File size: 98,337 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
from typing import List, Dict, Any, Tuple, Union
from collections import namedtuple
import torch
import copy
import numpy as np

from ding.torch_utils import Adam, to_device, to_dtype, unsqueeze, ContrastiveLoss
from ding.rl_utils import ppo_data, ppo_error, ppo_policy_error, ppo_policy_data, get_gae_with_default_last_value, \
    v_nstep_td_data, v_nstep_td_error, get_nstep_return_data, get_train_sample, gae, gae_data, ppo_error_continuous, \
    get_gae, ppo_policy_error_continuous
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY, split_data_generator, RunningMeanStd
from ding.utils.data import default_collate, default_decollate
from .base_policy import Policy
from .common_utils import default_preprocess_learn


@POLICY_REGISTRY.register('ppo')
class PPOPolicy(Policy):
    """
    Overview:
        Policy class of on-policy version PPO algorithm. Paper link: https://arxiv.org/abs/1707.06347.
    """
    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='ppo',
        # (bool) Whether to use cuda for network.
        cuda=False,
        # (bool) Whether the RL algorithm is on-policy or off-policy. (Note: in practice PPO can be off-policy used)
        on_policy=True,
        # (bool) Whether to use priority (priority sample, IS weight, update priority).
        priority=False,
        # (bool) Whether to use Importance Sampling Weight to correct biased update due to priority.
        # If True, priority must be True.
        priority_IS_weight=False,
        # (bool) Whether to recompurete advantages in each iteration of on-policy PPO.
        recompute_adv=True,
        # (str) Which kind of action space used in PPOPolicy, ['discrete', 'continuous', 'hybrid']
        action_space='discrete',
        # (bool) Whether to use nstep return to calculate value target, otherwise, use return = adv + value.
        nstep_return=False,
        # (bool) Whether to enable multi-agent training, i.e.: MAPPO.
        multi_agent=False,
        # (bool) Whether to need policy ``_forward_collect`` output data in process transition.
        transition_with_policy_data=True,
        # learn_mode config
        learn=dict(
            # (int) After collecting n_sample/n_episode data, how many epoches to train models.
            # Each epoch means the one entire passing of training data.
            epoch_per_collect=10,
            # (int) How many samples in a training batch.
            batch_size=64,
            # (float) The step size of gradient descent.
            learning_rate=3e-4,
            # (float) The loss weight of value network, policy network weight is set to 1.
            value_weight=0.5,
            # (float) The loss weight of entropy regularization, policy network weight is set to 1.
            entropy_weight=0.0,
            # (float) PPO clip ratio, defaults to 0.2.
            clip_ratio=0.2,
            # (bool) Whether to use advantage norm in a whole training batch.
            adv_norm=True,
            # (bool) Whether to use value norm with running mean and std in the whole training process.
            value_norm=True,
            # (bool) Whether to enable special network parameters initialization scheme in PPO, such as orthogonal init.
            ppo_param_init=True,
            # (str) The gradient clip operation type used in PPO, ['clip_norm', clip_value', 'clip_momentum_norm'].
            grad_clip_type='clip_norm',
            # (float) The gradient clip target value used in PPO.
            # If ``grad_clip_type`` is 'clip_norm', then the maximum of gradient will be normalized to this value.
            grad_clip_value=0.5,
            # (bool) Whether ignore done (usually for max step termination env).
            ignore_done=False,
        ),
        # collect_mode config
        collect=dict(
            # (int) How many training samples collected in one collection procedure.
            # Only one of [n_sample, n_episode] should be set.
            # n_sample=64,
            # (int) Split episodes or trajectories into pieces with length `unroll_len`.
            unroll_len=1,
            # (float) Reward's future discount factor, aka. gamma.
            discount_factor=0.99,
            # (float) GAE lambda factor for the balance of bias and variance(1-step td and mc)
            gae_lambda=0.95,
        ),
        eval=dict(),  # for compability
    )

    def default_model(self) -> Tuple[str, List[str]]:
        """
        Overview:
            Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \
            automatically call this method to get the default model setting and create model.
        Returns:
            - model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.

        .. note::
            The user can define and use customized network model but must obey the same inferface definition indicated \
            by import_names path. For example about PPO, its registered name is ``ppo`` and the import_names is \
            ``ding.model.template.vac``.

        .. note::
            Because now PPO supports both single-agent and multi-agent usages, so we can implement these functions \
            with the same policy and two different default models, which is controled by ``self._cfg.multi_agent``.
        """
        if self._cfg.multi_agent:
            return 'mavac', ['ding.model.template.mavac']
        else:
            return 'vac', ['ding.model.template.vac']

    def _init_learn(self) -> None:
        """
        Overview:
            Initialize the learn mode of policy, including related attributes and modules. For PPO, it mainly contains \
            optimizer, algorithm-specific arguments such as loss weight, clip_ratio and recompute_adv. This method \
            also executes some special network initializations and prepares running mean/std monitor for value.
            This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.

        .. note::
            For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
            and ``_load_state_dict_learn`` methods.

        .. note::
            For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.

        .. note::
            If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
            with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
        """
        self._priority = self._cfg.priority
        self._priority_IS_weight = self._cfg.priority_IS_weight
        assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in PPO"

        assert self._cfg.action_space in ["continuous", "discrete", "hybrid"]
        self._action_space = self._cfg.action_space
        if self._cfg.learn.ppo_param_init:
            for n, m in self._model.named_modules():
                if isinstance(m, torch.nn.Linear):
                    torch.nn.init.orthogonal_(m.weight)
                    torch.nn.init.zeros_(m.bias)
            if self._action_space in ['continuous', 'hybrid']:
                # init log sigma
                if self._action_space == 'continuous':
                    if hasattr(self._model.actor_head, 'log_sigma_param'):
                        torch.nn.init.constant_(self._model.actor_head.log_sigma_param, -0.5)
                elif self._action_space == 'hybrid':  # actor_head[1]: ReparameterizationHead, for action_args
                    if hasattr(self._model.actor_head[1], 'log_sigma_param'):
                        torch.nn.init.constant_(self._model.actor_head[1].log_sigma_param, -0.5)

                for m in list(self._model.critic.modules()) + list(self._model.actor.modules()):
                    if isinstance(m, torch.nn.Linear):
                        # orthogonal initialization
                        torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
                        torch.nn.init.zeros_(m.bias)
                # do last policy layer scaling, this will make initial actions have (close to)
                # 0 mean and std, and will help boost performances,
                # see https://arxiv.org/abs/2006.05990, Fig.24 for details
                for m in self._model.actor.modules():
                    if isinstance(m, torch.nn.Linear):
                        torch.nn.init.zeros_(m.bias)
                        m.weight.data.copy_(0.01 * m.weight.data)

        # Optimizer
        self._optimizer = Adam(
            self._model.parameters(),
            lr=self._cfg.learn.learning_rate,
            grad_clip_type=self._cfg.learn.grad_clip_type,
            clip_value=self._cfg.learn.grad_clip_value
        )

        self._learn_model = model_wrap(self._model, wrapper_name='base')

        # Algorithm config
        self._value_weight = self._cfg.learn.value_weight
        self._entropy_weight = self._cfg.learn.entropy_weight
        self._clip_ratio = self._cfg.learn.clip_ratio
        self._adv_norm = self._cfg.learn.adv_norm
        self._value_norm = self._cfg.learn.value_norm
        if self._value_norm:
            self._running_mean_std = RunningMeanStd(epsilon=1e-4, device=self._device)
        self._gamma = self._cfg.collect.discount_factor
        self._gae_lambda = self._cfg.collect.gae_lambda
        self._recompute_adv = self._cfg.recompute_adv
        # Main model
        self._learn_model.reset()

    def _forward_learn(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """
        Overview:
            Policy forward function of learn mode (training policy and updating parameters). Forward means \
            that the policy inputs some training batch data from the replay buffer and then returns the output \
            result, including various training information such as loss, clipfrac, approx_kl.
        Arguments:
            - data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including the latest \
                collected training samples for on-policy algorithms like PPO. For each element in list, the key of the \
                dict is the name of data items and the value is the corresponding data. Usually, the value is \
                torch.Tensor or np.ndarray or there dict/list combinations. In the ``_forward_learn`` method, data \
                often need to first be stacked in the batch dimension by some utility functions such as \
                ``default_preprocess_learn``. \
                For PPO, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \
                ``reward``, ``logit``, ``value``, ``done``. Sometimes, it also contains other keys such as ``weight``.
        Returns:
            - return_infos (:obj:`List[Dict[str, Any]]`): The information list that indicated training result, each \
                training iteration contains append a information dict into the final list. The list will be precessed \
                and recorded in text log and tensorboard. The value of the dict must be python scalar or a list of \
                scalars. For the detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.

