process_transition``, \
        ``_get_train_sample``, ``_get_batch_size``, ``_init_eval``, ``_forward_eval``, ``default_model``, \
        ``_monitor_vars_learn``, ``learn_aux``.
    Config:
        == ==================== ======== ============== ======================================== =======================
        ID Symbol               Type     Default Value  Description                              Other(Shape)
        == ==================== ======== ============== ======================================== =======================
        1  ``type``             str      ppg            | RL policy register name, refer to      | this arg is optional,
                                                        | registry ``POLICY_REGISTRY``           | a placeholder
        2  ``cuda``             bool     False          | Whether to use cuda for network        | this arg can be diff-
                                                                                                 | erent from modes
        3  ``on_policy``        bool     True           | Whether the RL algorithm is on-policy
                                                        | or off-policy
        4. ``priority``         bool     False          | Whether use priority(PER)              | priority sample,
                                                                                                 | update priority
        5  | ``priority_``      bool     False          | Whether use Importance Sampling        | IS weight
           | ``IS_weight``                              | Weight to correct biased update.
        6  | ``learn.update``   int      5              | How many updates(iterations) to train  | this args can be vary
           | ``_per_collect``                           | after collector's one collection. Only | from envs. Bigger val
                                                        | valid in serial training               | means more off-policy
        7  | ``learn.value_``   float    1.0            | The loss weight of value network       | policy network weight
           | ``weight``                                                                          | is set to 1
        8  | ``learn.entropy_`` float    0.01           | The loss weight of entropy             | policy network weight
           | ``weight``                                 | regularization                         | is set to 1
        9  | ``learn.clip_``    float    0.2            | PPO clip ratio
           | ``ratio``
        10 | ``learn.adv_``     bool     False          | Whether to use advantage norm in
           | ``norm``                                   | a whole training batch
        11 | ``learn.aux_``     int      5              | The frequency(normal update times)
           | ``freq``                                   | of auxiliary phase training
        12 | ``learn.aux_``     int      6              | The training epochs of auxiliary
           | ``train_epoch``                            | phase
        13 | ``learn.aux_``     int      1              | The loss weight of behavioral_cloning
           | ``bc_weight``                              | in auxiliary phase
        14 | ``collect.dis``    float    0.99           | Reward's future discount factor, aka.  | may be 1 when sparse
           | ``count_factor``                           | gamma                                  | reward env
        15 | ``collect.gae_``   float    0.95           | GAE lambda factor for the balance
           | ``lambda``                                 | of bias and variance(1-step td and mc)
        == ==================== ======== ============== ======================================== =======================
    """
    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='ppg',
        # (bool) Whether to use cuda for network.
        cuda=False,
        # (bool) Whether the RL algorithm is on-policy or off-policy. (Note: in practice PPO can be off-policy used)
        on_policy=True,
        priority=False,
        # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
        priority_IS_weight=False,
        learn=dict(
            actor_epoch_per_collect=1,
            critic_epoch_per_collect=1,
            batch_size=64,
            learning_rate=0.001,
            # ==============================================================
            # The following configs is algorithm-specific
            # ==============================================================
            # (float) The loss weight of value network, policy network weight is set to 1
            value_weight=0.5,
            # (float) The loss weight of entropy regularization, policy network weight is set to 1
            entropy_weight=0.01,
            # (float) PPO clip ratio, defaults to 0.2
            clip_ratio=0.2,
            value_norm=False,
            # (bool) Whether to use advantage norm in a whole training batch
            adv_norm=False,
            # (int) The frequency(normal update times) of auxiliary phase training
            aux_freq=8,
            # (int) The training epochs of auxiliary phase
            aux_train_epoch=6,
            # (int) The loss weight of behavioral_cloning in auxiliary phase
            aux_bc_weight=1,
            grad_clip_type='clip_norm',
            grad_clip_value=10,
            ignore_done=False,
        ),
        collect=dict(
            # n_sample=64,
            unroll_len=1,
            # ==============================================================
            # The following configs is algorithm-specific
            # ==============================================================
            # (float) Reward's future discount factor, aka. gamma.
            discount_factor=0.99,
            # (float) GAE lambda factor for the balance of bias and variance(1-step td and mc)
            gae_lambda=0.95,
        ),
        eval=dict(),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        """
        Overview:
            Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \
            automatically call this method to get the default model setting and create model.

        Returns:
            - model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.
        """
        return 'ppg', ['ding.model.template.ppg']

    def _init_learn(self) -> None:
        """
        Overview:
            Initialize the learn mode of policy, including related attributes and modules. For PPG, it mainly \
            contains optimizer, algorithm-specific arguments such as aux_bc_weight and aux_train_epoch. This method \
            also executes some special network initializations and prepares running mean/std monitor for value. \
            This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.

        .. note::
            For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
            and ``_load_state_dict_learn`` methods.

        .. note::
            For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.

        .. note::
            If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
            with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
        """
        # Optimizer
        self._optimizer_ac = Adam(self._model.actor_critic.parameters(), lr=self._cfg.learn.learning_rate)
        self._optimizer_aux_critic = Adam(self._model.aux_critic.parameters(), lr=self._cfg.learn.learning_rate)
        self._learn_model = model_wrap(self._model, wrapper_name='base')

        # Algorithm config
        self._priority = self._cfg.priority
        self._priority_IS_weight = self._cfg.priority_IS_weight
        assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in PPG"
        self._value_weight = self._cfg.learn.value_weight
        self._entropy_weight = self._cfg.learn.entropy_weight
        self._value_norm = self._cfg.learn.value_norm
        if self._value_norm:
            self._running_mean_std = RunningMeanStd(epsilon=1e-4, device=self._device)
        self._clip_ratio = self._cfg.learn.clip_ratio
        self._adv_norm = self._cfg.learn.adv_norm

