File size: 98,337 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 |
from typing import List, Dict, Any, Tuple, Union
from collections import namedtuple
import torch
import copy
import numpy as np
from ding.torch_utils import Adam, to_device, to_dtype, unsqueeze, ContrastiveLoss
from ding.rl_utils import ppo_data, ppo_error, ppo_policy_error, ppo_policy_data, get_gae_with_default_last_value, \
v_nstep_td_data, v_nstep_td_error, get_nstep_return_data, get_train_sample, gae, gae_data, ppo_error_continuous, \
get_gae, ppo_policy_error_continuous
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY, split_data_generator, RunningMeanStd
from ding.utils.data import default_collate, default_decollate
from .base_policy import Policy
from .common_utils import default_preprocess_learn
@POLICY_REGISTRY.register('ppo')
class PPOPolicy(Policy):
"""
Overview:
Policy class of on-policy version PPO algorithm. Paper link: https://arxiv.org/abs/1707.06347.
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='ppo',
# (bool) Whether to use cuda for network.
cuda=False,
# (bool) Whether the RL algorithm is on-policy or off-policy. (Note: in practice PPO can be off-policy used)
on_policy=True,
# (bool) Whether to use priority (priority sample, IS weight, update priority).
priority=False,
# (bool) Whether to use Importance Sampling Weight to correct biased update due to priority.
# If True, priority must be True.
priority_IS_weight=False,
# (bool) Whether to recompurete advantages in each iteration of on-policy PPO.
recompute_adv=True,
# (str) Which kind of action space used in PPOPolicy, ['discrete', 'continuous', 'hybrid']
action_space='discrete',
# (bool) Whether to use nstep return to calculate value target, otherwise, use return = adv + value.
nstep_return=False,
# (bool) Whether to enable multi-agent training, i.e.: MAPPO.
multi_agent=False,
# (bool) Whether to need policy ``_forward_collect`` output data in process transition.
transition_with_policy_data=True,
# learn_mode config
learn=dict(
# (int) After collecting n_sample/n_episode data, how many epoches to train models.
# Each epoch means the one entire passing of training data.
epoch_per_collect=10,
# (int) How many samples in a training batch.
batch_size=64,
# (float) The step size of gradient descent.
learning_rate=3e-4,
# (float) The loss weight of value network, policy network weight is set to 1.
value_weight=0.5,
# (float) The loss weight of entropy regularization, policy network weight is set to 1.
entropy_weight=0.0,
# (float) PPO clip ratio, defaults to 0.2.
clip_ratio=0.2,
# (bool) Whether to use advantage norm in a whole training batch.
adv_norm=True,
# (bool) Whether to use value norm with running mean and std in the whole training process.
value_norm=True,
# (bool) Whether to enable special network parameters initialization scheme in PPO, such as orthogonal init.
ppo_param_init=True,
# (str) The gradient clip operation type used in PPO, ['clip_norm', clip_value', 'clip_momentum_norm'].
grad_clip_type='clip_norm',
# (float) The gradient clip target value used in PPO.
# If ``grad_clip_type`` is 'clip_norm', then the maximum of gradient will be normalized to this value.
grad_clip_value=0.5,
# (bool) Whether ignore done (usually for max step termination env).
ignore_done=False,
),
# collect_mode config
collect=dict(
# (int) How many training samples collected in one collection procedure.
# Only one of [n_sample, n_episode] should be set.
# n_sample=64,
# (int) Split episodes or trajectories into pieces with length `unroll_len`.
unroll_len=1,
# (float) Reward's future discount factor, aka. gamma.
discount_factor=0.99,
# (float) GAE lambda factor for the balance of bias and variance(1-step td and mc)
gae_lambda=0.95,
),
eval=dict(), # for compability
)
def default_model(self) -> Tuple[str, List[str]]:
"""
Overview:
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \
automatically call this method to get the default model setting and create model.
Returns:
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.
.. note::
The user can define and use customized network model but must obey the same inferface definition indicated \
by import_names path. For example about PPO, its registered name is ``ppo`` and the import_names is \
``ding.model.template.vac``.
.. note::
Because now PPO supports both single-agent and multi-agent usages, so we can implement these functions \
with the same policy and two different default models, which is controled by ``self._cfg.multi_agent``.
"""
if self._cfg.multi_agent:
return 'mavac', ['ding.model.template.mavac']
else:
return 'vac', ['ding.model.template.vac']
def _init_learn(self) -> None:
"""
Overview:
Initialize the learn mode of policy, including related attributes and modules. For PPO, it mainly contains \
optimizer, algorithm-specific arguments such as loss weight, clip_ratio and recompute_adv. This method \
also executes some special network initializations and prepares running mean/std monitor for value.
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.
.. note::
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
and ``_load_state_dict_learn`` methods.
.. note::
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.
.. note::
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
"""
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in PPO"
assert self._cfg.action_space in ["continuous", "discrete", "hybrid"]
self._action_space = self._cfg.action_space
if self._cfg.learn.ppo_param_init:
for n, m in self._model.named_modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.orthogonal_(m.weight)
torch.nn.init.zeros_(m.bias)
if self._action_space in ['continuous', 'hybrid']:
# init log sigma
if self._action_space == 'continuous':
if hasattr(self._model.actor_head, 'log_sigma_param'):
torch.nn.init.constant_(self._model.actor_head.log_sigma_param, -0.5)
elif self._action_space == 'hybrid': # actor_head[1]: ReparameterizationHead, for action_args
if hasattr(self._model.actor_head[1], 'log_sigma_param'):
torch.nn.init.constant_(self._model.actor_head[1].log_sigma_param, -0.5)
for m in list(self._model.critic.modules()) + list(self._model.actor.modules()):
if isinstance(m, torch.nn.Linear):
# orthogonal initialization
torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
torch.nn.init.zeros_(m.bias)
# do last policy layer scaling, this will make initial actions have (close to)
# 0 mean and std, and will help boost performances,
# see https://arxiv.org/abs/2006.05990, Fig.24 for details
for m in self._model.actor.modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.zeros_(m.bias)
m.weight.data.copy_(0.01 * m.weight.data)
# Optimizer
self._optimizer = Adam(
self._model.parameters(),
lr=self._cfg.learn.learning_rate,
grad_clip_type=self._cfg.learn.grad_clip_type,
clip_value=self._cfg.learn.grad_clip_value
)
self._learn_model = model_wrap(self._model, wrapper_name='base')
# Algorithm config
self._value_weight = self._cfg.learn.value_weight
self._entropy_weight = self._cfg.learn.entropy_weight
self._clip_ratio = self._cfg.learn.clip_ratio
self._adv_norm = self._cfg.learn.adv_norm
self._value_norm = self._cfg.learn.value_norm
if self._value_norm:
self._running_mean_std = RunningMeanStd(epsilon=1e-4, device=self._device)
self._gamma = self._cfg.collect.discount_factor
self._gae_lambda = self._cfg.collect.gae_lambda
self._recompute_adv = self._cfg.recompute_adv
# Main model
self._learn_model.reset()
def _forward_learn(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
Overview:
Policy forward function of learn mode (training policy and updating parameters). Forward means \
that the policy inputs some training batch data from the replay buffer and then returns the output \
result, including various training information such as loss, clipfrac, approx_kl.