        .. tip::
            The training procedure of PPO is two for loops. The outer loop trains all the collected training samples \
            with ``epoch_per_collect`` epochs. The inner loop splits all the data into different mini-batch with \
            the length of ``batch_size``.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for PPOPolicy: ``ding.policy.tests.test_ppo``.
        """
        data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=False)
        if self._cuda:
            data = to_device(data, self._device)
        data['obs'] = to_dtype(data['obs'], torch.float32)
        if 'next_obs' in data:
            data['next_obs'] = to_dtype(data['next_obs'], torch.float32)
        # ====================
        # PPO forward
        # ====================
        return_infos = []
        self._learn_model.train()

        for epoch in range(self._cfg.learn.epoch_per_collect):
            if self._recompute_adv:  # calculate new value using the new updated value network
                with torch.no_grad():
                    value = self._learn_model.forward(data['obs'], mode='compute_critic')['value']
                    next_value = self._learn_model.forward(data['next_obs'], mode='compute_critic')['value']
                    if self._value_norm:
                        value *= self._running_mean_std.std
                        next_value *= self._running_mean_std.std

                    traj_flag = data.get('traj_flag', None)  # traj_flag indicates termination of trajectory
                    compute_adv_data = gae_data(value, next_value, data['reward'], data['done'], traj_flag)
                    data['adv'] = gae(compute_adv_data, self._gamma, self._gae_lambda)

                    unnormalized_returns = value + data['adv']

                    if self._value_norm:
                        data['value'] = value / self._running_mean_std.std
                        data['return'] = unnormalized_returns / self._running_mean_std.std
                        self._running_mean_std.update(unnormalized_returns.cpu().numpy())
                    else:
                        data['value'] = value
                        data['return'] = unnormalized_returns

            else:  # don't recompute adv
                if self._value_norm:
                    unnormalized_return = data['adv'] + data['value'] * self._running_mean_std.std
                    data['return'] = unnormalized_return / self._running_mean_std.std
                    self._running_mean_std.update(unnormalized_return.cpu().numpy())
                else:
                    data['return'] = data['adv'] + data['value']

            for batch in split_data_generator(data, self._cfg.learn.batch_size, shuffle=True):
                output = self._learn_model.forward(batch['obs'], mode='compute_actor_critic')
                adv = batch['adv']
                if self._adv_norm:
                    # Normalize advantage in a train_batch
                    adv = (adv - adv.mean()) / (adv.std() + 1e-8)

                # Calculate ppo error
                if self._action_space == 'continuous':
                    ppo_batch = ppo_data(
                        output['logit'], batch['logit'], batch['action'], output['value'], batch['value'], adv,
                        batch['return'], batch['weight']
                    )
                    ppo_loss, ppo_info = ppo_error_continuous(ppo_batch, self._clip_ratio)
                elif self._action_space == 'discrete':
                    ppo_batch = ppo_data(
                        output['logit'], batch['logit'], batch['action'], output['value'], batch['value'], adv,
                        batch['return'], batch['weight']
                    )
                    ppo_loss, ppo_info = ppo_error(ppo_batch, self._clip_ratio)
                elif self._action_space == 'hybrid':
                    # discrete part (discrete policy loss and entropy loss)
                    ppo_discrete_batch = ppo_policy_data(
                        output['logit']['action_type'], batch['logit']['action_type'], batch['action']['action_type'],
                        adv, batch['weight']
                    )
                    ppo_discrete_loss, ppo_discrete_info = ppo_policy_error(ppo_discrete_batch, self._clip_ratio)
                    # continuous part (continuous policy loss and entropy loss, value loss)
                    ppo_continuous_batch = ppo_data(
                        output['logit']['action_args'], batch['logit']['action_args'], batch['action']['action_args'],
                        output['value'], batch['value'], adv, batch['return'], batch['weight']
                    )
                    ppo_continuous_loss, ppo_continuous_info = ppo_error_continuous(
                        ppo_continuous_batch, self._clip_ratio
                    )
                    # sum discrete and continuous loss
                    ppo_loss = type(ppo_continuous_loss)(
                        ppo_continuous_loss.policy_loss + ppo_discrete_loss.policy_loss, ppo_continuous_loss.value_loss,
                        ppo_continuous_loss.entropy_loss + ppo_discrete_loss.entropy_loss
                    )
                    ppo_info = type(ppo_continuous_info)(
                        max(ppo_continuous_info.approx_kl, ppo_discrete_info.approx_kl),
                        max(ppo_continuous_info.clipfrac, ppo_discrete_info.clipfrac)
                    )
                wv, we = self._value_weight, self._entropy_weight
                total_loss = ppo_loss.policy_loss + wv * ppo_loss.value_loss - we * ppo_loss.entropy_loss

                self._optimizer.zero_grad()
                total_loss.backward()
                self._optimizer.step()

                return_info = {
                    'cur_lr': self._optimizer.defaults['lr'],
                    'total_loss': total_loss.item(),
                    'policy_loss': ppo_loss.policy_loss.item(),
                    'value_loss': ppo_loss.value_loss.item(),
                    'entropy_loss': ppo_loss.entropy_loss.item(),
                    'adv_max': adv.max().item(),
                    'adv_mean': adv.mean().item(),
                    'value_mean': output['value'].mean().item(),
                    'value_max': output['value'].max().item(),
                    'approx_kl': ppo_info.approx_kl,
                    'clipfrac': ppo_info.clipfrac,
                }
                if self._action_space == 'continuous':
                    return_info.update(
                        {
                            'act': batch['action'].float().mean().item(),
                            'mu_mean': output['logit']['mu'].mean().item(),
                            'sigma_mean': output['logit']['sigma'].mean().item(),
                        }
                    )
                return_infos.append(return_info)
        return return_infos

    def _init_collect(self) -> None:
        """
        Overview:
            Initialize the collect mode of policy, including related attributes and modules. For PPO, it contains the \
            collect_model to balance the exploration and exploitation (e.g. the multinomial sample mechanism in \
            discrete action space), and other algorithm-specific arguments such as unroll_len and gae_lambda.
            This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``.

        .. note::
            If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \
            with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``.

        .. tip::
            Some variables need to initialize independently in different modes, such as gamma and gae_lambda in PPO. \
            This design is for the convenience of parallel execution of different policy modes.
        """
        self._unroll_len = self._cfg.collect.unroll_len
        assert self._cfg.action_space in ["continuous", "discrete", "hybrid"], self._cfg.action_space
        self._action_space = self._cfg.action_space
        if self._action_space == 'continuous':
            self._collect_model = model_wrap(self._model, wrapper_name='reparam_sample')
        elif self._action_space == 'discrete':
            self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample')
        elif self._action_space == 'hybrid':
            self._collect_model = model_wrap(self._model, wrapper_name='hybrid_reparam_multinomial_sample')
        self._collect_model.reset()
        self._gamma = self._cfg.collect.discount_factor
        self._gae_lambda = self._cfg.collect.gae_lambda
        self._recompute_adv = self._cfg.recompute_adv

    def _forward_collect(self, data: Dict[int, Any]) -> Dict[int, Any]:
        """
        Overview:
            Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \
            that the policy gets some necessary data (mainly observation) from the envs and then returns the output \
            data, such as the action to interact with the envs.
        Arguments:
            - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
                key of the dict is environment id and the value is the corresponding data of the env.
        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \
                other necessary data (action logit and value) for learn mode defined in ``self._process_transition`` \
                method. The key of the dict is the same as the input data, i.e. environment id.

        .. tip::
            If you want to add more tricks on this policy, like temperature factor in multinomial sample, you can pass \
            related data as extra keyword arguments of this method.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for PPOPolicy: ``ding.policy.tests.test_ppo``.
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._collect_model.eval()
        with torch.no_grad():
            output = self._collect_model.forward(data, mode='compute_actor_critic')
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor],
                            timestep: namedtuple) -> Dict[str, torch.Tensor]:
        """
        Overview:
            Process and pack one timestep transition data into a dict, which can be directly used for training and \
            saved in replay buffer. For PPO, it contains obs, next_obs, action, reward, done, logit, value.
        Arguments:
            - obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari.
            - policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \
                as input. For PPO, it contains the state value, action and the logit of the action.
            - timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \
                except all the elements have been transformed into tensor data. Usually, it contains the next obs, \
                reward, done, info, etc.
        Returns:
            - transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep.