        # Main model
        self._learn_model.reset()

        # Auxiliary memories
        self._aux_train_epoch = self._cfg.learn.aux_train_epoch
        self._train_iteration = 0
        self._aux_memories = []
        self._aux_bc_weight = self._cfg.learn.aux_bc_weight

    def _data_preprocess_learn(self, data: List[Any]) -> dict:
        """
        Overview:
            Preprocess the data to fit the required data format for learning, including \
            collate(stack data into batch), ignore done(in some fake terminate env),\
            prepare loss weight per training sample, and cpu tensor to cuda.
        Arguments:
            - data (:obj:`List[Dict[str, Any]]`): The data collected from collect function.
        Returns:
            - data (:obj:`Dict[str, Any]`): The processed data, including at least ['done', 'weight'].
        """
        # data preprocess
        data = default_collate(data)
        ignore_done = self._cfg.learn.ignore_done
        if ignore_done:
            data['done'] = None
        else:
            data['done'] = data['done'].float()
        data['weight'] = None
        if self._cuda:
            data = to_device(data, self._device)
        return data

    def _forward_learn(self, data: dict) -> Dict[str, Any]:
        """
        Overview:
            Forward and backward function of learn mode.
        Arguments:
            - data (:obj:`Dict[str, Any]`): Input data used for policy forward, including the \
                collected training samples from replay buffer. For each element in dict, the key of the \
                dict is the name of data items and the value is the corresponding data. Usually, the value is \
                torch.Tensor or np.ndarray or there dict/list combinations. In the ``_forward_learn`` method, data \
                often need to first be stacked in the batch dimension by some utility functions such as \
                ``default_preprocess_learn``. \
                For PPG, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \
                ``reward``, ``logit``, ``value``, ``done``. Sometimes, it also contains other keys such as ``weight``.
        Returns:
            - info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \
                recorded in text log and tensorboard, values are python scalar or a list of scalars. \
                For the detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for PPGPolicy: ``ding.policy.tests.test_ppgs``.
        """
        data = self._data_preprocess_learn(data)
        # ====================
        # PPG forward
        # ====================
        self._learn_model.train()
        return_infos = []
        if self._value_norm:
            unnormalized_return = data['adv'] + data['value'] * self._running_mean_std.std
            data['return'] = unnormalized_return / self._running_mean_std.std
            self._running_mean_std.update(unnormalized_return.cpu().numpy())
        else:
            data['return'] = data['adv'] + data['value']

        for epoch in range(self._cfg.learn.actor_epoch_per_collect):
            for policy_data in split_data_generator(data, self._cfg.learn.batch_size, shuffle=True):
                policy_adv = policy_data['adv']
                if self._adv_norm:
                    # Normalize advantage in a total train_batch
                    policy_adv = (policy_adv - policy_adv.mean()) / (policy_adv.std() + 1e-8)
                # Policy Phase(Policy)
                policy_output = self._learn_model.forward(policy_data['obs'], mode='compute_actor')
                policy_error_data = ppo_policy_data(
                    policy_output['logit'], policy_data['logit'], policy_data['action'], policy_adv,
                    policy_data['weight']
                )
                ppo_policy_loss, ppo_info = ppo_policy_error(policy_error_data, self._clip_ratio)
                policy_loss = ppo_policy_loss.policy_loss - self._entropy_weight * ppo_policy_loss.entropy_loss
                self._optimizer_ac.zero_grad()
                policy_loss.backward()
                self._optimizer_ac.step()

        for epoch in range(self._cfg.learn.critic_epoch_per_collect):
            for value_data in split_data_generator(data, self._cfg.learn.batch_size, shuffle=True):
                value_adv = value_data['adv']
                return_ = value_data['return']
                if self._adv_norm:
                    # Normalize advantage in a total train_batch
                    value_adv = (value_adv - value_adv.mean()) / (value_adv.std() + 1e-8)
                # Policy Phase(Value)
                value_output = self._learn_model.forward(value_data['obs'], mode='compute_critic')
                value_error_data = ppo_value_data(
                    value_output['value'], value_data['value'], return_, value_data['weight']
                )
                value_loss = self._value_weight * ppo_value_error(value_error_data, self._clip_ratio)
                self._optimizer_aux_critic.zero_grad()
                value_loss.backward()
                self._optimizer_aux_critic.step()

        data['return_'] = data['return']

        self._aux_memories.append(copy.deepcopy(data))

        self._train_iteration += 1

        # ====================
        # PPG update
        # use aux loss after iterations and reset aux_memories
        # ====================

        # Auxiliary Phase
        # record data for auxiliary head

        if self._train_iteration % self._cfg.learn.aux_freq == 0:
            aux_loss, bc_loss, aux_value_loss = self.learn_aux()
            return {
                'policy_cur_lr': self._optimizer_ac.defaults['lr'],
                'value_cur_lr': self._optimizer_aux_critic.defaults['lr'],
                'policy_loss': ppo_policy_loss.policy_loss.item(),
                'value_loss': value_loss.item(),
                'entropy_loss': ppo_policy_loss.entropy_loss.item(),
                'policy_adv_abs_max': policy_adv.abs().max().item(),
                'approx_kl': ppo_info.approx_kl,
                'clipfrac': ppo_info.clipfrac,
                'aux_value_loss': aux_value_loss,
                'auxiliary_loss': aux_loss,
                'behavioral_cloning_loss': bc_loss,
            }
        else:
            return {
                'policy_cur_lr': self._optimizer_ac.defaults['lr'],
                'value_cur_lr': self._optimizer_aux_critic.defaults['lr'],
                'policy_loss': ppo_policy_loss.policy_loss.item(),
                'value_loss': value_loss.item(),
                'entropy_loss': ppo_policy_loss.entropy_loss.item(),
                'policy_adv_abs_max': policy_adv.abs().max().item(),
                'approx_kl': ppo_info.approx_kl,
                'clipfrac': ppo_info.clipfrac,
            }

    def _state_dict_learn(self) -> Dict[str, Any]:
        """
        Overview:
            Return the state_dict of learn mode, usually including model and optimizer.
        Returns:
            - state_dict (:obj:`Dict[str, Any]`): the dict of current policy learn state, for saving and restoring.
        """
        return {
            'model': self._learn_model.state_dict(),
            'optimizer_ac': self._optimizer_ac.state_dict(),
            'optimizer_aux_critic': self._optimizer_aux_critic.state_dict(),
        }

    def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
        """
        Overview:
            Load the state_dict variable into policy learn mode.
        Arguments:
            - state_dict (:obj:`Dict[str, Any]`): the dict of policy learn state saved before.\
                When the value is distilled into the policy network, we need to make sure the policy \
                network does not change the action predictions, we need two optimizers, \
                _optimizer_ac is used in policy net, and _optimizer_aux_critic is used in value net.