Arguments:
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including the latest \
collected training samples for on-policy algorithms like PPO. For each element in list, the key of the \
dict is the name of data items and the value is the corresponding data. Usually, the value is \
torch.Tensor or np.ndarray or there dict/list combinations. In the ``_forward_learn`` method, data \
often need to first be stacked in the batch dimension by some utility functions such as \
``default_preprocess_learn``. \
For PPO, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \
``reward``, ``logit``, ``value``, ``done``. Sometimes, it also contains other keys such as ``weight``.
Returns:
- return_infos (:obj:`List[Dict[str, Any]]`): The information list that indicated training result, each \
training iteration contains append a information dict into the final list. The list will be precessed \
and recorded in text log and tensorboard. The value of the dict must be python scalar or a list of \
scalars. For the detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.
.. tip::
The training procedure of PPO is two for loops. The outer loop trains all the collected training samples \
with ``epoch_per_collect`` epochs. The inner loop splits all the data into different mini-batch with \
the length of ``batch_size``.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
.. note::
For more detailed examples, please refer to our unittest for PPOPolicy: ``ding.policy.tests.test_ppo``.
"""
data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=False)
if self._cuda:
data = to_device(data, self._device)
data['obs'] = to_dtype(data['obs'], torch.float32)
if 'next_obs' in data:
data['next_obs'] = to_dtype(data['next_obs'], torch.float32)
# ====================
# PPO forward
# ====================
return_infos = []
self._learn_model.train()
for epoch in range(self._cfg.learn.epoch_per_collect):
if self._recompute_adv: # calculate new value using the new updated value network
with torch.no_grad():
value = self._learn_model.forward(data['obs'], mode='compute_critic')['value']
next_value = self._learn_model.forward(data['next_obs'], mode='compute_critic')['value']
if self._value_norm:
value *= self._running_mean_std.std
next_value *= self._running_mean_std.std
traj_flag = data.get('traj_flag', None) # traj_flag indicates termination of trajectory
compute_adv_data = gae_data(value, next_value, data['reward'], data['done'], traj_flag)
data['adv'] = gae(compute_adv_data, self._gamma, self._gae_lambda)
unnormalized_returns = value + data['adv']
if self._value_norm:
data['value'] = value / self._running_mean_std.std
data['return'] = unnormalized_returns / self._running_mean_std.std
self._running_mean_std.update(unnormalized_returns.cpu().numpy())
else:
data['value'] = value
data['return'] = unnormalized_returns
else: # don't recompute adv
if self._value_norm:
unnormalized_return = data['adv'] + data['value'] * self._running_mean_std.std
data['return'] = unnormalized_return / self._running_mean_std.std
self._running_mean_std.update(unnormalized_return.cpu().numpy())
else:
data['return'] = data['adv'] + data['value']
for batch in split_data_generator(data, self._cfg.learn.batch_size, shuffle=True):
output = self._learn_model.forward(batch['obs'], mode='compute_actor_critic')
adv = batch['adv']
if self._adv_norm:
# Normalize advantage in a train_batch
adv = (adv - adv.mean()) / (adv.std() + 1e-8)
# Calculate ppo error
if self._action_space == 'continuous':
ppo_batch = ppo_data(
output['logit'], batch['logit'], batch['action'], output['value'], batch['value'], adv,
batch['return'], batch['weight']
)
ppo_loss, ppo_info = ppo_error_continuous(ppo_batch, self._clip_ratio)
elif self._action_space == 'discrete':
ppo_batch = ppo_data(
output['logit'], batch['logit'], batch['action'], output['value'], batch['value'], adv,
batch['return'], batch['weight']
)
ppo_loss, ppo_info = ppo_error(ppo_batch, self._clip_ratio)
elif self._action_space == 'hybrid':
# discrete part (discrete policy loss and entropy loss)
ppo_discrete_batch = ppo_policy_data(
output['logit']['action_type'], batch['logit']['action_type'], batch['action']['action_type'],
adv, batch['weight']
)
ppo_discrete_loss, ppo_discrete_info = ppo_policy_error(ppo_discrete_batch, self._clip_ratio)
# continuous part (continuous policy loss and entropy loss, value loss)
ppo_continuous_batch = ppo_data(
output['logit']['action_args'], batch['logit']['action_args'], batch['action']['action_args'],
output['value'], batch['value'], adv, batch['return'], batch['weight']
)
ppo_continuous_loss, ppo_continuous_info = ppo_error_continuous(
ppo_continuous_batch, self._clip_ratio
)
# sum discrete and continuous loss
ppo_loss = type(ppo_continuous_loss)(
ppo_continuous_loss.policy_loss + ppo_discrete_loss.policy_loss, ppo_continuous_loss.value_loss,
ppo_continuous_loss.entropy_loss + ppo_discrete_loss.entropy_loss
)
ppo_info = type(ppo_continuous_info)(
max(ppo_continuous_info.approx_kl, ppo_discrete_info.approx_kl),
max(ppo_continuous_info.clipfrac, ppo_discrete_info.clipfrac)
)
wv, we = self._value_weight, self._entropy_weight
total_loss = ppo_loss.policy_loss + wv * ppo_loss.value_loss - we * ppo_loss.entropy_loss
self._optimizer.zero_grad()
total_loss.backward()
self._optimizer.step()
return_info = {
'cur_lr': self._optimizer.defaults['lr'],
'total_loss': total_loss.item(),
'policy_loss': ppo_loss.policy_loss.item(),
'value_loss': ppo_loss.value_loss.item(),
'entropy_loss': ppo_loss.entropy_loss.item(),
'adv_max': adv.max().item(),
'adv_mean': adv.mean().item(),
'value_mean': output['value'].mean().item(),
'value_max': output['value'].max().item(),
'approx_kl': ppo_info.approx_kl,
'clipfrac': ppo_info.clipfrac,
}
if self._action_space == 'continuous':
return_info.update(
{
'act': batch['action'].float().mean().item(),
'mu_mean': output['logit']['mu'].mean().item(),
'sigma_mean': output['logit']['sigma'].mean().item(),
}
)
return_infos.append(return_info)
return return_infos
def _init_collect(self) -> None:
"""
Overview:
Initialize the collect mode of policy, including related attributes and modules. For PPO, it contains the \
collect_model to balance the exploration and exploitation (e.g. the multinomial sample mechanism in \
discrete action space), and other algorithm-specific arguments such as unroll_len and gae_lambda.
This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``.
.. note::
If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \
with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``.
.. tip::
Some variables need to initialize independently in different modes, such as gamma and gae_lambda in PPO. \
This design is for the convenience of parallel execution of different policy modes.