        .. note::
            ``next_obs`` is used to calculate nstep return when necessary, so we place in into transition by default. \
            You can delete this field to save memory occupancy if you do not need nstep return.
        """
        transition = {
            'obs': obs,
            'next_obs': timestep.obs,
            'action': policy_output['action'],
            'logit': policy_output['logit'],
            'value': policy_output['value'],
            'reward': timestep.reward,
            'done': timestep.done,
        }
        return transition

    def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """
        Overview:
            For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \
            can be used for training directly. In PPO, a train sample is a processed transition with new computed \
            ``traj_flag`` and ``adv`` field. This method is usually used in collectors to execute necessary \
            RL data preprocessing before training, which can help learner amortize revelant time consumption. \
            In addition, you can also implement this method as an identity function and do the data processing \
            in ``self._forward_learn`` method.
        Arguments:
            - transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \
                the same format as the return value of ``self._process_transition`` method.
        Returns:
            - samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \
                as input transitions, but may contain more data for training, such as GAE advantage.
        """
        data = transitions
        data = to_device(data, self._device)
        for transition in data:
            transition['traj_flag'] = copy.deepcopy(transition['done'])
        data[-1]['traj_flag'] = True

        if self._cfg.learn.ignore_done:
            data[-1]['done'] = False

        if data[-1]['done']:
            last_value = torch.zeros_like(data[-1]['value'])
        else:
            with torch.no_grad():
                last_value = self._collect_model.forward(
                    unsqueeze(data[-1]['next_obs'], 0), mode='compute_actor_critic'
                )['value']
            if len(last_value.shape) == 2:  # multi_agent case:
                last_value = last_value.squeeze(0)
        if self._value_norm:
            last_value *= self._running_mean_std.std
            for i in range(len(data)):
                data[i]['value'] *= self._running_mean_std.std
        data = get_gae(
            data,
            to_device(last_value, self._device),
            gamma=self._gamma,
            gae_lambda=self._gae_lambda,
            cuda=False,
        )
        if self._value_norm:
            for i in range(len(data)):
                data[i]['value'] /= self._running_mean_std.std

        # remove next_obs for save memory when not recompute adv
        if not self._recompute_adv:
            for i in range(len(data)):
                data[i].pop('next_obs')
        return get_train_sample(data, self._unroll_len)

    def _init_eval(self) -> None:
        """
        Overview:
            Initialize the eval mode of policy, including related attributes and modules. For PPO, it contains the \
            eval model to select optimial action (e.g. greedily select action with argmax mechanism in discrete action).
            This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``.

        .. note::
            If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \
            with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``.
        """
        assert self._cfg.action_space in ["continuous", "discrete", "hybrid"]
        self._action_space = self._cfg.action_space
        if self._action_space == 'continuous':
            self._eval_model = model_wrap(self._model, wrapper_name='deterministic_sample')
        elif self._action_space == 'discrete':
            self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')
        elif self._action_space == 'hybrid':
            self._eval_model = model_wrap(self._model, wrapper_name='hybrid_reparam_multinomial_sample')

        self._eval_model.reset()

    def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]:
        """
        Overview:
            Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \
            means that the policy gets some necessary data (mainly observation) from the envs and then returns the \
            action to interact with the envs. ``_forward_eval`` in PPO often uses deterministic sample method to get \
            actions while ``_forward_collect`` usually uses stochastic sample method for balance exploration and \
            exploitation.
        Arguments:
            - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
                key of the dict is environment id and the value is the corresponding data of the env.
        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \
                key of the dict is the same as the input data, i.e. environment id.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for PPOPolicy: ``ding.policy.tests.test_ppo``.
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._eval_model.eval()
        with torch.no_grad():
            output = self._eval_model.forward(data, mode='compute_actor')
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _monitor_vars_learn(self) -> List[str]:
        """
        Overview:
            Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
            as text logger, tensorboard logger, will use these keys to save the corresponding data.
        Returns:
            - necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
        """
        variables = super()._monitor_vars_learn() + [
            'policy_loss',
            'value_loss',
            'entropy_loss',
            'adv_max',
            'adv_mean',
            'approx_kl',
            'clipfrac',
            'value_max',
            'value_mean',
        ]
        if self._action_space == 'continuous':
            variables += ['mu_mean', 'sigma_mean', 'sigma_grad', 'act']
        return variables


@POLICY_REGISTRY.register('ppo_pg')
class PPOPGPolicy(Policy):
    """
    Overview:
        Policy class of on policy version PPO algorithm (pure policy gradient without value network).
        Paper link: https://arxiv.org/abs/1707.06347.
    """
    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='ppo_pg',
        # (bool) Whether to use cuda for network.
        cuda=False,
        # (bool) Whether the RL algorithm is on-policy or off-policy. (Note: in practice PPO can be off-policy used)
        on_policy=True,
        # (str) Which kind of action space used in PPOPolicy, ['discrete', 'continuous', 'hybrid']
        action_space='discrete',
        # (bool) Whether to enable multi-agent training, i.e.: MAPPO.
        multi_agent=False,
        # (bool) Whether to need policy data in process transition.
        transition_with_policy_data=True,
        # learn_mode config
        learn=dict(
            # (int) After collecting n_sample/n_episode data, how many epoches to train models.
            # Each epoch means the one entire passing of training data.
            epoch_per_collect=10,
            # (int) How many samples in a training batch.
            batch_size=64,
            # (float) The step size of gradient descent.
            learning_rate=3e-4,
            # (float) The loss weight of entropy regularization, policy network weight is set to 1.
            entropy_weight=0.0,
            # (float) PPO clip ratio, defaults to 0.2.
            clip_ratio=0.2,
            # (bool) Whether to enable special network parameters initialization scheme in PPO, such as orthogonal init.
            ppo_param_init=True,
            # (str) The gradient clip operation type used in PPO, ['clip_norm', clip_value', 'clip_momentum_norm'].
            grad_clip_type='clip_norm',
            # (float) The gradient clip target value used in PPO.
            # If ``grad_clip_type`` is 'clip_norm', then the maximum of gradient will be normalized to this value.
            grad_clip_value=0.5,
            # (bool) Whether ignore done (usually for max step termination env).
            ignore_done=False,
        ),
        # collect_mode config
        collect=dict(
            # (int) How many training episodes collected in one collection process. Only one of n_episode shoule be set.
            # n_episode=8,
            # (int) Cut trajectories into pieces with length "unroll_len".
            unroll_len=1,
            # (float) Reward's future discount factor, aka. gamma.
            discount_factor=0.99,
        ),
        eval=dict(),  # for compability
    )

    def default_model(self) -> Tuple[str, List[str]]:
        """
        Overview:
            Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \
            automatically call this method to get the default model setting and create model.
        Returns:
            - model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.
        """
        return 'pg', ['ding.model.template.pg']

    def _init_learn(self) -> None:
        """
        Overview:
            Initialize the learn mode of policy, including related attributes and modules. For PPOPG, it mainly \
            contains optimizer, algorithm-specific arguments such as loss weight and clip_ratio. This method \
            also executes some special network initializations.
            This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.

        .. note::
            For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
            and ``_load_state_dict_learn`` methods.

        .. note::
            For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.