        .. tip::
            If you want to only load some parts of model, you can simply set the ``strict`` argument in \
            load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \
            complicated operation.
        """
        self._learn_model.load_state_dict(state_dict['model'])
        self._optimizer_ac.load_state_dict(state_dict['optimizer_ac'])
        self._optimizer_aux_critic.load_state_dict(state_dict['optimizer_aux_critic'])

    def _init_collect(self) -> None:
        """
        Overview:
            Initialize the collect mode of policy, including related attributes and modules. For PPG, it contains the \
            collect_model to balance the exploration and exploitation (e.g. the multinomial sample mechanism in \
            discrete action space), and other algorithm-specific arguments such as unroll_len and gae_lambda.
            This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``.

        .. note::
            If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \
            with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``.
        """
        self._unroll_len = self._cfg.collect.unroll_len
        self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample')
        # TODO continuous action space exploration
        self._collect_model.reset()
        self._gamma = self._cfg.collect.discount_factor
        self._gae_lambda = self._cfg.collect.gae_lambda

    def _forward_collect(self, data: dict) -> dict:
        """
        Overview:
            Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \
            that the policy gets some necessary data (mainly observation) from the envs and then returns the output \
            data, such as the action to interact with the envs.

        Arguments:
            - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
                values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.

        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \
                    other necessary data (action logit and value) for learn mode defined in \
                    ``self._process_transition`` method. The key of the dict is the same as the input data, \
                    i.e. environment id.

        .. tip::
            If you want to add more tricks on this policy, like temperature factor in multinomial sample, you can pass \
            related data as extra keyword arguments of this method.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for PPGPolicy: ``ding.policy.tests.test_ppg``.
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._collect_model.eval()
        with torch.no_grad():
            output = self._collect_model.forward(data, mode='compute_actor_critic')
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict:
        """
        Overview:
            Process and pack one timestep transition data into a dict, which can be directly used for training and \
            saved in replay buffer. For PPG, it contains obs, next_obs, action, reward, done, logit, value.
        Arguments:
            - obs (:obj:`Any`): Env observation
            - model_output (:obj:`dict`): The output of the policy network with the observation \
                as input. For PPG, it contains the state value, action and the logit of the action.
            - timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step \
                method, except all the elements have been transformed into tensor data. Usually, it contains the next \
                obs, reward, done, info, etc.
        Returns:
            - transition (:obj:`dict`): The processed transition data of the current timestep.

        .. note::
            ``next_obs`` is used to calculate nstep return when necessary, so we place in into transition by default. \
            You can delete this field to save memory occupancy if you do not need nstep return.
        """
        transition = {
            'obs': obs,
            'next_obs': timestep.obs,
            'logit': model_output['logit'],
            'action': model_output['action'],
            'value': model_output['value'],
            'reward': timestep.reward,
            'done': timestep.done,
        }
        return transition

    def _get_train_sample(self, data: List[Dict[str, Any]]) -> Union[None, List[Any]]:
        """
        Overview:
            For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \
            can be used for training directly. In PPG, a train sample is a processed transition with new computed \
            ``adv`` field. This method is usually used in collectors to execute necessary. \
            RL data preprocessing before training, which can help learner amortize revelant time consumption. \
            In addition, you can also implement this method as an identity function and do the data processing \
            in ``self._forward_learn`` method.
        Arguments:
            - data (:obj:`List[Dict[str, Any]]`): The trajectory data (a list of transition), each element is \
                the same format as the return value of ``self._process_transition`` method.
        Returns:
            - samples (:obj:`dict`): The processed train samples, each element is the similar format \
                as input transitions, but may contain more data for training, such as GAE advantage.
        """
        data = to_device(data, self._device)
        if self._cfg.learn.ignore_done:
            data[-1]['done'] = False

        if data[-1]['done']:
            last_value = torch.zeros_like(data[-1]['value'])
        else:
            with torch.no_grad():
                last_value = self._collect_model.forward(
                    data[-1]['next_obs'].unsqueeze(0), mode='compute_actor_critic'
                )['value']
        if self._value_norm:
            last_value *= self._running_mean_std.std
            for i in range(len(data)):
                data[i]['value'] *= self._running_mean_std.std
        data = get_gae(
            data,
            to_device(last_value, self._device),
            gamma=self._gamma,
            gae_lambda=self._gae_lambda,
            cuda=False,
        )
        if self._value_norm:
            for i in range(len(data)):
                data[i]['value'] /= self._running_mean_std.std

        return get_train_sample(data, self._unroll_len)

    def _get_batch_size(self) -> Dict[str, int]:
        """
        Overview:
            Get learn batch size. In the PPG algorithm, different networks require different data.\
            We need to get data['policy'] and data['value'] to train policy net and value net,\
            this function is used to get the batch size of data['policy'] and data['value'].
        Returns:
            - output (:obj:`dict[str, int]`): Dict type data, including str type batch size and int type batch size.
        """
        bs = self._cfg.learn.batch_size
        return {'policy': bs, 'value': bs}

    def _init_eval(self) -> None:
        """
        Overview:
            Initialize the eval mode of policy, including related attributes and modules. For PPG, it contains the \
            eval model to select optimial action (e.g. greedily select action with argmax mechanism in discrete \
            action). This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``.