"""
self._unroll_len = self._cfg.collect.unroll_len
assert self._cfg.action_space in ["continuous", "discrete", "hybrid"], self._cfg.action_space
self._action_space = self._cfg.action_space
if self._action_space == 'continuous':
self._collect_model = model_wrap(self._model, wrapper_name='reparam_sample')
elif self._action_space == 'discrete':
self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample')
elif self._action_space == 'hybrid':
self._collect_model = model_wrap(self._model, wrapper_name='hybrid_reparam_multinomial_sample')
self._collect_model.reset()
self._gamma = self._cfg.collect.discount_factor
self._gae_lambda = self._cfg.collect.gae_lambda
self._recompute_adv = self._cfg.recompute_adv
def _forward_collect(self, data: Dict[int, Any]) -> Dict[int, Any]:
"""
Overview:
Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \
that the policy gets some necessary data (mainly observation) from the envs and then returns the output \
data, such as the action to interact with the envs.
Arguments:
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
key of the dict is environment id and the value is the corresponding data of the env.
Returns:
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \
other necessary data (action logit and value) for learn mode defined in ``self._process_transition`` \
method. The key of the dict is the same as the input data, i.e. environment id.
.. tip::
If you want to add more tricks on this policy, like temperature factor in multinomial sample, you can pass \
related data as extra keyword arguments of this method.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
.. note::
For more detailed examples, please refer to our unittest for PPOPolicy: ``ding.policy.tests.test_ppo``.
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._collect_model.eval()
with torch.no_grad():
output = self._collect_model.forward(data, mode='compute_actor_critic')
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor],
timestep: namedtuple) -> Dict[str, torch.Tensor]:
"""
Overview:
Process and pack one timestep transition data into a dict, which can be directly used for training and \
saved in replay buffer. For PPO, it contains obs, next_obs, action, reward, done, logit, value.
Arguments:
- obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari.
- policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \
as input. For PPO, it contains the state value, action and the logit of the action.
- timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \
except all the elements have been transformed into tensor data. Usually, it contains the next obs, \
reward, done, info, etc.
Returns:
- transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep.
.. note::
``next_obs`` is used to calculate nstep return when necessary, so we place in into transition by default. \
You can delete this field to save memory occupancy if you do not need nstep return.
"""
transition = {
'obs': obs,
'next_obs': timestep.obs,
'action': policy_output['action'],
'logit': policy_output['logit'],
'value': policy_output['value'],
'reward': timestep.reward,
'done': timestep.done,
}
return transition
def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
Overview:
For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \
can be used for training directly. In PPO, a train sample is a processed transition with new computed \
``traj_flag`` and ``adv`` field. This method is usually used in collectors to execute necessary \
RL data preprocessing before training, which can help learner amortize revelant time consumption. \
In addition, you can also implement this method as an identity function and do the data processing \
in ``self._forward_learn`` method.
Arguments:
- transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \
the same format as the return value of ``self._process_transition`` method.
Returns:
- samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \
as input transitions, but may contain more data for training, such as GAE advantage.
"""
data = transitions
data = to_device(data, self._device)
for transition in data:
transition['traj_flag'] = copy.deepcopy(transition['done'])
data[-1]['traj_flag'] = True
if self._cfg.learn.ignore_done:
data[-1]['done'] = False
if data[-1]['done']:
last_value = torch.zeros_like(data[-1]['value'])
else:
with torch.no_grad():
last_value = self._collect_model.forward(
unsqueeze(data[-1]['next_obs'], 0), mode='compute_actor_critic'
)['value']
if len(last_value.shape) == 2: # multi_agent case:
last_value = last_value.squeeze(0)
if self._value_norm:
last_value *= self._running_mean_std.std
for i in range(len(data)):
data[i]['value'] *= self._running_mean_std.std
data = get_gae(
data,
to_device(last_value, self._device),
gamma=self._gamma,
gae_lambda=self._gae_lambda,
cuda=False,
)
if self._value_norm:
for i in range(len(data)):
data[i]['value'] /= self._running_mean_std.std
# remove next_obs for save memory when not recompute adv
if not self._recompute_adv:
for i in range(len(data)):
data[i].pop('next_obs')
return get_train_sample(data, self._unroll_len)
def _init_eval(self) -> None:
"""
Overview:
Initialize the eval mode of policy, including related attributes and modules. For PPO, it contains the \
eval model to select optimial action (e.g. greedily select action with argmax mechanism in discrete action).
This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``.
.. note::
If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \
with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``.
"""
assert self._cfg.action_space in ["continuous", "discrete", "hybrid"]
self._action_space = self._cfg.action_space
if self._action_space == 'continuous':
self._eval_model = model_wrap(self._model, wrapper_name='deterministic_sample')
elif self._action_space == 'discrete':
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')
elif self._action_space == 'hybrid':
self._eval_model = model_wrap(self._model, wrapper_name='hybrid_reparam_multinomial_sample')
self._eval_model.reset()
def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]:
"""
Overview:
Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \
means that the policy gets some necessary data (mainly observation) from the envs and then returns the \
action to interact with the envs. ``_forward_eval`` in PPO often uses deterministic sample method to get \
actions while ``_forward_collect`` usually uses stochastic sample method for balance exploration and \
exploitation.
Arguments:
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
key of the dict is environment id and the value is the corresponding data of the env.
Returns:
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \
key of the dict is the same as the input data, i.e. environment id.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
.. note::
For more detailed examples, please refer to our unittest for PPOPolicy: ``ding.policy.tests.test_ppo``.
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._eval_model.eval()
with torch.no_grad():
output = self._eval_model.forward(data, mode='compute_actor')
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _monitor_vars_learn(self) -> List[str]:
"""
Overview:
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
as text logger, tensorboard logger, will use these keys to save the corresponding data.
Returns:
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
"""
variables = super()._monitor_vars_learn() + [
'policy_loss',
'value_loss',
'entropy_loss',
'adv_max',
'adv_mean',
'approx_kl',
'clipfrac',
'value_max',
'value_mean',
]
if self._action_space == 'continuous':
variables += ['mu_mean', 'sigma_mean', 'sigma_grad', 'act']
return variables
@POLICY_REGISTRY.register('ppo_pg')
class PPOPGPolicy(Policy):
"""
Overview:
Policy class of on policy version PPO algorithm (pure policy gradient without value network).
Paper link: https://arxiv.org/abs/1707.06347.
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='ppo_pg',
# (bool) Whether to use cuda for network.
cuda=False,
# (bool) Whether the RL algorithm is on-policy or off-policy. (Note: in practice PPO can be off-policy used)
on_policy=True,
# (str) Which kind of action space used in PPOPolicy, ['discrete', 'continuous', 'hybrid']
action_space='discrete',
# (bool) Whether to enable multi-agent training, i.e.: MAPPO.
multi_agent=False,
# (bool) Whether to need policy data in process transition.
transition_with_policy_data=True,
# learn_mode config
learn=dict(
# (int) After collecting n_sample/n_episode data, how many epoches to train models.
# Each epoch means the one entire passing of training data.
epoch_per_collect=10,
# (int) How many samples in a training batch.
batch_size=64,
# (float) The step size of gradient descent.
learning_rate=3e-4,
# (float) The loss weight of entropy regularization, policy network weight is set to 1.
entropy_weight=0.0,
# (float) PPO clip ratio, defaults to 0.2.
clip_ratio=0.2,
# (bool) Whether to enable special network parameters initialization scheme in PPO, such as orthogonal init.
ppo_param_init=True,
# (str) The gradient clip operation type used in PPO, ['clip_norm', clip_value', 'clip_momentum_norm'].
grad_clip_type='clip_norm',
# (float) The gradient clip target value used in PPO.
# If ``grad_clip_type`` is 'clip_norm', then the maximum of gradient will be normalized to this value.
grad_clip_value=0.5,
# (bool) Whether ignore done (usually for max step termination env).
ignore_done=False,
),
# collect_mode config
collect=dict(
# (int) How many training episodes collected in one collection process. Only one of n_episode shoule be set.
# n_episode=8,
# (int) Cut trajectories into pieces with length "unroll_len".
unroll_len=1,
# (float) Reward's future discount factor, aka. gamma.
discount_factor=0.99,
),
eval=dict(), # for compability
)
def default_model(self) -> Tuple[str, List[str]]:
"""
Overview:
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \
automatically call this method to get the default model setting and create model.