        .. note::
            If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
            with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
        """
        assert self._cfg.action_space in ["continuous", "discrete"]
        self._action_space = self._cfg.action_space
        if self._cfg.learn.ppo_param_init:
            for n, m in self._model.named_modules():
                if isinstance(m, torch.nn.Linear):
                    torch.nn.init.orthogonal_(m.weight)
                    torch.nn.init.zeros_(m.bias)
            if self._action_space == 'continuous':
                if hasattr(self._model.head, 'log_sigma_param'):
                    torch.nn.init.constant_(self._model.head.log_sigma_param, -0.5)
                for m in self._model.modules():
                    if isinstance(m, torch.nn.Linear):
                        torch.nn.init.zeros_(m.bias)
                        m.weight.data.copy_(0.01 * m.weight.data)

        # Optimizer
        self._optimizer = Adam(
            self._model.parameters(),
            lr=self._cfg.learn.learning_rate,
            grad_clip_type=self._cfg.learn.grad_clip_type,
            clip_value=self._cfg.learn.grad_clip_value
        )

        self._learn_model = model_wrap(self._model, wrapper_name='base')

        # Algorithm config
        self._entropy_weight = self._cfg.learn.entropy_weight
        self._clip_ratio = self._cfg.learn.clip_ratio
        self._gamma = self._cfg.collect.discount_factor
        # Main model
        self._learn_model.reset()

    def _forward_learn(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """
        Overview:
            Policy forward function of learn mode (training policy and updating parameters). Forward means \
            that the policy inputs some training batch data from the replay buffer and then returns the output \
            result, including various training information such as loss, clipfrac, approx_kl.
        Arguments:
            - data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including the latest \
                collected training samples for on-policy algorithms like PPO. For each element in list, the key of the \
                dict is the name of data items and the value is the corresponding data. Usually, the value is \
                torch.Tensor or np.ndarray or there dict/list combinations. In the ``_forward_learn`` method, data \
                often need to first be stacked in the batch dimension by some utility functions such as \
                ``default_preprocess_learn``. \
                For PPOPG, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \
                ``return``, ``logit``, ``done``. Sometimes, it also contains other keys such as ``weight``.
        Returns:
            - return_infos (:obj:`List[Dict[str, Any]]`): The information list that indicated training result, each \
                training iteration contains append a information dict into the final list. The list will be precessed \
                and recorded in text log and tensorboard. The value of the dict must be python scalar or a list of \
                scalars. For the detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.

        .. tip::
            The training procedure of PPOPG is two for loops. The outer loop trains all the collected training samples \
            with ``epoch_per_collect`` epochs. The inner loop splits all the data into different mini-batch with \
            the length of ``batch_size``.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.
        """

        data = default_preprocess_learn(data)
        if self._cuda:
            data = to_device(data, self._device)
        return_infos = []
        self._learn_model.train()

        for epoch in range(self._cfg.learn.epoch_per_collect):
            for batch in split_data_generator(data, self._cfg.learn.batch_size, shuffle=True):
                output = self._learn_model.forward(batch['obs'])

                ppo_batch = ppo_policy_data(
                    output['logit'], batch['logit'], batch['action'], batch['return'], batch['weight']
                )
                if self._action_space == 'continuous':
                    ppo_loss, ppo_info = ppo_policy_error_continuous(ppo_batch, self._clip_ratio)
                elif self._action_space == 'discrete':
                    ppo_loss, ppo_info = ppo_policy_error(ppo_batch, self._clip_ratio)
                total_loss = ppo_loss.policy_loss - self._entropy_weight * ppo_loss.entropy_loss

                self._optimizer.zero_grad()
                total_loss.backward()
                self._optimizer.step()

                return_info = {
                    'cur_lr': self._optimizer.defaults['lr'],
                    'total_loss': total_loss.item(),
                    'policy_loss': ppo_loss.policy_loss.item(),
                    'entropy_loss': ppo_loss.entropy_loss.item(),
                    'approx_kl': ppo_info.approx_kl,
                    'clipfrac': ppo_info.clipfrac,
                }
                if self._action_space == 'continuous':
                    return_info.update(
                        {
                            'act': batch['action'].float().mean().item(),
                            'mu_mean': output['logit']['mu'].mean().item(),
                            'sigma_mean': output['logit']['sigma'].mean().item(),
                        }
                    )
                return_infos.append(return_info)
        return return_infos

    def _init_collect(self) -> None:
        """
        Overview:
            Initialize the collect mode of policy, including related attributes and modules. For PPOPG, it contains \
            the collect_model to balance the exploration and exploitation (e.g. the multinomial sample mechanism in \
            discrete action space), and other algorithm-specific arguments such as unroll_len and gae_lambda.
            This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``.

        .. note::
            If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \
            with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``.

        .. tip::
            Some variables need to initialize independently in different modes, such as gamma and gae_lambda in PPO. \
            This design is for the convenience of parallel execution of different policy modes.
        """
        assert self._cfg.action_space in ["continuous", "discrete"], self._cfg.action_space
        self._action_space = self._cfg.action_space
        self._unroll_len = self._cfg.collect.unroll_len
        if self._action_space == 'continuous':
            self._collect_model = model_wrap(self._model, wrapper_name='reparam_sample')
        elif self._action_space == 'discrete':
            self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample')
        self._collect_model.reset()
        self._gamma = self._cfg.collect.discount_factor

    def _forward_collect(self, data: Dict[int, Any]) -> Dict[int, Any]:
        """
        Overview:
            Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \
            that the policy gets some necessary data (mainly observation) from the envs and then returns the output \
            data, such as the action to interact with the envs.
        Arguments:
            - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
                key of the dict is environment id and the value is the corresponding data of the env.
        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \
                other necessary data (action logit) for learn mode defined in ``self._process_transition`` \
                method. The key of the dict is the same as the input data, i.e. environment id.

        .. tip::
            If you want to add more tricks on this policy, like temperature factor in multinomial sample, you can pass \
            related data as extra keyword arguments of this method.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._collect_model.eval()
        with torch.no_grad():
            output = self._collect_model.forward(data)
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor],
                            timestep: namedtuple) -> Dict[str, torch.Tensor]:
        """
        Overview:
            Process and pack one timestep transition data into a dict, which can be directly used for training and \
            saved in replay buffer. For PPOPG, it contains obs, action, reward, done, logit.
        Arguments:
            - obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari.
            - policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \
                as input. For PPOPG, it contains the action and the logit of the action.
            - timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \
                except all the elements have been transformed into tensor data. Usually, it contains the next obs, \
                reward, done, info, etc.
        Returns:
            - transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep.
        """
        transition = {
            'obs': obs,
            'action': policy_output['action'],
            'logit': policy_output['logit'],
            'reward': timestep.reward,
            'done': timestep.done,
        }
        return transition

    def _get_train_sample(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """
        Overview:
            For a given entire episode data (a list of transition), process it into a list of sample that \
            can be used for training directly. In PPOPG, a train sample is a processed transition with new computed \
            ``return`` field. This method is usually used in collectors to execute necessary \
            RL data preprocessing before training, which can help learner amortize revelant time consumption. \
            In addition, you can also implement this method as an identity function and do the data processing \
            in ``self._forward_learn`` method.
        Arguments:
            - data (:obj:`List[Dict[str, Any]`): The episode data (a list of transition), each element is \
                the same format as the return value of ``self._process_transition`` method.
        Returns:
            - samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \
                as input transitions, but may contain more data for training, such as discounted episode return.
        """
        assert data[-1]['done'] is True, "PPO-PG needs a complete epsiode"

        if self._cfg.learn.ignore_done:
            raise NotImplementedError

        R = 0.
        for i in reversed(range(len(data))):
            R = self._gamma * R + data[i]['reward']
            data[i]['return'] = R

        return get_train_sample(data, self._unroll_len)

    def _init_eval(self) -> None:
        """
        Overview:
            Initialize the eval mode of policy, including related attributes and modules. For PPOPG, it contains the \
            eval model to select optimial action (e.g. greedily select action with argmax mechanism in discrete action).
            This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``.

        .. note::
            If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \
            with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``.
        """
        assert self._cfg.action_space in ["continuous", "discrete"]
        self._action_space = self._cfg.action_space
        if self._action_space == 'continuous':
            self._eval_model = model_wrap(self._model, wrapper_name='deterministic_sample')
        elif self._action_space == 'discrete':
            self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')
        self._eval_model.reset()

    def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]:
        """
        Overview:
            Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \
            means that the policy gets some necessary data (mainly observation) from the envs and then returns the \
            action to interact with the envs. ``_forward_eval`` in PPO often uses deterministic sample method to get \
            actions while ``_forward_collect`` usually uses stochastic sample method for balance exploration and \
            exploitation.
        Arguments:
            - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
                key of the dict is environment id and the value is the corresponding data of the env.
        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \
                key of the dict is the same as the input data, i.e. environment id.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for PPOPGPolicy: ``ding.policy.tests.test_ppo``.
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._eval_model.eval()
        with torch.no_grad():
            output = self._eval_model.forward(data)
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _monitor_vars_learn(self) -> List[str]:
        """
        Overview:
            Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
            as text logger, tensorboard logger, will use these keys to save the corresponding data.
        Returns:
            - necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
        """
        return super()._monitor_vars_learn() + [
            'policy_loss',
            'entropy_loss',
            'approx_kl',
            'clipfrac',
        ]