        .. note::
            If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \
            with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``.
        """
        self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')
        self._eval_model.reset()

    def _forward_eval(self, data: dict) -> dict:
        """
        Overview:
            Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \
            means that the policy gets some necessary data (mainly observation) from the envs and then returns the \
            action to interact with the envs. ``_forward_eval`` in PPG often uses deterministic sample method to get \
            actions while ``_forward_collect`` usually uses stochastic sample method for balance exploration and \
            exploitation.
        Arguments:
            - data (:obj:`Dict[str, Any]`): The input data used for policy forward, including at least the obs. The \
                key of the dict is environment id and the value is the corresponding data of the env.

        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \
                key of the dict is the same as the input data, i.e. environment id.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for PPGPolicy: ``ding.policy.tests.test_ppg``.
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._eval_model.eval()
        with torch.no_grad():
            output = self._eval_model.forward(data, mode='compute_actor')
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _monitor_vars_learn(self) -> List[str]:
        """
        Overview:
            Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
            as text logger, tensorboard logger, will use these keys to save the corresponding data.
        Returns:
            - vars (:obj:`List[str]`): The list of the necessary keys to be logged.
        """
        return [
            'policy_cur_lr',
            'value_cur_lr',
            'policy_loss',
            'value_loss',
            'entropy_loss',
            'policy_adv_abs_max',
            'approx_kl',
            'clipfrac',
            'aux_value_loss',
            'auxiliary_loss',
            'behavioral_cloning_loss',
        ]

    def learn_aux(self) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Overview:
            The auxiliary phase training, where the value is distilled into the policy network. In PPG algorithm, \
            we use the value function loss as the auxiliary objective, thereby sharing features between the policy \
            and value function while minimizing distortions to the policy. We also use behavioral cloning loss to \
            optimize the auxiliary objective while otherwise preserving the original policy.
        Returns:
            - aux_loss (:obj:`Tuple[torch.Tensor, torch.Tensor, torch.Tensor]`): Including average auxiliary loss\
                average behavioral cloning loss, and average auxiliary value loss.
        """
        aux_memories = self._aux_memories
        # gather states and target values into one tensor
        data = {}
        states = []
        actions = []
        return_ = []
        old_values = []
        weights = []
        for memory in aux_memories:
            # for memory in memories:
            states.append(memory['obs'])
            actions.append(memory['action'])
            return_.append(memory['return_'])
            old_values.append(memory['value'])
            if memory['weight'] is None:
                weight = torch.ones_like(memory['action'])
            else:
                weight = torch.tensor(memory['weight'])
            weights.append(weight)

        data['obs'] = torch.cat(states)
        data['action'] = torch.cat(actions)
        data['return_'] = torch.cat(return_)
        data['value'] = torch.cat(old_values)
        data['weight'] = torch.cat(weights).float()
        # compute current policy logit_old
        with torch.no_grad():
            data['logit_old'] = self._model.forward(data['obs'], mode='compute_actor')['logit']

        # prepared dataloader for auxiliary phase training
        dl = create_shuffled_dataloader(data, self._cfg.learn.batch_size)

        # the proposed auxiliary phase training
        # where the value is distilled into the policy network,
        # while making sure the policy network does not change the action predictions (kl div loss)

        i = 0
        auxiliary_loss_ = 0
        behavioral_cloning_loss_ = 0
        value_loss_ = 0

        for epoch in range(self._aux_train_epoch):
            for data in dl:
                policy_output = self._model.forward(data['obs'], mode='compute_actor_critic')

                # Calculate ppg error 'logit_new', 'logit_old', 'action', 'value_new', 'value_old', 'return_', 'weight'
                data_ppg = ppg_data(
                    policy_output['logit'], data['logit_old'], data['action'], policy_output['value'], data['value'],
                    data['return_'], data['weight']
                )
                ppg_joint_loss = ppg_joint_error(data_ppg, self._clip_ratio)
                wb = self._aux_bc_weight
                total_loss = ppg_joint_loss.auxiliary_loss + wb * ppg_joint_loss.behavioral_cloning_loss

                # # policy network loss copmoses of both the kl div loss as well as the auxiliary loss
                # aux_loss = clipped_value_loss(policy_values, rewards, old_values, self.value_clip)
                # loss_kl = F.kl_div(action_logprobs, old_action_probs, reduction='batchmean')
                # policy_loss = aux_loss + loss_kl

                self._optimizer_ac.zero_grad()
                total_loss.backward()
                self._optimizer_ac.step()

                # paper says it is important to train the value network extra during the auxiliary phase
                # Calculate ppg error 'value_new', 'value_old', 'return_', 'weight'
                values = self._model.forward(data['obs'], mode='compute_critic')['value']
                data_aux = ppo_value_data(values, data['value'], data['return_'], data['weight'])

                value_loss = ppo_value_error(data_aux, self._clip_ratio)

                self._optimizer_aux_critic.zero_grad()
                value_loss.backward()
                self._optimizer_aux_critic.step()

                auxiliary_loss_ += ppg_joint_loss.auxiliary_loss.item()
                behavioral_cloning_loss_ += ppg_joint_loss.behavioral_cloning_loss.item()
                value_loss_ += value_loss.item()
                i += 1

        self._aux_memories = []