Returns:
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.
"""
return 'pg', ['ding.model.template.pg']
def _init_learn(self) -> None:
"""
Overview:
Initialize the learn mode of policy, including related attributes and modules. For PPOPG, it mainly \
contains optimizer, algorithm-specific arguments such as loss weight and clip_ratio. This method \
also executes some special network initializations.
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.
.. note::
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
and ``_load_state_dict_learn`` methods.
.. note::
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.
.. note::
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
"""
assert self._cfg.action_space in ["continuous", "discrete"]
self._action_space = self._cfg.action_space
if self._cfg.learn.ppo_param_init:
for n, m in self._model.named_modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.orthogonal_(m.weight)
torch.nn.init.zeros_(m.bias)
if self._action_space == 'continuous':
if hasattr(self._model.head, 'log_sigma_param'):
torch.nn.init.constant_(self._model.head.log_sigma_param, -0.5)
for m in self._model.modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.zeros_(m.bias)
m.weight.data.copy_(0.01 * m.weight.data)
# Optimizer
self._optimizer = Adam(
self._model.parameters(),
lr=self._cfg.learn.learning_rate,
grad_clip_type=self._cfg.learn.grad_clip_type,
clip_value=self._cfg.learn.grad_clip_value
)
self._learn_model = model_wrap(self._model, wrapper_name='base')
# Algorithm config
self._entropy_weight = self._cfg.learn.entropy_weight
self._clip_ratio = self._cfg.learn.clip_ratio
self._gamma = self._cfg.collect.discount_factor
# Main model
self._learn_model.reset()
def _forward_learn(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
Overview:
Policy forward function of learn mode (training policy and updating parameters). Forward means \
that the policy inputs some training batch data from the replay buffer and then returns the output \
result, including various training information such as loss, clipfrac, approx_kl.
Arguments:
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including the latest \
collected training samples for on-policy algorithms like PPO. For each element in list, the key of the \
dict is the name of data items and the value is the corresponding data. Usually, the value is \
torch.Tensor or np.ndarray or there dict/list combinations. In the ``_forward_learn`` method, data \
often need to first be stacked in the batch dimension by some utility functions such as \
``default_preprocess_learn``. \
For PPOPG, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \
``return``, ``logit``, ``done``. Sometimes, it also contains other keys such as ``weight``.
Returns:
- return_infos (:obj:`List[Dict[str, Any]]`): The information list that indicated training result, each \
training iteration contains append a information dict into the final list. The list will be precessed \
and recorded in text log and tensorboard. The value of the dict must be python scalar or a list of \
scalars. For the detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.
.. tip::
The training procedure of PPOPG is two for loops. The outer loop trains all the collected training samples \
with ``epoch_per_collect`` epochs. The inner loop splits all the data into different mini-batch with \
the length of ``batch_size``.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
"""
data = default_preprocess_learn(data)
if self._cuda:
data = to_device(data, self._device)
return_infos = []
self._learn_model.train()
for epoch in range(self._cfg.learn.epoch_per_collect):
for batch in split_data_generator(data, self._cfg.learn.batch_size, shuffle=True):
output = self._learn_model.forward(batch['obs'])
ppo_batch = ppo_policy_data(
output['logit'], batch['logit'], batch['action'], batch['return'], batch['weight']
)
if self._action_space == 'continuous':
ppo_loss, ppo_info = ppo_policy_error_continuous(ppo_batch, self._clip_ratio)
elif self._action_space == 'discrete':
ppo_loss, ppo_info = ppo_policy_error(ppo_batch, self._clip_ratio)
total_loss = ppo_loss.policy_loss - self._entropy_weight * ppo_loss.entropy_loss
self._optimizer.zero_grad()
total_loss.backward()
self._optimizer.step()
return_info = {
'cur_lr': self._optimizer.defaults['lr'],
'total_loss': total_loss.item(),
'policy_loss': ppo_loss.policy_loss.item(),
'entropy_loss': ppo_loss.entropy_loss.item(),
'approx_kl': ppo_info.approx_kl,
'clipfrac': ppo_info.clipfrac,
}
if self._action_space == 'continuous':
return_info.update(
{
'act': batch['action'].float().mean().item(),
'mu_mean': output['logit']['mu'].mean().item(),
'sigma_mean': output['logit']['sigma'].mean().item(),
}
)
return_infos.append(return_info)
return return_infos
def _init_collect(self) -> None:
"""
Overview:
Initialize the collect mode of policy, including related attributes and modules. For PPOPG, it contains \
the collect_model to balance the exploration and exploitation (e.g. the multinomial sample mechanism in \
discrete action space), and other algorithm-specific arguments such as unroll_len and gae_lambda.
This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``.
.. note::
If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \
with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``.
.. tip::
Some variables need to initialize independently in different modes, such as gamma and gae_lambda in PPO. \
This design is for the convenience of parallel execution of different policy modes.
"""
assert self._cfg.action_space in ["continuous", "discrete"], self._cfg.action_space
self._action_space = self._cfg.action_space
self._unroll_len = self._cfg.collect.unroll_len
if self._action_space == 'continuous':
self._collect_model = model_wrap(self._model, wrapper_name='reparam_sample')
elif self._action_space == 'discrete':
self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample')
self._collect_model.reset()
self._gamma = self._cfg.collect.discount_factor
def _forward_collect(self, data: Dict[int, Any]) -> Dict[int, Any]:
"""
Overview:
Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \
that the policy gets some necessary data (mainly observation) from the envs and then returns the output \
data, such as the action to interact with the envs.
Arguments:
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
key of the dict is environment id and the value is the corresponding data of the env.
Returns:
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \
other necessary data (action logit) for learn mode defined in ``self._process_transition`` \
method. The key of the dict is the same as the input data, i.e. environment id.
.. tip::
If you want to add more tricks on this policy, like temperature factor in multinomial sample, you can pass \
related data as extra keyword arguments of this method.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._collect_model.eval()
with torch.no_grad():
output = self._collect_model.forward(data)
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor],
timestep: namedtuple) -> Dict[str, torch.Tensor]:
"""
Overview:
Process and pack one timestep transition data into a dict, which can be directly used for training and \
saved in replay buffer. For PPOPG, it contains obs, action, reward, done, logit.