@POLICY_REGISTRY.register('ppo_offpolicy')
class PPOOffPolicy(Policy):
    """
    Overview:
        Policy class of off-policy version PPO algorithm. Paper link: https://arxiv.org/abs/1707.06347.
        This version is more suitable for large-scale distributed training.
    """
    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='ppo',
        # (bool) Whether to use cuda for network.
        cuda=False,
        on_policy=False,
        # (bool) Whether to use priority (priority sample, IS weight, update priority).
        priority=False,
        # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
        priority_IS_weight=False,
        # (str) Which kind of action space used in PPOPolicy, ["continuous", "discrete", "hybrid"].
        action_space='discrete',
        # (bool) Whether to use nstep_return for value loss.
        nstep_return=False,
        # (int) The timestep of TD (temporal-difference) loss.
        nstep=3,
        # (bool) Whether to need policy data in process transition.
        transition_with_policy_data=True,
        # learn_mode config
        learn=dict(
            # (int) How many updates(iterations) to train after collector's one collection.
            # Bigger "update_per_collect" means bigger off-policy.
            # collect data -> update policy-> collect data -> ...
            update_per_collect=5,
            # (int) How many samples in a training batch.
            batch_size=64,
            # (float) The step size of gradient descent.
            learning_rate=0.001,
            # (float) The loss weight of value network, policy network weight is set to 1.
            value_weight=0.5,
            # (float) The loss weight of entropy regularization, policy network weight is set to 1.
            entropy_weight=0.01,
            # (float) PPO clip ratio, defaults to 0.2.
            clip_ratio=0.2,
            # (bool) Whether to use advantage norm in a whole training batch.
            adv_norm=False,
            # (bool) Whether to use value norm with running mean and std in the whole training process.
            value_norm=True,
            # (bool) Whether to enable special network parameters initialization scheme in PPO, such as orthogonal init.
            ppo_param_init=True,
            # (str) The gradient clip operation type used in PPO, ['clip_norm', clip_value', 'clip_momentum_norm'].
            grad_clip_type='clip_norm',
            # (float) The gradient clip target value used in PPO.
            # If ``grad_clip_type`` is 'clip_norm', then the maximum of gradient will be normalized to this value.
            grad_clip_value=0.5,
            # (bool) Whether ignore done (usually for max step termination env).
            ignore_done=False,
            # (float) The weight decay (L2 regularization) loss weight, defaults to 0.0.
            weight_decay=0.0,
        ),
        # collect_mode config
        collect=dict(
            # (int) How many training samples collected in one collection procedure.
            # Only one of [n_sample, n_episode] shoule be set.
            # n_sample=64,
            # (int) Cut trajectories into pieces with length "unroll_len".
            unroll_len=1,
            # (float) Reward's future discount factor, aka. gamma.
            discount_factor=0.99,
            # (float) GAE lambda factor for the balance of bias and variance (1-step td and mc).
            gae_lambda=0.95,
        ),
        eval=dict(),  # for compability
        other=dict(
            replay_buffer=dict(
                # (int) Maximum size of replay buffer. Usually, larger buffer size is better.
                replay_buffer_size=10000,
            ),
        ),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        """
        Overview:
            Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \
            automatically call this method to get the default model setting and create model.
        Returns:
            - model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.
        """
        return 'vac', ['ding.model.template.vac']

    def _init_learn(self) -> None:
        """
        Overview:
            Initialize the learn mode of policy, including related attributes and modules. For PPOOff, it mainly \
            contains optimizer, algorithm-specific arguments such as loss weight and clip_ratio. This method \
            also executes some special network initializations and prepares running mean/std monitor for value.
            This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.

        .. note::
            For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
            and ``_load_state_dict_learn`` methods.

        .. note::
            For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.

        .. note::
            If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
            with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
        """
        self._priority = self._cfg.priority
        self._priority_IS_weight = self._cfg.priority_IS_weight
        assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in PPOOff"

        assert self._cfg.action_space in ["continuous", "discrete", "hybrid"]
        self._action_space = self._cfg.action_space

        if self._cfg.learn.ppo_param_init:
            for n, m in self._model.named_modules():
                if isinstance(m, torch.nn.Linear):
                    torch.nn.init.orthogonal_(m.weight)
                    torch.nn.init.zeros_(m.bias)
            if self._action_space in ['continuous', 'hybrid']:
                # init log sigma
                if self._action_space == 'continuous':
                    if hasattr(self._model.actor_head, 'log_sigma_param'):
                        torch.nn.init.constant_(self._model.actor_head.log_sigma_param, -2.0)
                elif self._action_space == 'hybrid':  # actor_head[1]: ReparameterizationHead, for action_args
                    if hasattr(self._model.actor_head[1], 'log_sigma_param'):
                        torch.nn.init.constant_(self._model.actor_head[1].log_sigma_param, -0.5)

                for m in list(self._model.critic.modules()) + list(self._model.actor.modules()):
                    if isinstance(m, torch.nn.Linear):
                        # orthogonal initialization
                        torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
                        torch.nn.init.zeros_(m.bias)
                # do last policy layer scaling, this will make initial actions have (close to)
                # 0 mean and std, and will help boost performances,
                # see https://arxiv.org/abs/2006.05990, Fig.24 for details
                for m in self._model.actor.modules():
                    if isinstance(m, torch.nn.Linear):
                        torch.nn.init.zeros_(m.bias)
                        m.weight.data.copy_(0.01 * m.weight.data)

        # Optimizer
        self._optimizer = Adam(
            self._model.parameters(),
            lr=self._cfg.learn.learning_rate,
            grad_clip_type=self._cfg.learn.grad_clip_type,
            clip_value=self._cfg.learn.grad_clip_value
        )

        self._learn_model = model_wrap(self._model, wrapper_name='base')

        # Algorithm config
        self._value_weight = self._cfg.learn.value_weight
        self._entropy_weight = self._cfg.learn.entropy_weight
        self._clip_ratio = self._cfg.learn.clip_ratio
        self._adv_norm = self._cfg.learn.adv_norm
        self._value_norm = self._cfg.learn.value_norm
        if self._value_norm:
            self._running_mean_std = RunningMeanStd(epsilon=1e-4, device=self._device)
        self._gamma = self._cfg.collect.discount_factor
        self._gae_lambda = self._cfg.collect.gae_lambda
        self._nstep = self._cfg.nstep
        self._nstep_return = self._cfg.nstep_return
        # Main model
        self._learn_model.reset()

    def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
        """
        Overview:
            Policy forward function of learn mode (training policy and updating parameters). Forward means \
            that the policy inputs some training batch data from the replay buffer and then returns the output \
            result, including various training information such as loss, clipfrac and approx_kl.
        Arguments:
            - data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \
                training samples. For each element in list, the key of the dict is the name of data items and the \
                value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \
                combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \
                dimension by some utility functions such as ``default_preprocess_learn``. \
                For PPOOff, each element in list is a dict containing at least the following keys: ``obs``, ``adv``, \
                ``action``, ``logit``, ``value``, ``done``. Sometimes, it also contains other keys such as ``weight`` \
                and ``value_gamma``.
        Returns:
            - info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \
                recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \
                detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.
        """
        data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=self._nstep_return)
        if self._cuda:
            data = to_device(data, self._device)
        data['obs'] = to_dtype(data['obs'], torch.float32)
        if 'next_obs' in data:
            data['next_obs'] = to_dtype(data['next_obs'], torch.float32)
        # ====================
        # PPO forward
        # ====================

        self._learn_model.train()

        with torch.no_grad():
            if self._value_norm:
                unnormalized_return = data['adv'] + data['value'] * self._running_mean_std.std
                data['return'] = unnormalized_return / self._running_mean_std.std
                self._running_mean_std.update(unnormalized_return.cpu().numpy())
            else:
                data['return'] = data['adv'] + data['value']