        return auxiliary_loss_ / i, behavioral_cloning_loss_ / i, value_loss_ / i


@POLICY_REGISTRY.register('ppg_offpolicy')
class PPGOffPolicy(Policy):
    """
    Overview:
        Policy class of PPG algorithm with off-policy training mode. Off-policy PPG contains two different data \
        max_use buffers. The policy buffer offers data for policy phase , while the value buffer provides auxiliary \
        phase's data. The whole training procedure is similar to off-policy PPO but execute additional auxiliary \
        phase with a fixed frequency.
    Interface:
        ``_init_learn``, ``_data_preprocess_learn``, ``_forward_learn``, ``_state_dict_learn``, \
        ``_load_state_dict_learn``, ``_init_collect``, ``_forward_collect``, ``_process_transition``, \
        ``_get_train_sample``, ``_get_batch_size``, ``_init_eval``, ``_forward_eval``, ``default_model``, \
        ``_monitor_vars_learn``, ``learn_aux``.
    Config:
        == ==================== ======== ============== ======================================== =======================
        ID Symbol               Type     Default Value  Description                              Other(Shape)
        == ==================== ======== ============== ======================================== =======================
        1  ``type``             str      ppg            | RL policy register name, refer to      | this arg is optional,
                                                        | registry ``POLICY_REGISTRY``           | a placeholder
        2  ``cuda``             bool     False          | Whether to use cuda for network        | this arg can be diff-
                                                                                                 | erent from modes
        3  ``on_policy``        bool     True           | Whether the RL algorithm is on-policy
                                                        | or off-policy
        4. ``priority``         bool     False          | Whether use priority(PER)              | priority sample,
                                                                                                 | update priority
        5  | ``priority_``      bool     False          | Whether use Importance Sampling        | IS weight
           | ``IS_weight``                              | Weight to correct biased update.
        6  | ``learn.update``   int      5              | How many updates(iterations) to train  | this args can be vary
           | ``_per_collect``                           | after collector's one collection. Only | from envs. Bigger val
                                                        | valid in serial training               | means more off-policy
        7  | ``learn.value_``   float    1.0            | The loss weight of value network       | policy network weight
           | ``weight``                                                                          | is set to 1
        8  | ``learn.entropy_`` float    0.01           | The loss weight of entropy             | policy network weight
           | ``weight``                                 | regularization                         | is set to 1
        9  | ``learn.clip_``    float    0.2            | PPO clip ratio
           | ``ratio``
        10 | ``learn.adv_``     bool     False          | Whether to use advantage norm in
           | ``norm``                                   | a whole training batch
        11 | ``learn.aux_``     int      5              | The frequency(normal update times)
           | ``freq``                                   | of auxiliary phase training
        12 | ``learn.aux_``     int      6              | The training epochs of auxiliary
           | ``train_epoch``                            | phase
        13 | ``learn.aux_``     int      1              | The loss weight of behavioral_cloning
           | ``bc_weight``                              | in auxiliary phase
        14 | ``collect.dis``    float    0.99           | Reward's future discount factor, aka.  | may be 1 when sparse
           | ``count_factor``                           | gamma                                  | reward env
        15 | ``collect.gae_``   float    0.95           | GAE lambda factor for the balance
           | ``lambda``                                 | of bias and variance(1-step td and mc)
        == ==================== ======== ============== ======================================== =======================
    """
    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='ppg_offpolicy',
        # (bool) Whether to use cuda for network.
        cuda=False,
        # (bool) Whether the RL algorithm is on-policy or off-policy. (Note: in practice PPO can be off-policy used)
        on_policy=False,
        priority=False,
        # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
        priority_IS_weight=False,
        # (bool) Whether to need policy data in process transition
        transition_with_policy_data=True,
        learn=dict(
            update_per_collect=5,
            batch_size=64,
            learning_rate=0.001,
            # ==============================================================
            # The following configs is algorithm-specific
            # ==============================================================
            # (float) The loss weight of value network, policy network weight is set to 1
            value_weight=0.5,
            # (float) The loss weight of entropy regularization, policy network weight is set to 1
            entropy_weight=0.01,
            # (float) PPO clip ratio, defaults to 0.2
            clip_ratio=0.2,
            # (bool) Whether to use advantage norm in a whole training batch
            adv_norm=False,
            # (int) The frequency(normal update times) of auxiliary phase training
            aux_freq=5,
            # (int) The training epochs of auxiliary phase
            aux_train_epoch=6,
            # (int) The loss weight of behavioral_cloning in auxiliary phase
            aux_bc_weight=1,
            ignore_done=False,
        ),
        collect=dict(
            # n_sample=64,
            unroll_len=1,
            # ==============================================================
            # The following configs is algorithm-specific
            # ==============================================================
            # (float) Reward's future discount factor, aka. gamma.
            discount_factor=0.99,
            # (float) GAE lambda factor for the balance of bias and variance(1-step td and mc)
            gae_lambda=0.95,
        ),
        eval=dict(),
        other=dict(
            replay_buffer=dict(
                # PPG use two separate buffer for different reuse
                multi_buffer=True,
                policy=dict(replay_buffer_size=1000, ),
                value=dict(replay_buffer_size=1000, ),
            ),
        ),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        """
        Overview:
            Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \
            automatically call this method to get the default model setting and create model.

        Returns:
            - model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.

        .. note::
            The user can define and use customized network model but must obey the same inferface definition indicated \
            by import_names path.
        """
        return 'ppg', ['ding.model.template.ppg']

    def _init_learn(self) -> None:
        """
        Overview:
            Initialize the learn mode of policy, including related attributes and modules. For PPG, it mainly \
            contains optimizer, algorithm-specific arguments such as aux_bc_weight and aux_train_epoch. This method \
            also executes some special network initializations and prepares running mean/std monitor for value. \
            This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.

        .. note::
            For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
            and ``_load_state_dict_learn`` methods.

        .. note::
            For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.