Arguments:
- obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari.
- policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \
as input. For PPOPG, it contains the action and the logit of the action.
- timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \
except all the elements have been transformed into tensor data. Usually, it contains the next obs, \
reward, done, info, etc.
Returns:
- transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep.
"""
transition = {
'obs': obs,
'action': policy_output['action'],
'logit': policy_output['logit'],
'reward': timestep.reward,
'done': timestep.done,
}
return transition
def _get_train_sample(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
Overview:
For a given entire episode data (a list of transition), process it into a list of sample that \
can be used for training directly. In PPOPG, a train sample is a processed transition with new computed \
``return`` field. This method is usually used in collectors to execute necessary \
RL data preprocessing before training, which can help learner amortize revelant time consumption. \
In addition, you can also implement this method as an identity function and do the data processing \
in ``self._forward_learn`` method.
Arguments:
- data (:obj:`List[Dict[str, Any]`): The episode data (a list of transition), each element is \
the same format as the return value of ``self._process_transition`` method.
Returns:
- samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \
as input transitions, but may contain more data for training, such as discounted episode return.
"""
assert data[-1]['done'] is True, "PPO-PG needs a complete epsiode"
if self._cfg.learn.ignore_done:
raise NotImplementedError
R = 0.
for i in reversed(range(len(data))):
R = self._gamma * R + data[i]['reward']
data[i]['return'] = R
return get_train_sample(data, self._unroll_len)
def _init_eval(self) -> None:
"""
Overview:
Initialize the eval mode of policy, including related attributes and modules. For PPOPG, it contains the \
eval model to select optimial action (e.g. greedily select action with argmax mechanism in discrete action).
This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``.
.. note::
If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \
with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``.
"""
assert self._cfg.action_space in ["continuous", "discrete"]
self._action_space = self._cfg.action_space
if self._action_space == 'continuous':
self._eval_model = model_wrap(self._model, wrapper_name='deterministic_sample')
elif self._action_space == 'discrete':
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')
self._eval_model.reset()
def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]:
"""
Overview:
Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \
means that the policy gets some necessary data (mainly observation) from the envs and then returns the \
action to interact with the envs. ``_forward_eval`` in PPO often uses deterministic sample method to get \
actions while ``_forward_collect`` usually uses stochastic sample method for balance exploration and \
exploitation.
Arguments:
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
key of the dict is environment id and the value is the corresponding data of the env.
Returns:
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \
key of the dict is the same as the input data, i.e. environment id.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
.. note::
For more detailed examples, please refer to our unittest for PPOPGPolicy: ``ding.policy.tests.test_ppo``.
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._eval_model.eval()
with torch.no_grad():
output = self._eval_model.forward(data)
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _monitor_vars_learn(self) -> List[str]:
"""
Overview:
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
as text logger, tensorboard logger, will use these keys to save the corresponding data.
Returns:
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
"""
return super()._monitor_vars_learn() + [
'policy_loss',
'entropy_loss',
'approx_kl',
'clipfrac',
]
@POLICY_REGISTRY.register('ppo_offpolicy')
class PPOOffPolicy(Policy):
"""
Overview:
Policy class of off-policy version PPO algorithm. Paper link: https://arxiv.org/abs/1707.06347.
This version is more suitable for large-scale distributed training.
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='ppo',
# (bool) Whether to use cuda for network.
cuda=False,
on_policy=False,
# (bool) Whether to use priority (priority sample, IS weight, update priority).
priority=False,
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=False,
# (str) Which kind of action space used in PPOPolicy, ["continuous", "discrete", "hybrid"].
action_space='discrete',
# (bool) Whether to use nstep_return for value loss.
nstep_return=False,
# (int) The timestep of TD (temporal-difference) loss.
nstep=3,
# (bool) Whether to need policy data in process transition.
transition_with_policy_data=True,
# learn_mode config
learn=dict(
# (int) How many updates(iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
# collect data -> update policy-> collect data -> ...
update_per_collect=5,
# (int) How many samples in a training batch.
batch_size=64,
# (float) The step size of gradient descent.
learning_rate=0.001,
# (float) The loss weight of value network, policy network weight is set to 1.
value_weight=0.5,
# (float) The loss weight of entropy regularization, policy network weight is set to 1.
entropy_weight=0.01,
# (float) PPO clip ratio, defaults to 0.2.
clip_ratio=0.2,
# (bool) Whether to use advantage norm in a whole training batch.
adv_norm=False,
# (bool) Whether to use value norm with running mean and std in the whole training process.
value_norm=True,
# (bool) Whether to enable special network parameters initialization scheme in PPO, such as orthogonal init.
ppo_param_init=True,
# (str) The gradient clip operation type used in PPO, ['clip_norm', clip_value', 'clip_momentum_norm'].
grad_clip_type='clip_norm',
# (float) The gradient clip target value used in PPO.
# If ``grad_clip_type`` is 'clip_norm', then the maximum of gradient will be normalized to this value.
grad_clip_value=0.5,
# (bool) Whether ignore done (usually for max step termination env).
ignore_done=False,
# (float) The weight decay (L2 regularization) loss weight, defaults to 0.0.
weight_decay=0.0,
),
# collect_mode config
collect=dict(
# (int) How many training samples collected in one collection procedure.
# Only one of [n_sample, n_episode] shoule be set.
# n_sample=64,
# (int) Cut trajectories into pieces with length "unroll_len".
unroll_len=1,
# (float) Reward's future discount factor, aka. gamma.
discount_factor=0.99,
# (float) GAE lambda factor for the balance of bias and variance (1-step td and mc).
gae_lambda=0.95,
),
eval=dict(), # for compability
other=dict(
replay_buffer=dict(
# (int) Maximum size of replay buffer. Usually, larger buffer size is better.
replay_buffer_size=10000,
),
),
)
def default_model(self) -> Tuple[str, List[str]]:
"""
Overview:
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \
automatically call this method to get the default model setting and create model.
Returns:
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.
"""
return 'vac', ['ding.model.template.vac']
def _init_learn(self) -> None:
"""
Overview:
Initialize the learn mode of policy, including related attributes and modules. For PPOOff, it mainly \
contains optimizer, algorithm-specific arguments such as loss weight and clip_ratio. This method \
also executes some special network initializations and prepares running mean/std monitor for value.
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.
.. note::
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
and ``_load_state_dict_learn`` methods.
.. note::
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.