        # normal ppo
        if not self._nstep_return:
            output = self._learn_model.forward(data['obs'], mode='compute_actor_critic')
            adv = data['adv']

            if self._adv_norm:
                # Normalize advantage in a total train_batch
                adv = (adv - adv.mean()) / (adv.std() + 1e-8)
            # Calculate ppo loss
            if self._action_space == 'continuous':
                ppodata = ppo_data(
                    output['logit'], data['logit'], data['action'], output['value'], data['value'], adv, data['return'],
                    data['weight']
                )
                ppo_loss, ppo_info = ppo_error_continuous(ppodata, self._clip_ratio)
            elif self._action_space == 'discrete':
                ppodata = ppo_data(
                    output['logit'], data['logit'], data['action'], output['value'], data['value'], adv, data['return'],
                    data['weight']
                )
                ppo_loss, ppo_info = ppo_error(ppodata, self._clip_ratio)
            elif self._action_space == 'hybrid':
                # discrete part (discrete policy loss and entropy loss)
                ppo_discrete_batch = ppo_policy_data(
                    output['logit']['action_type'], data['logit']['action_type'], data['action']['action_type'], adv,
                    data['weight']
                )
                ppo_discrete_loss, ppo_discrete_info = ppo_policy_error(ppo_discrete_batch, self._clip_ratio)
                # continuous part (continuous policy loss and entropy loss, value loss)
                ppo_continuous_batch = ppo_data(
                    output['logit']['action_args'], data['logit']['action_args'], data['action']['action_args'],
                    output['value'], data['value'], adv, data['return'], data['weight']
                )
                ppo_continuous_loss, ppo_continuous_info = ppo_error_continuous(ppo_continuous_batch, self._clip_ratio)
                # sum discrete and continuous loss
                ppo_loss = type(ppo_continuous_loss)(
                    ppo_continuous_loss.policy_loss + ppo_discrete_loss.policy_loss, ppo_continuous_loss.value_loss,
                    ppo_continuous_loss.entropy_loss + ppo_discrete_loss.entropy_loss
                )
                ppo_info = type(ppo_continuous_info)(
                    max(ppo_continuous_info.approx_kl, ppo_discrete_info.approx_kl),
                    max(ppo_continuous_info.clipfrac, ppo_discrete_info.clipfrac)
                )

            wv, we = self._value_weight, self._entropy_weight
            total_loss = ppo_loss.policy_loss + wv * ppo_loss.value_loss - we * ppo_loss.entropy_loss

        else:
            output = self._learn_model.forward(data['obs'], mode='compute_actor')
            adv = data['adv']
            if self._adv_norm:
                # Normalize advantage in a total train_batch
                adv = (adv - adv.mean()) / (adv.std() + 1e-8)

            # Calculate ppo loss
            if self._action_space == 'continuous':
                ppodata = ppo_policy_data(output['logit'], data['logit'], data['action'], adv, data['weight'])
                ppo_policy_loss, ppo_info = ppo_policy_error_continuous(ppodata, self._clip_ratio)
            elif self._action_space == 'discrete':
                ppodata = ppo_policy_data(output['logit'], data['logit'], data['action'], adv, data['weight'])
                ppo_policy_loss, ppo_info = ppo_policy_error(ppodata, self._clip_ratio)
            elif self._action_space == 'hybrid':
                # discrete part (discrete policy loss and entropy loss)
                ppo_discrete_data = ppo_policy_data(
                    output['logit']['action_type'], data['logit']['action_type'], data['action']['action_type'], adv,
                    data['weight']
                )
                ppo_discrete_loss, ppo_discrete_info = ppo_policy_error(ppo_discrete_data, self._clip_ratio)
                # continuous part (continuous policy loss and entropy loss, value loss)
                ppo_continuous_data = ppo_policy_data(
                    output['logit']['action_args'], data['logit']['action_args'], data['action']['action_args'], adv,
                    data['weight']
                )
                ppo_continuous_loss, ppo_continuous_info = ppo_policy_error_continuous(
                    ppo_continuous_data, self._clip_ratio
                )
                # sum discrete and continuous loss
                ppo_policy_loss = type(ppo_continuous_loss)(
                    ppo_continuous_loss.policy_loss + ppo_discrete_loss.policy_loss,
                    ppo_continuous_loss.entropy_loss + ppo_discrete_loss.entropy_loss
                )
                ppo_info = type(ppo_continuous_info)(
                    max(ppo_continuous_info.approx_kl, ppo_discrete_info.approx_kl),
                    max(ppo_continuous_info.clipfrac, ppo_discrete_info.clipfrac)
                )

            wv, we = self._value_weight, self._entropy_weight
            next_obs = data.get('next_obs')
            value_gamma = data.get('value_gamma')
            reward = data.get('reward')
            # current value
            value = self._learn_model.forward(data['obs'], mode='compute_critic')
            # target value
            next_data = {'obs': next_obs}
            target_value = self._learn_model.forward(next_data['obs'], mode='compute_critic')
            # TODO what should we do here to keep shape
            assert self._nstep > 1
            td_data = v_nstep_td_data(
                value['value'], target_value['value'], reward, data['done'], data['weight'], value_gamma
            )
            # calculate v_nstep_td critic_loss
            critic_loss, td_error_per_sample = v_nstep_td_error(td_data, self._gamma, self._nstep)
            ppo_loss_data = namedtuple('ppo_loss', ['policy_loss', 'value_loss', 'entropy_loss'])
            ppo_loss = ppo_loss_data(ppo_policy_loss.policy_loss, critic_loss, ppo_policy_loss.entropy_loss)
            total_loss = ppo_policy_loss.policy_loss + wv * critic_loss - we * ppo_policy_loss.entropy_loss

        # ====================
        # PPO update
        # ====================
        self._optimizer.zero_grad()
        total_loss.backward()
        self._optimizer.step()
        return_info = {
            'cur_lr': self._optimizer.defaults['lr'],
            'total_loss': total_loss.item(),
            'policy_loss': ppo_loss.policy_loss.item(),
            'value': data['value'].mean().item(),
            'value_loss': ppo_loss.value_loss.item(),
            'entropy_loss': ppo_loss.entropy_loss.item(),
            'adv_abs_max': adv.abs().max().item(),
            'approx_kl': ppo_info.approx_kl,
            'clipfrac': ppo_info.clipfrac,
        }
        if self._action_space == 'continuous':
            return_info.update(
                {
                    'act': data['action'].float().mean().item(),
                    'mu_mean': output['logit']['mu'].mean().item(),
                    'sigma_mean': output['logit']['sigma'].mean().item(),
                }
            )
        return return_info

    def _init_collect(self) -> None:
        """
        Overview:
            Initialize the collect mode of policy, including related attributes and modules. For PPOOff, it contains \
            collect_model to balance the exploration and exploitation (e.g. the multinomial sample mechanism in \
            discrete action space), and other algorithm-specific arguments such as unroll_len and gae_lambda.
            This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``.

        .. note::
            If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \
            with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``.

        .. tip::
            Some variables need to initialize independently in different modes, such as gamma and gae_lambda in PPOOff.
            This design is for the convenience of parallel execution of different policy modes.
        """
        self._unroll_len = self._cfg.collect.unroll_len
        assert self._cfg.action_space in ["continuous", "discrete", "hybrid"]
        self._action_space = self._cfg.action_space
        if self._action_space == 'continuous':
            self._collect_model = model_wrap(self._model, wrapper_name='reparam_sample')
        elif self._action_space == 'discrete':
            self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample')
        elif self._action_space == 'hybrid':
            self._collect_model = model_wrap(self._model, wrapper_name='hybrid_reparam_multinomial_sample')
        self._collect_model.reset()
        self._gamma = self._cfg.collect.discount_factor
        self._gae_lambda = self._cfg.collect.gae_lambda
        self._nstep = self._cfg.nstep
        self._nstep_return = self._cfg.nstep_return
        self._value_norm = self._cfg.learn.value_norm
        if self._value_norm:
            self._running_mean_std = RunningMeanStd(epsilon=1e-4, device=self._device)

    def _forward_collect(self, data: Dict[int, Any]) -> Dict[int, Any]:
        """
        Overview:
            Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \
            that the policy gets some necessary data (mainly observation) from the envs and then returns the output \
            data, such as the action to interact with the envs.
        Arguments:
            - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
                key of the dict is environment id and the value is the corresponding data of the env.
        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \
                other necessary data (action logit and value) for learn mode defined in ``self._process_transition`` \
                method. The key of the dict is the same as the input data, i.e. environment id.