        .. note::
            If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
            with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
        """
        # Optimizer
        self._optimizer_ac = Adam(self._model.actor_critic.parameters(), lr=self._cfg.learn.learning_rate)
        self._optimizer_aux_critic = Adam(self._model.aux_critic.parameters(), lr=self._cfg.learn.learning_rate)
        self._learn_model = model_wrap(self._model, wrapper_name='base')

        # Algorithm config
        self._priority = self._cfg.priority
        self._priority_IS_weight = self._cfg.priority_IS_weight
        assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in PPG"
        self._value_weight = self._cfg.learn.value_weight
        self._entropy_weight = self._cfg.learn.entropy_weight
        self._clip_ratio = self._cfg.learn.clip_ratio
        self._adv_norm = self._cfg.learn.adv_norm

        # Main model
        self._learn_model.reset()

        # Auxiliary memories
        self._aux_train_epoch = self._cfg.learn.aux_train_epoch
        self._train_iteration = 0
        self._aux_memories = []
        self._aux_bc_weight = self._cfg.learn.aux_bc_weight

    def _data_preprocess_learn(self, data: List[Any]) -> dict:
        """
        Overview:
            Preprocess the data to fit the required data format for learning, including \
            collate(stack data into batch), ignore done(in some fake terminate env),\
            prepare loss weight per training sample, and cpu tensor to cuda.
        Arguments:
            - data (:obj:`List[Dict[str, Any]]`): The data collected from collect function.
        Returns:
            - data (:obj:`Dict[str, Any]`): The processed data, including at least ['done', 'weight'].
        """
        # data preprocess
        for k, data_item in data.items():
            data_item = default_collate(data_item)
            ignore_done = self._cfg.learn.ignore_done
            if ignore_done:
                data_item['done'] = None
            else:
                data_item['done'] = data_item['done'].float()
            data_item['weight'] = None
            data[k] = data_item
        if self._cuda:
            data = to_device(data, self._device)
        return data

    def _forward_learn(self, data: dict) -> Dict[str, Any]:
        """
        Overview:
            Forward and backward function of learn mode.
        Arguments:
            - data (:obj:`Dict[str, Any]`): Input data used for policy forward, including the \
                collected training samples from replay buffer. For each element in dict, the key of the \
                dict is the name of data items and the value is the corresponding data. Usually, \
                the class type of value is either torch.Tensor or np.ndarray, or a dict/list containing \
                either torch.Tensor or np.ndarray items In the ``_forward_learn`` method, data \
                often need to first be stacked in the batch dimension by some utility functions such as \
                ``default_preprocess_learn``. \
                For PPGOff, each element in list is a dict containing at least the following keys: ``obs``, \
                ``action``, ``reward``, ``logit``, ``value``, ``done``. Sometimes, it also contains other keys \
                such as ``weight``.
        Returns:
            - info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \
                recorded in text log and tensorboard, values are python scalar or a list of scalars. \
                For the detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.

        ReturnsKeys:
            - necessary: "current lr", "total_loss", "policy_loss", "value_loss", "entropy_loss", \
                "adv_abs_max", "approx_kl", "clipfrac", \
                "aux_value_loss", "auxiliary_loss", "behavioral_cloning_loss".

                - current_lr (:obj:`float`): Current learning rate.
                - total_loss (:obj:`float`): The calculated loss.
                - policy_loss (:obj:`float`): The policy(actor) loss of ppg.
                - value_loss (:obj:`float`): The value(critic) loss of ppg.
                - entropy_loss (:obj:`float`): The entropy loss.
                - auxiliary_loss (:obj:`float`): The auxiliary loss, we use the value function loss \
                    as the auxiliary objective, thereby sharing features between the policy and value function\
                    while minimizing distortions to the policy.
                - aux_value_loss (:obj:`float`): The auxiliary value loss, we need to train the value network extra \
                    during the auxiliary phase, it's the value loss we train the value network during auxiliary phase.
                - behavioral_cloning_loss (:obj:`float`): The behavioral cloning loss, used to optimize the auxiliary\
                     objective while otherwise preserving the original policy.
        """
        data = self._data_preprocess_learn(data)
        # ====================
        # PPG forward
        # ====================
        self._learn_model.train()
        policy_data, value_data = data['policy'], data['value']
        policy_adv, value_adv = policy_data['adv'], value_data['adv']
        return_ = value_data['value'] + value_adv
        if self._adv_norm:
            # Normalize advantage in a total train_batch
            policy_adv = (policy_adv - policy_adv.mean()) / (policy_adv.std() + 1e-8)
            value_adv = (value_adv - value_adv.mean()) / (value_adv.std() + 1e-8)
        # Policy Phase(Policy)
        policy_output = self._learn_model.forward(policy_data['obs'], mode='compute_actor')
        policy_error_data = ppo_policy_data(
            policy_output['logit'], policy_data['logit'], policy_data['action'], policy_adv, policy_data['weight']
        )
        ppo_policy_loss, ppo_info = ppo_policy_error(policy_error_data, self._clip_ratio)
        policy_loss = ppo_policy_loss.policy_loss - self._entropy_weight * ppo_policy_loss.entropy_loss
        self._optimizer_ac.zero_grad()
        policy_loss.backward()
        self._optimizer_ac.step()

        # Policy Phase(Value)
        value_output = self._learn_model.forward(value_data['obs'], mode='compute_critic')
        value_error_data = ppo_value_data(value_output['value'], value_data['value'], return_, value_data['weight'])
        value_loss = self._value_weight * ppo_value_error(value_error_data, self._clip_ratio)
        self._optimizer_aux_critic.zero_grad()
        value_loss.backward()
        self._optimizer_aux_critic.step()

        # ====================
        # PPG update
        # use aux loss after iterations and reset aux_memories
        # ====================