.. note::
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
"""
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in PPOOff"
assert self._cfg.action_space in ["continuous", "discrete", "hybrid"]
self._action_space = self._cfg.action_space
if self._cfg.learn.ppo_param_init:
for n, m in self._model.named_modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.orthogonal_(m.weight)
torch.nn.init.zeros_(m.bias)
if self._action_space in ['continuous', 'hybrid']:
# init log sigma
if self._action_space == 'continuous':
if hasattr(self._model.actor_head, 'log_sigma_param'):
torch.nn.init.constant_(self._model.actor_head.log_sigma_param, -2.0)
elif self._action_space == 'hybrid': # actor_head[1]: ReparameterizationHead, for action_args
if hasattr(self._model.actor_head[1], 'log_sigma_param'):
torch.nn.init.constant_(self._model.actor_head[1].log_sigma_param, -0.5)
for m in list(self._model.critic.modules()) + list(self._model.actor.modules()):
if isinstance(m, torch.nn.Linear):
# orthogonal initialization
torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
torch.nn.init.zeros_(m.bias)
# do last policy layer scaling, this will make initial actions have (close to)
# 0 mean and std, and will help boost performances,
# see https://arxiv.org/abs/2006.05990, Fig.24 for details
for m in self._model.actor.modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.zeros_(m.bias)
m.weight.data.copy_(0.01 * m.weight.data)
# Optimizer
self._optimizer = Adam(
self._model.parameters(),
lr=self._cfg.learn.learning_rate,
grad_clip_type=self._cfg.learn.grad_clip_type,
clip_value=self._cfg.learn.grad_clip_value
)
self._learn_model = model_wrap(self._model, wrapper_name='base')
# Algorithm config
self._value_weight = self._cfg.learn.value_weight
self._entropy_weight = self._cfg.learn.entropy_weight
self._clip_ratio = self._cfg.learn.clip_ratio
self._adv_norm = self._cfg.learn.adv_norm
self._value_norm = self._cfg.learn.value_norm
if self._value_norm:
self._running_mean_std = RunningMeanStd(epsilon=1e-4, device=self._device)
self._gamma = self._cfg.collect.discount_factor
self._gae_lambda = self._cfg.collect.gae_lambda
self._nstep = self._cfg.nstep
self._nstep_return = self._cfg.nstep_return
# Main model
self._learn_model.reset()
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Overview:
Policy forward function of learn mode (training policy and updating parameters). Forward means \
that the policy inputs some training batch data from the replay buffer and then returns the output \
result, including various training information such as loss, clipfrac and approx_kl.
Arguments:
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \
training samples. For each element in list, the key of the dict is the name of data items and the \
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \
dimension by some utility functions such as ``default_preprocess_learn``. \
For PPOOff, each element in list is a dict containing at least the following keys: ``obs``, ``adv``, \
``action``, ``logit``, ``value``, ``done``. Sometimes, it also contains other keys such as ``weight`` \
and ``value_gamma``.
Returns:
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
"""
data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=self._nstep_return)
if self._cuda:
data = to_device(data, self._device)
data['obs'] = to_dtype(data['obs'], torch.float32)
if 'next_obs' in data:
data['next_obs'] = to_dtype(data['next_obs'], torch.float32)
# ====================
# PPO forward
# ====================
self._learn_model.train()
with torch.no_grad():
if self._value_norm:
unnormalized_return = data['adv'] + data['value'] * self._running_mean_std.std
data['return'] = unnormalized_return / self._running_mean_std.std
self._running_mean_std.update(unnormalized_return.cpu().numpy())
else:
data['return'] = data['adv'] + data['value']
# normal ppo
if not self._nstep_return:
output = self._learn_model.forward(data['obs'], mode='compute_actor_critic')
adv = data['adv']
if self._adv_norm:
# Normalize advantage in a total train_batch
adv = (adv - adv.mean()) / (adv.std() + 1e-8)
# Calculate ppo loss
if self._action_space == 'continuous':
ppodata = ppo_data(
output['logit'], data['logit'], data['action'], output['value'], data['value'], adv, data['return'],
data['weight']
)
ppo_loss, ppo_info = ppo_error_continuous(ppodata, self._clip_ratio)
elif self._action_space == 'discrete':
ppodata = ppo_data(
output['logit'], data['logit'], data['action'], output['value'], data['value'], adv, data['return'],
data['weight']
)
ppo_loss, ppo_info = ppo_error(ppodata, self._clip_ratio)
elif self._action_space == 'hybrid':
# discrete part (discrete policy loss and entropy loss)
ppo_discrete_batch = ppo_policy_data(
output['logit']['action_type'], data['logit']['action_type'], data['action']['action_type'], adv,
data['weight']
)
ppo_discrete_loss, ppo_discrete_info = ppo_policy_error(ppo_discrete_batch, self._clip_ratio)
# continuous part (continuous policy loss and entropy loss, value loss)
ppo_continuous_batch = ppo_data(
output['logit']['action_args'], data['logit']['action_args'], data['action']['action_args'],
output['value'], data['value'], adv, data['return'], data['weight']
)
ppo_continuous_loss, ppo_continuous_info = ppo_error_continuous(ppo_continuous_batch, self._clip_ratio)
# sum discrete and continuous loss
ppo_loss = type(ppo_continuous_loss)(
ppo_continuous_loss.policy_loss + ppo_discrete_loss.policy_loss, ppo_continuous_loss.value_loss,
ppo_continuous_loss.entropy_loss + ppo_discrete_loss.entropy_loss
)
ppo_info = type(ppo_continuous_info)(
max(ppo_continuous_info.approx_kl, ppo_discrete_info.approx_kl),
max(ppo_continuous_info.clipfrac, ppo_discrete_info.clipfrac)
)
wv, we = self._value_weight, self._entropy_weight
total_loss = ppo_loss.policy_loss + wv * ppo_loss.value_loss - we * ppo_loss.entropy_loss
else:
output = self._learn_model.forward(data['obs'], mode='compute_actor')
adv = data['adv']
if self._adv_norm:
# Normalize advantage in a total train_batch
adv = (adv - adv.mean()) / (adv.std() + 1e-8)
# Calculate ppo loss
if self._action_space == 'continuous':
ppodata = ppo_policy_data(output['logit'], data['logit'], data['action'], adv, data['weight'])
ppo_policy_loss, ppo_info = ppo_policy_error_continuous(ppodata, self._clip_ratio)
elif self._action_space == 'discrete':
ppodata = ppo_policy_data(output['logit'], data['logit'], data['action'], adv, data['weight'])
ppo_policy_loss, ppo_info = ppo_policy_error(ppodata, self._clip_ratio)
elif self._action_space == 'hybrid':
# discrete part (discrete policy loss and entropy loss)
ppo_discrete_data = ppo_policy_data(
output['logit']['action_type'], data['logit']['action_type'], data['action']['action_type'], adv,
data['weight']
)
ppo_discrete_loss, ppo_discrete_info = ppo_policy_error(ppo_discrete_data, self._clip_ratio)
# continuous part (continuous policy loss and entropy loss, value loss)
ppo_continuous_data = ppo_policy_data(
output['logit']['action_args'], data['logit']['action_args'], data['action']['action_args'], adv,
data['weight']
)
ppo_continuous_loss, ppo_continuous_info = ppo_policy_error_continuous(
ppo_continuous_data, self._clip_ratio
)
# sum discrete and continuous loss
ppo_policy_loss = type(ppo_continuous_loss)(
ppo_continuous_loss.policy_loss + ppo_discrete_loss.policy_loss,
ppo_continuous_loss.entropy_loss + ppo_discrete_loss.entropy_loss
)
ppo_info = type(ppo_continuous_info)(
max(ppo_continuous_info.approx_kl, ppo_discrete_info.approx_kl),
max(ppo_continuous_info.clipfrac, ppo_discrete_info.clipfrac)
)
wv, we = self._value_weight, self._entropy_weight
next_obs = data.get('next_obs')
value_gamma = data.get('value_gamma')
reward = data.get('reward')