        .. tip::
            If you want to add more tricks on this policy, like temperature factor in multinomial sample, you can pass \
            related data as extra keyword arguments of this method.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for PPOOffPolicy: ``ding.policy.tests.test_ppo``.
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._collect_model.eval()
        with torch.no_grad():
            output = self._collect_model.forward(data, mode='compute_actor_critic')
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor],
                            timestep: namedtuple) -> Dict[str, torch.Tensor]:
        """
        Overview:
            Process and pack one timestep transition data into a dict, which can be directly used for training and \
            saved in replay buffer. For PPO, it contains obs, next_obs, action, reward, done, logit, value.
        Arguments:
            - obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari.
            - policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \
                as input. For PPO, it contains the state value, action and the logit of the action.
            - timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \
                except all the elements have been transformed into tensor data. Usually, it contains the next obs, \
                reward, done, info, etc.
        Returns:
            - transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep.

        .. note::
            ``next_obs`` is used to calculate nstep return when necessary, so we place in into transition by default. \
            You can delete this field to save memory occupancy if you do not need nstep return.
        """

        transition = {
            'obs': obs,
            'next_obs': timestep.obs,
            'logit': policy_output['logit'],
            'action': policy_output['action'],
            'value': policy_output['value'],
            'reward': timestep.reward,
            'done': timestep.done,
        }
        return transition

    def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """
        Overview:
            For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \
            can be used for training directly. In PPO, a train sample is a processed transition with new computed \
            ``traj_flag`` and ``adv`` field. This method is usually used in collectors to execute necessary \
            RL data preprocessing before training, which can help learner amortize revelant time consumption. \
            In addition, you can also implement this method as an identity function and do the data processing \
            in ``self._forward_learn`` method.
        Arguments:
            - transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \
                the same format as the return value of ``self._process_transition`` method.
        Returns:
            - samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \
                as input transitions, but may contain more data for training, such as GAE advantage.
        """
        data = transitions
        data = to_device(data, self._device)
        for transition in data:
            transition['traj_flag'] = copy.deepcopy(transition['done'])
        data[-1]['traj_flag'] = True

        if self._cfg.learn.ignore_done:
            data[-1]['done'] = False

        if data[-1]['done']:
            last_value = torch.zeros_like(data[-1]['value'])
        else:
            with torch.no_grad():
                last_value = self._collect_model.forward(
                    unsqueeze(data[-1]['next_obs'], 0), mode='compute_actor_critic'
                )['value']
            if len(last_value.shape) == 2:  # multi_agent case:
                last_value = last_value.squeeze(0)
        if self._value_norm:
            last_value *= self._running_mean_std.std
            for i in range(len(data)):
                data[i]['value'] *= self._running_mean_std.std
        data = get_gae(
            data,
            to_device(last_value, self._device),
            gamma=self._gamma,
            gae_lambda=self._gae_lambda,
            cuda=False,
        )
        if self._value_norm:
            for i in range(len(data)):
                data[i]['value'] /= self._running_mean_std.std

        if not self._nstep_return:
            return get_train_sample(data, self._unroll_len)
        else:
            return get_nstep_return_data(data, self._nstep)

    def _init_eval(self) -> None:
        """
        Overview:
            Initialize the eval mode of policy, including related attributes and modules. For PPOOff, it contains the \
            eval model to select optimial action (e.g. greedily select action with argmax mechanism in discrete action).
            This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``.

        .. note::
            If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \
            with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``.
        """
        assert self._cfg.action_space in ["continuous", "discrete", "hybrid"]
        self._action_space = self._cfg.action_space
        if self._action_space == 'continuous':
            self._eval_model = model_wrap(self._model, wrapper_name='deterministic_sample')
        elif self._action_space == 'discrete':
            self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')
        elif self._action_space == 'hybrid':
            self._eval_model = model_wrap(self._model, wrapper_name='hybrid_deterministic_argmax_sample')
        self._eval_model.reset()

    def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]:
        """
        Overview:
            Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \
            means that the policy gets some necessary data (mainly observation) from the envs and then returns the \
            action to interact with the envs. ``_forward_eval`` in PPO often uses deterministic sample method to get \
            actions while ``_forward_collect`` usually uses stochastic sample method for balance exploration and \
            exploitation.
        Arguments:
            - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
                key of the dict is environment id and the value is the corresponding data of the env.
        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \
                key of the dict is the same as the input data, i.e. environment id.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for PPOOffPolicy: ``ding.policy.tests.test_ppo``.
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._eval_model.eval()
        with torch.no_grad():
            output = self._eval_model.forward(data, mode='compute_actor')
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _monitor_vars_learn(self) -> List[str]:
        """
        Overview:
            Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
            as text logger, tensorboard logger, will use these keys to save the corresponding data.
        Returns:
            - necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
        """
        variables = super()._monitor_vars_learn() + [
            'policy_loss', 'value', 'value_loss', 'entropy_loss', 'adv_abs_max', 'approx_kl', 'clipfrac'
        ]
        if self._action_space == 'continuous':
            variables += ['mu_mean', 'sigma_mean', 'sigma_grad', 'act']
        return variables


@POLICY_REGISTRY.register('ppo_stdim')
class PPOSTDIMPolicy(PPOPolicy):
    """
    Overview:
        Policy class of on policy version PPO algorithm with ST-DIM auxiliary model.
        PPO paper link: https://arxiv.org/abs/1707.06347.
        ST-DIM paper link: https://arxiv.org/abs/1906.08226.
    """
    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='ppo_stdim',
        # (bool) Whether to use cuda for network.
        cuda=False,
        # (bool) Whether the RL algorithm is on-policy or off-policy. (Note: in practice PPO can be off-policy used)
        on_policy=True,
        # (bool) Whether to use priority(priority sample, IS weight, update priority)
        priority=False,
        # (bool) Whether to use Importance Sampling Weight to correct biased update due to priority.
        # If True, priority must be True.
        priority_IS_weight=False,
        # (bool) Whether to recompurete advantages in each iteration of on-policy PPO
        recompute_adv=True,
        # (str) Which kind of action space used in PPOPolicy, ['discrete', 'continuous']
        action_space='discrete',
        # (bool) Whether to use nstep return to calculate value target, otherwise, use return = adv + value
        nstep_return=False,
        # (bool) Whether to enable multi-agent training, i.e.: MAPPO
        multi_agent=False,
        # (bool) Whether to need policy data in process transition
        transition_with_policy_data=True,
        # (float) The loss weight of the auxiliary model to the main loss.
        aux_loss_weight=0.001,
        aux_model=dict(
            # (int) the encoding size (of each head) to apply contrastive loss.
            encode_shape=64,
            # ([int, int]) the heads number of the obs encoding and next_obs encoding respectively.
            heads=[1, 1],
            # (str) the contrastive loss type.
            loss_type='infonce',
            # (float) a parameter to adjust the polarity between positive and negative samples.
            temperature=1.0,
        ),
        # learn_mode config
        learn=dict(
            # (int) After collecting n_sample/n_episode data, how many epoches to train models.
            # Each epoch means the one entire passing of training data.
            epoch_per_collect=10,
            # (int) How many samples in a training batch.
            batch_size=64,
            # (float) The step size of gradient descent.
            learning_rate=3e-4,
            # (float) The loss weight of value network, policy network weight is set to 1.
            value_weight=0.5,
            # (float) The loss weight of entropy regularization, policy network weight is set to 1.
            entropy_weight=0.0,
            # (float) PPO clip ratio, defaults to 0.2.
            clip_ratio=0.2,
            # (bool) Whether to use advantage norm in a whole training batch.
            adv_norm=True,
            # (bool) Whether to use value norm with running mean and std in the whole training process.
            value_norm=True,
            # (bool) Whether to enable special network parameters initialization scheme in PPO, such as orthogonal init.
            ppo_param_init=True,
            # (str) The gradient clip operation type used in PPO, ['clip_norm', clip_value', 'clip_momentum_norm'].
            grad_clip_type='clip_norm',
            # (float) The gradient clip target value used in PPO.
            # If ``grad_clip_type`` is 'clip_norm', then the maximum of gradient will be normalized to this value.
            grad_clip_value=0.5,
            # (bool) Whether ignore done (usually for max step termination env).
            ignore_done=False,
        ),
        # collect_mode config
        collect=dict(
            # (int) How many training samples collected in one collection procedure.
            # Only one of [n_sample, n_episode] shoule be set.
            # n_sample=64,
            # (int) Cut trajectories into pieces with length "unroll_len".
            unroll_len=1,
            # (float) Reward's future discount factor, aka. gamma.
            discount_factor=0.99,
            # (float) GAE lambda factor for the balance of bias and variance (1-step td and mc).
            gae_lambda=0.95,
        ),
        eval=dict(),  # for compability
    )