        # Auxiliary Phase
        # record data for auxiliary head
        data = data['value']
        data['return_'] = return_.data
        self._aux_memories.append(copy.deepcopy(data))

        self._train_iteration += 1
        total_loss = policy_loss + value_loss
        if self._train_iteration % self._cfg.learn.aux_freq == 0:
            aux_loss, bc_loss, aux_value_loss = self.learn_aux()
            total_loss += aux_loss + bc_loss + aux_value_loss
            return {
                'policy_cur_lr': self._optimizer_ac.defaults['lr'],
                'value_cur_lr': self._optimizer_aux_critic.defaults['lr'],
                'policy_loss': ppo_policy_loss.policy_loss.item(),
                'value_loss': value_loss.item(),
                'entropy_loss': ppo_policy_loss.entropy_loss.item(),
                'policy_adv_abs_max': policy_adv.abs().max().item(),
                'approx_kl': ppo_info.approx_kl,
                'clipfrac': ppo_info.clipfrac,
                'aux_value_loss': aux_value_loss,
                'auxiliary_loss': aux_loss,
                'behavioral_cloning_loss': bc_loss,
                'total_loss': total_loss.item(),
            }
        else:
            return {
                'policy_cur_lr': self._optimizer_ac.defaults['lr'],
                'value_cur_lr': self._optimizer_aux_critic.defaults['lr'],
                'policy_loss': ppo_policy_loss.policy_loss.item(),
                'value_loss': value_loss.item(),
                'entropy_loss': ppo_policy_loss.entropy_loss.item(),
                'policy_adv_abs_max': policy_adv.abs().max().item(),
                'approx_kl': ppo_info.approx_kl,
                'clipfrac': ppo_info.clipfrac,
                'total_loss': total_loss.item(),
            }

    def _state_dict_learn(self) -> Dict[str, Any]:
        """
        Overview:
            Return the state_dict of learn mode, usually including model and optimizer.
        Returns:
            - state_dict (:obj:`Dict[str, Any]`): the dict of current policy learn state, for saving and restoring.
        """
        return {
            'model': self._learn_model.state_dict(),
            'optimizer_ac': self._optimizer_ac.state_dict(),
            'optimizer_aux_critic': self._optimizer_aux_critic.state_dict(),
        }

    def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
        """
        Overview:
            Load the state_dict variable into policy learn mode.
        Arguments:
            - state_dict (:obj:`Dict[str, Any]`): the dict of policy learn state saved before.\
                When the value is distilled into the policy network, we need to make sure the policy \
                network does not change the action predictions, we need two optimizers, \
                _optimizer_ac is used in policy net, and _optimizer_aux_critic is used in value net.

        .. tip::
            If you want to only load some parts of model, you can simply set the ``strict`` argument in \
            load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \
            complicated operation.
        """
        self._learn_model.load_state_dict(state_dict['model'])
        self._optimizer_ac.load_state_dict(state_dict['optimizer_ac'])
        self._optimizer_aux_critic.load_state_dict(state_dict['optimizer_aux_critic'])

    def _init_collect(self) -> None:
        """
        Overview:
            Initialize the collect mode of policy, including related attributes and modules. For PPO, it contains the \
            collect_model to balance the exploration and exploitation (e.g. the multinomial sample mechanism in \
            discrete action space), and other algorithm-specific arguments such as unroll_len and gae_lambda.
            This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``.

        .. note::
            If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \
            with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``.
        """
        self._unroll_len = self._cfg.collect.unroll_len
        self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample')
        # TODO continuous action space exploration
        self._collect_model.reset()
        self._gamma = self._cfg.collect.discount_factor
        self._gae_lambda = self._cfg.collect.gae_lambda

    def _forward_collect(self, data: dict) -> dict:
        """
        Overview:
            Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \
            that the policy gets some necessary data (mainly observation) from the envs and then returns the output \
            data, such as the action to interact with the envs.

        Arguments:
            - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
                values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.

        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \
                    other necessary data (action logit and value) for learn mode defined in \
                    ``self._process_transition`` method. The key of the dict is the same as the input data, \
                    i.e. environment id.

        .. tip::
            If you want to add more tricks on this policy, like temperature factor in multinomial sample, you can pass \
            related data as extra keyword arguments of this method.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for PPGOffPolicy: ``ding.policy.tests.test_ppg``.
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._collect_model.eval()
        with torch.no_grad():
            output = self._collect_model.forward(data, mode='compute_actor_critic')
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict:
        """
        Overview:
               Process and pack one timestep transition data into a dict, which can be directly used for training and \
            saved in replay buffer. For PPG, it contains obs, next_obs, action, reward, done, logit, value.
        Arguments:
                - obs (:obj:`Any`): Env observation
                - model_output (:obj:`dict`): The output of the policy network with the observation \
                as input. For PPG, it contains the state value, action and the logit of the action.
                - timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step \
                method, except all the elements have been transformed into tensor data. Usually, it contains the next \
                obs, reward, done, info, etc.
        Returns:
               - transition (:obj:`dict`): The processed transition data of the current timestep.

        .. note::
            ``next_obs`` is used to calculate nstep return when necessary, so we place in into transition by default. \
            You can delete this field to save memory occupancy if you do not need nstep return.
        """
        transition = {
            'obs': obs,
            'next_obs': timestep.obs,
            'logit': model_output['logit'],
            'action': model_output['action'],
            'value': model_output['value'],
            'reward': timestep.reward,
            'done': timestep.done,
        }
        return transition

    def _get_train_sample(self, data: list) -> Union[None, List[Any]]:
        """
        Overview:
            For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \
            can be used for training directly. In PPG, a train sample is a processed transition with new computed \
            ``adv`` field. This method is usually used in collectors to execute necessary. \
            RL data preprocessing before training, which can help learner amortize revelant time consumption. \
            In addition, you can also implement this method as an identity function and do the data processing \
            in ``self._forward_learn`` method.
        Arguments:
            - data (:obj:`list`): The trajectory data (a list of transition), each element is \
                the same format as the return value of ``self._process_transition`` method.
        Returns:
            - samples (:obj:`dict`): The processed train samples, each element is the similar format \
                as input transitions, but may contain more data for training, such as GAE advantage.
        """
        data = get_gae_with_default_last_value(
            data,
            data[-1]['done'],
            gamma=self._gamma,
            gae_lambda=self._gae_lambda,
            cuda=False,
        )
        data = get_train_sample(data, self._unroll_len)
        for d in data:
            d['buffer_name'] = ["policy", "value"]
        return data

    def _get_batch_size(self) -> Dict[str, int]:
        """
        Overview:
            Get learn batch size. In the PPG algorithm, different networks require different data.\
            We need to get data['policy'] and data['value'] to train policy net and value net,\
            this function is used to get the batch size of data['policy'] and data['value'].
        Returns:
            - output (:obj:`dict[str, int]`): Dict type data, including str type batch size and int type batch size.
        """
        bs = self._cfg.learn.batch_size
        return {'policy': bs, 'value': bs}

    def _init_eval(self) -> None:
        """
        Overview:
            Initialize the eval mode of policy, including related attributes and modules. For PPG, it contains the \
            eval model to select optimial action (e.g. greedily select action with argmax mechanism in discrete \
            action). This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``.