# current value
value = self._learn_model.forward(data['obs'], mode='compute_critic')
# target value
next_data = {'obs': next_obs}
target_value = self._learn_model.forward(next_data['obs'], mode='compute_critic')
# TODO what should we do here to keep shape
assert self._nstep > 1
td_data = v_nstep_td_data(
value['value'], target_value['value'], reward, data['done'], data['weight'], value_gamma
)
# calculate v_nstep_td critic_loss
critic_loss, td_error_per_sample = v_nstep_td_error(td_data, self._gamma, self._nstep)
ppo_loss_data = namedtuple('ppo_loss', ['policy_loss', 'value_loss', 'entropy_loss'])
ppo_loss = ppo_loss_data(ppo_policy_loss.policy_loss, critic_loss, ppo_policy_loss.entropy_loss)
total_loss = ppo_policy_loss.policy_loss + wv * critic_loss - we * ppo_policy_loss.entropy_loss
# ====================
# PPO update
# ====================
self._optimizer.zero_grad()
total_loss.backward()
self._optimizer.step()
return_info = {
'cur_lr': self._optimizer.defaults['lr'],
'total_loss': total_loss.item(),
'policy_loss': ppo_loss.policy_loss.item(),
'value': data['value'].mean().item(),
'value_loss': ppo_loss.value_loss.item(),
'entropy_loss': ppo_loss.entropy_loss.item(),
'adv_abs_max': adv.abs().max().item(),
'approx_kl': ppo_info.approx_kl,
'clipfrac': ppo_info.clipfrac,
}
if self._action_space == 'continuous':
return_info.update(
{
'act': data['action'].float().mean().item(),
'mu_mean': output['logit']['mu'].mean().item(),
'sigma_mean': output['logit']['sigma'].mean().item(),
}
)
return return_info
def _init_collect(self) -> None:
"""
Overview:
Initialize the collect mode of policy, including related attributes and modules. For PPOOff, it contains \
collect_model to balance the exploration and exploitation (e.g. the multinomial sample mechanism in \
discrete action space), and other algorithm-specific arguments such as unroll_len and gae_lambda.
This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``.
.. note::
If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \
with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``.
.. tip::
Some variables need to initialize independently in different modes, such as gamma and gae_lambda in PPOOff.
This design is for the convenience of parallel execution of different policy modes.
"""
self._unroll_len = self._cfg.collect.unroll_len
assert self._cfg.action_space in ["continuous", "discrete", "hybrid"]
self._action_space = self._cfg.action_space
if self._action_space == 'continuous':
self._collect_model = model_wrap(self._model, wrapper_name='reparam_sample')
elif self._action_space == 'discrete':
self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample')
elif self._action_space == 'hybrid':
self._collect_model = model_wrap(self._model, wrapper_name='hybrid_reparam_multinomial_sample')
self._collect_model.reset()
self._gamma = self._cfg.collect.discount_factor
self._gae_lambda = self._cfg.collect.gae_lambda
self._nstep = self._cfg.nstep
self._nstep_return = self._cfg.nstep_return
self._value_norm = self._cfg.learn.value_norm
if self._value_norm:
self._running_mean_std = RunningMeanStd(epsilon=1e-4, device=self._device)
def _forward_collect(self, data: Dict[int, Any]) -> Dict[int, Any]:
"""
Overview:
Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \
that the policy gets some necessary data (mainly observation) from the envs and then returns the output \
data, such as the action to interact with the envs.
Arguments:
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
key of the dict is environment id and the value is the corresponding data of the env.
Returns:
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \
other necessary data (action logit and value) for learn mode defined in ``self._process_transition`` \
method. The key of the dict is the same as the input data, i.e. environment id.
.. tip::
If you want to add more tricks on this policy, like temperature factor in multinomial sample, you can pass \
related data as extra keyword arguments of this method.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
.. note::
For more detailed examples, please refer to our unittest for PPOOffPolicy: ``ding.policy.tests.test_ppo``.
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._collect_model.eval()
with torch.no_grad():
output = self._collect_model.forward(data, mode='compute_actor_critic')
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor],
timestep: namedtuple) -> Dict[str, torch.Tensor]:
"""
Overview:
Process and pack one timestep transition data into a dict, which can be directly used for training and \
saved in replay buffer. For PPO, it contains obs, next_obs, action, reward, done, logit, value.
Arguments:
- obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari.
- policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \
as input. For PPO, it contains the state value, action and the logit of the action.
- timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \
except all the elements have been transformed into tensor data. Usually, it contains the next obs, \
reward, done, info, etc.
Returns:
- transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep.
.. note::
``next_obs`` is used to calculate nstep return when necessary, so we place in into transition by default. \
You can delete this field to save memory occupancy if you do not need nstep return.
"""
transition = {
'obs': obs,
'next_obs': timestep.obs,
'logit': policy_output['logit'],
'action': policy_output['action'],
'value': policy_output['value'],
'reward': timestep.reward,
'done': timestep.done,
}
return transition
def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
Overview:
For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \
can be used for training directly. In PPO, a train sample is a processed transition with new computed \
``traj_flag`` and ``adv`` field. This method is usually used in collectors to execute necessary \
RL data preprocessing before training, which can help learner amortize revelant time consumption. \
In addition, you can also implement this method as an identity function and do the data processing \
in ``self._forward_learn`` method.
Arguments:
- transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \
the same format as the return value of ``self._process_transition`` method.
Returns:
- samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \
as input transitions, but may contain more data for training, such as GAE advantage.
"""
data = transitions
data = to_device(data, self._device)
for transition in data:
transition['traj_flag'] = copy.deepcopy(transition['done'])
data[-1]['traj_flag'] = True
if self._cfg.learn.ignore_done:
data[-1]['done'] = False
if data[-1]['done']:
last_value = torch.zeros_like(data[-1]['value'])
else:
with torch.no_grad():
last_value = self._collect_model.forward(
unsqueeze(data[-1]['next_obs'], 0), mode='compute_actor_critic'
)['value']
if len(last_value.shape) == 2: # multi_agent case:
last_value = last_value.squeeze(0)
if self._value_norm:
last_value *= self._running_mean_std.std
for i in range(len(data)):
data[i]['value'] *= self._running_mean_std.std
data = get_gae(
data,
to_device(last_value, self._device),
gamma=self._gamma,
gae_lambda=self._gae_lambda,
cuda=False,
)
if self._value_norm:
for i in range(len(data)):
data[i]['value'] /= self._running_mean_std.std
if not self._nstep_return:
return get_train_sample(data, self._unroll_len)
else:
return get_nstep_return_data(data, self._nstep)
def _init_eval(self) -> None:
"""
Overview:
Initialize the eval mode of policy, including related attributes and modules. For PPOOff, it contains the \
eval model to select optimial action (e.g. greedily select action with argmax mechanism in discrete action).