    def _init_learn(self) -> None:
        """
        Overview:
            Learn mode init method. Called by ``self.__init__``.
            Init the auxiliary model, its optimizer, and the axuliary loss weight to the main loss.
        """
        super()._init_learn()
        x_size, y_size = self._get_encoding_size()
        self._aux_model = ContrastiveLoss(x_size, y_size, **self._cfg.aux_model)
        if self._cuda:
            self._aux_model.cuda()
        self._aux_optimizer = Adam(self._aux_model.parameters(), lr=self._cfg.learn.learning_rate)
        self._aux_loss_weight = self._cfg.aux_loss_weight

    def _get_encoding_size(self):
        """
        Overview:
            Get the input encoding size of the ST-DIM axuiliary model.
        Returns:
            - info_dict (:obj:`[Tuple, Tuple]`): The encoding size without the first (Batch) dimension.
        """
        obs = self._cfg.model.obs_shape
        if isinstance(obs, int):
            obs = [obs]
        test_data = {
            "obs": torch.randn(1, *obs),
            "next_obs": torch.randn(1, *obs),
        }
        if self._cuda:
            test_data = to_device(test_data, self._device)
        with torch.no_grad():
            x, y = self._model_encode(test_data)
        return x.size()[1:], y.size()[1:]

    def _model_encode(self, data):
        """
        Overview:
            Get the encoding of the main model as input for the auxiliary model.
        Arguments:
            - data (:obj:`dict`): Dict type data, same as the _forward_learn input.
        Returns:
            - (:obj:`Tuple[Tensor]`): the tuple of two tensors to apply contrastive embedding learning.
                In ST-DIM algorithm, these two variables are the dqn encoding of `obs` and `next_obs`\
                respectively.
        """
        assert hasattr(self._model, "encoder")
        x = self._model.encoder(data["obs"])
        y = self._model.encoder(data["next_obs"])
        return x, y

    def _forward_learn(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """
        Overview:
            Forward and backward function of learn mode.
        Arguments:
            - data (:obj:`dict`): Dict type data
        Returns:
            - info_dict (:obj:`Dict[str, Any]`):
              Including current lr, total_loss, policy_loss, value_loss, entropy_loss, \
                        adv_abs_max, approx_kl, clipfrac
        """
        data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=False)
        if self._cuda:
            data = to_device(data, self._device)
        # ====================
        # PPO forward
        # ====================
        return_infos = []
        self._learn_model.train()

        for epoch in range(self._cfg.learn.epoch_per_collect):
            if self._recompute_adv:  # calculate new value using the new updated value network
                with torch.no_grad():
                    value = self._learn_model.forward(data['obs'], mode='compute_critic')['value']
                    next_value = self._learn_model.forward(data['next_obs'], mode='compute_critic')['value']
                    if self._value_norm:
                        value *= self._running_mean_std.std
                        next_value *= self._running_mean_std.std

                    traj_flag = data.get('traj_flag', None)  # traj_flag indicates termination of trajectory
                    compute_adv_data = gae_data(value, next_value, data['reward'], data['done'], traj_flag)
                    data['adv'] = gae(compute_adv_data, self._gamma, self._gae_lambda)

                    unnormalized_returns = value + data['adv']

                    if self._value_norm:
                        data['value'] = value / self._running_mean_std.std
                        data['return'] = unnormalized_returns / self._running_mean_std.std
                        self._running_mean_std.update(unnormalized_returns.cpu().numpy())
                    else:
                        data['value'] = value
                        data['return'] = unnormalized_returns

            else:  # don't recompute adv
                if self._value_norm:
                    unnormalized_return = data['adv'] + data['value'] * self._running_mean_std.std
                    data['return'] = unnormalized_return / self._running_mean_std.std
                    self._running_mean_std.update(unnormalized_return.cpu().numpy())
                else:
                    data['return'] = data['adv'] + data['value']

            for batch in split_data_generator(data, self._cfg.learn.batch_size, shuffle=True):
                # ======================
                # Auxiliary model update
                # ======================

                # RL network encoding
                # To train the auxiliary network, the gradients of x, y should be 0.
                with torch.no_grad():
                    x_no_grad, y_no_grad = self._model_encode(batch)
                # the forward function of the auxiliary network
                self._aux_model.train()
                aux_loss_learn = self._aux_model.forward(x_no_grad, y_no_grad)
                # the BP process of the auxiliary network
                self._aux_optimizer.zero_grad()
                aux_loss_learn.backward()
                if self._cfg.multi_gpu:
                    self.sync_gradients(self._aux_model)
                self._aux_optimizer.step()

                output = self._learn_model.forward(batch['obs'], mode='compute_actor_critic')
                adv = batch['adv']
                if self._adv_norm:
                    # Normalize advantage in a train_batch
                    adv = (adv - adv.mean()) / (adv.std() + 1e-8)

                # Calculate ppo loss
                if self._action_space == 'continuous':
                    ppo_batch = ppo_data(
                        output['logit'], batch['logit'], batch['action'], output['value'], batch['value'], adv,
                        batch['return'], batch['weight']
                    )
                    ppo_loss, ppo_info = ppo_error_continuous(ppo_batch, self._clip_ratio)
                elif self._action_space == 'discrete':
                    ppo_batch = ppo_data(
                        output['logit'], batch['logit'], batch['action'], output['value'], batch['value'], adv,
                        batch['return'], batch['weight']
                    )
                    ppo_loss, ppo_info = ppo_error(ppo_batch, self._clip_ratio)

                # ======================
                # Compute auxiliary loss
                # ======================

                # In total_loss BP, the gradients of x, y are required to update the encoding network.
                # The auxiliary network won't be updated since the self._optimizer does not contain
                # its weights.
                x, y = self._model_encode(data)
                self._aux_model.eval()
                aux_loss_eval = self._aux_model.forward(x, y) * self._aux_loss_weight

                wv, we = self._value_weight, self._entropy_weight
                total_loss = ppo_loss.policy_loss + wv * ppo_loss.value_loss - we * ppo_loss.entropy_loss\
                    + aux_loss_eval

                self._optimizer.zero_grad()
                total_loss.backward()
                self._optimizer.step()

                return_info = {
                    'cur_lr': self._optimizer.defaults['lr'],
                    'total_loss': total_loss.item(),
                    'aux_loss_learn': aux_loss_learn.item(),
                    'aux_loss_eval': aux_loss_eval.item(),
                    'policy_loss': ppo_loss.policy_loss.item(),
                    'value_loss': ppo_loss.value_loss.item(),
                    'entropy_loss': ppo_loss.entropy_loss.item(),
                    'adv_max': adv.max().item(),
                    'adv_mean': adv.mean().item(),
                    'value_mean': output['value'].mean().item(),
                    'value_max': output['value'].max().item(),
                    'approx_kl': ppo_info.approx_kl,
                    'clipfrac': ppo_info.clipfrac,
                }
                if self._action_space == 'continuous':
                    return_info.update(
                        {
                            'act': batch['action'].float().mean().item(),
                            'mu_mean': output['logit']['mu'].mean().item(),
                            'sigma_mean': output['logit']['sigma'].mean().item(),
                        }
                    )
                return_infos.append(return_info)
        return return_infos

    def _state_dict_learn(self) -> Dict[str, Any]:
        """
        Overview:
            Return the state_dict of learn mode, usually including model, optimizer and aux_optimizer for \
            representation learning.
        Returns:
            - state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn state, for saving and restoring.
        """
        return {
            'model': self._learn_model.state_dict(),
            'optimizer': self._optimizer.state_dict(),
            'aux_optimizer': self._aux_optimizer.state_dict(),
        }

    def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
        """
        Overview:
            Load the state_dict variable into policy learn mode.
        Arguments:
            - state_dict (:obj:`Dict[str, Any]`): The dict of policy learn state saved before.

        .. tip::
            If you want to only load some parts of model, you can simply set the ``strict`` argument in \
            load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \
            complicated operation.
        """
        self._learn_model.load_state_dict(state_dict['model'])
        self._optimizer.load_state_dict(state_dict['optimizer'])
        self._aux_optimizer.load_state_dict(state_dict['aux_optimizer'])

    def _monitor_vars_learn(self) -> List[str]:
        """
        Overview:
            Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
            as text logger, tensorboard logger, will use these keys to save the corresponding data.
        Returns:
            - necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
        """
        return super()._monitor_vars_learn() + ["aux_loss_learn", "aux_loss_eval"]