        .. note::
            If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \
            with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``.
        """
        self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')
        self._eval_model.reset()

    def _forward_eval(self, data: dict) -> dict:
        r"""
        Overview:
            Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \
            means that the policy gets some necessary data (mainly observation) from the envs and then returns the \
            action to interact with the envs. ``_forward_eval`` in PPG often uses deterministic sample method to get \
            actions while ``_forward_collect`` usually uses stochastic sample method for balance exploration and \
            exploitation.
        Arguments:
            - data (:obj:`Dict[str, Any]`): The input data used for policy forward, including at least the obs. The \
                key of the dict is environment id and the value is the corresponding data of the env.

        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \
                key of the dict is the same as the input data, i.e. environment id.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for PPGOffPolicy: ``ding.policy.tests.test_ppg``.
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._eval_model.eval()
        with torch.no_grad():
            output = self._eval_model.forward(data, mode='compute_actor')
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _monitor_vars_learn(self) -> List[str]:
        """
        Overview:
            Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
            as text logger, tensorboard logger, will use these keys to save the corresponding data.
        Returns:
            - vars (:obj:`List[str]`): The list of the necessary keys to be logged.
        """
        return [
            'policy_cur_lr',
            'value_cur_lr',
            'policy_loss',
            'value_loss',
            'entropy_loss',
            'policy_adv_abs_max',
            'approx_kl',
            'clipfrac',
            'aux_value_loss',
            'auxiliary_loss',
            'behavioral_cloning_loss',
        ]

    def learn_aux(self) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Overview:
            The auxiliary phase training, where the value is distilled into the policy network. In PPG algorithm, \
            we use the value function loss as the auxiliary objective, thereby sharing features between the policy \
            and value function while minimizing distortions to the policy. We also use behavioral cloning loss to \
            optimize the auxiliary objective while otherwise preserving the original policy.
        Returns:
            - aux_loss (:obj:`Tuple[torch.Tensor, torch.Tensor, torch.Tensor]`): Including average auxiliary loss\
                average behavioral cloning loss, and average auxiliary value loss.
        """
        aux_memories = self._aux_memories
        # gather states and target values into one tensor
        data = {}
        states = []
        actions = []
        return_ = []
        old_values = []
        weights = []
        for memory in aux_memories:
            # for memory in memories:
            states.append(memory['obs'])
            actions.append(memory['action'])
            return_.append(memory['return_'])
            old_values.append(memory['value'])
            if memory['weight'] is None:
                weight = torch.ones_like(memory['action'])
            else:
                weight = torch.tensor(memory['weight'])
            weights.append(weight)

        data['obs'] = torch.cat(states)
        data['action'] = torch.cat(actions)
        data['return_'] = torch.cat(return_)
        data['value'] = torch.cat(old_values)
        data['weight'] = torch.cat(weights)
        # compute current policy logit_old
        with torch.no_grad():
            data['logit_old'] = self._model.forward(data['obs'], mode='compute_actor')['logit']

        # prepared dataloader for auxiliary phase training
        dl = create_shuffled_dataloader(data, self._cfg.learn.batch_size)

        # the proposed auxiliary phase training
        # where the value is distilled into the policy network,
        # while making sure the policy network does not change the action predictions (kl div loss)

        i = 0
        auxiliary_loss_ = 0
        behavioral_cloning_loss_ = 0
        value_loss_ = 0

        for epoch in range(self._aux_train_epoch):
            for data in dl:
                policy_output = self._model.forward(data['obs'], mode='compute_actor_critic')

                # Calculate ppg error 'logit_new', 'logit_old', 'action', 'value_new', 'value_old', 'return_', 'weight'
                data_ppg = ppg_data(
                    policy_output['logit'], data['logit_old'], data['action'], policy_output['value'], data['value'],
                    data['return_'], data['weight']
                )
                ppg_joint_loss = ppg_joint_error(data_ppg, self._clip_ratio)
                wb = self._aux_bc_weight
                total_loss = ppg_joint_loss.auxiliary_loss + wb * ppg_joint_loss.behavioral_cloning_loss

                # # policy network loss copmoses of both the kl div loss as well as the auxiliary loss
                # aux_loss = clipped_value_loss(policy_values, rewards, old_values, self.value_clip)
                # loss_kl = F.kl_div(action_logprobs, old_action_probs, reduction='batchmean')
                # policy_loss = aux_loss + loss_kl

                self._optimizer_ac.zero_grad()
                total_loss.backward()
                self._optimizer_ac.step()

                # paper says it is important to train the value network extra during the auxiliary phase
                # Calculate ppg error 'value_new', 'value_old', 'return_', 'weight'
                values = self._model.forward(data['obs'], mode='compute_critic')['value']
                data_aux = ppo_value_data(values, data['value'], data['return_'], data['weight'])

                value_loss = ppo_value_error(data_aux, self._clip_ratio)

                self._optimizer_aux_critic.zero_grad()
                value_loss.backward()
                self._optimizer_aux_critic.step()

                auxiliary_loss_ += ppg_joint_loss.auxiliary_loss.item()
                behavioral_cloning_loss_ += ppg_joint_loss.behavioral_cloning_loss.item()
                value_loss_ += value_loss.item()
                i += 1

        self._aux_memories = []

        return auxiliary_loss_ / i, behavioral_cloning_loss_ / i, value_loss_ / i