This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``.
.. note::
If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \
with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``.
"""
assert self._cfg.action_space in ["continuous", "discrete", "hybrid"]
self._action_space = self._cfg.action_space
if self._action_space == 'continuous':
self._eval_model = model_wrap(self._model, wrapper_name='deterministic_sample')
elif self._action_space == 'discrete':
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')
elif self._action_space == 'hybrid':
self._eval_model = model_wrap(self._model, wrapper_name='hybrid_deterministic_argmax_sample')
self._eval_model.reset()
def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]:
"""
Overview:
Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \
means that the policy gets some necessary data (mainly observation) from the envs and then returns the \
action to interact with the envs. ``_forward_eval`` in PPO often uses deterministic sample method to get \
actions while ``_forward_collect`` usually uses stochastic sample method for balance exploration and \
exploitation.
Arguments:
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
key of the dict is environment id and the value is the corresponding data of the env.
Returns:
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \
key of the dict is the same as the input data, i.e. environment id.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
.. note::
For more detailed examples, please refer to our unittest for PPOOffPolicy: ``ding.policy.tests.test_ppo``.
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._eval_model.eval()
with torch.no_grad():
output = self._eval_model.forward(data, mode='compute_actor')
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _monitor_vars_learn(self) -> List[str]:
"""
Overview:
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
as text logger, tensorboard logger, will use these keys to save the corresponding data.
Returns:
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
"""
variables = super()._monitor_vars_learn() + [
'policy_loss', 'value', 'value_loss', 'entropy_loss', 'adv_abs_max', 'approx_kl', 'clipfrac'
]
if self._action_space == 'continuous':
variables += ['mu_mean', 'sigma_mean', 'sigma_grad', 'act']
return variables
@POLICY_REGISTRY.register('ppo_stdim')
class PPOSTDIMPolicy(PPOPolicy):
"""
Overview:
Policy class of on policy version PPO algorithm with ST-DIM auxiliary model.
PPO paper link: https://arxiv.org/abs/1707.06347.
ST-DIM paper link: https://arxiv.org/abs/1906.08226.
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='ppo_stdim',
# (bool) Whether to use cuda for network.
cuda=False,
# (bool) Whether the RL algorithm is on-policy or off-policy. (Note: in practice PPO can be off-policy used)
on_policy=True,
# (bool) Whether to use priority(priority sample, IS weight, update priority)
priority=False,
# (bool) Whether to use Importance Sampling Weight to correct biased update due to priority.
# If True, priority must be True.
priority_IS_weight=False,
# (bool) Whether to recompurete advantages in each iteration of on-policy PPO
recompute_adv=True,
# (str) Which kind of action space used in PPOPolicy, ['discrete', 'continuous']
action_space='discrete',
# (bool) Whether to use nstep return to calculate value target, otherwise, use return = adv + value
nstep_return=False,
# (bool) Whether to enable multi-agent training, i.e.: MAPPO
multi_agent=False,
# (bool) Whether to need policy data in process transition
transition_with_policy_data=True,
# (float) The loss weight of the auxiliary model to the main loss.
aux_loss_weight=0.001,
aux_model=dict(
# (int) the encoding size (of each head) to apply contrastive loss.
encode_shape=64,
# ([int, int]) the heads number of the obs encoding and next_obs encoding respectively.
heads=[1, 1],
# (str) the contrastive loss type.
loss_type='infonce',
# (float) a parameter to adjust the polarity between positive and negative samples.
temperature=1.0,
),
# learn_mode config
learn=dict(
# (int) After collecting n_sample/n_episode data, how many epoches to train models.
# Each epoch means the one entire passing of training data.
epoch_per_collect=10,
# (int) How many samples in a training batch.
batch_size=64,
# (float) The step size of gradient descent.
learning_rate=3e-4,
# (float) The loss weight of value network, policy network weight is set to 1.
value_weight=0.5,
# (float) The loss weight of entropy regularization, policy network weight is set to 1.
entropy_weight=0.0,
# (float) PPO clip ratio, defaults to 0.2.
clip_ratio=0.2,
# (bool) Whether to use advantage norm in a whole training batch.
adv_norm=True,
# (bool) Whether to use value norm with running mean and std in the whole training process.
value_norm=True,
# (bool) Whether to enable special network parameters initialization scheme in PPO, such as orthogonal init.
ppo_param_init=True,
# (str) The gradient clip operation type used in PPO, ['clip_norm', clip_value', 'clip_momentum_norm'].
grad_clip_type='clip_norm',
# (float) The gradient clip target value used in PPO.
# If ``grad_clip_type`` is 'clip_norm', then the maximum of gradient will be normalized to this value.
grad_clip_value=0.5,
# (bool) Whether ignore done (usually for max step termination env).
ignore_done=False,
),
# collect_mode config
collect=dict(
# (int) How many training samples collected in one collection procedure.
# Only one of [n_sample, n_episode] shoule be set.
# n_sample=64,
# (int) Cut trajectories into pieces with length "unroll_len".
unroll_len=1,
# (float) Reward's future discount factor, aka. gamma.
discount_factor=0.99,
# (float) GAE lambda factor for the balance of bias and variance (1-step td and mc).
gae_lambda=0.95,
),
eval=dict(), # for compability
)
def _init_learn(self) -> None:
"""
Overview:
Learn mode init method. Called by ``self.__init__``.
Init the auxiliary model, its optimizer, and the axuliary loss weight to the main loss.
"""
super()._init_learn()
x_size, y_size = self._get_encoding_size()
self._aux_model = ContrastiveLoss(x_size, y_size, **self._cfg.aux_model)
if self._cuda:
self._aux_model.cuda()
self._aux_optimizer = Adam(self._aux_model.parameters(), lr=self._cfg.learn.learning_rate)
self._aux_loss_weight = self._cfg.aux_loss_weight
def _get_encoding_size(self):
"""
Overview:
Get the input encoding size of the ST-DIM axuiliary model.
Returns:
- info_dict (:obj:`[Tuple, Tuple]`): The encoding size without the first (Batch) dimension.
"""
obs = self._cfg.model.obs_shape
if isinstance(obs, int):
obs = [obs]
test_data = {
"obs": torch.randn(1, *obs),
"next_obs": torch.randn(1, *obs),
}
if self._cuda:
test_data = to_device(test_data, self._device)
with torch.no_grad():
x, y = self._model_encode(test_data)
return x.size()[1:], y.size()[1:]
def _model_encode(self, data):
"""
Overview:
Get the encoding of the main model as input for the auxiliary model.
Arguments:
- data (:obj:`dict`): Dict type data, same as the _forward_learn input.
Returns:
- (:obj:`Tuple[Tensor]`): the tuple of two tensors to apply contrastive embedding learning.
In ST-DIM algorithm, these two variables are the dqn encoding of `obs` and `next_obs`\
respectively.
"""
assert hasattr(self._model, "encoder")
x = self._model.encoder(data["obs"])
y = self._model.encoder(data["next_obs"])
return x, y
def _forward_learn(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""
Overview:
Forward and backward function of learn mode.
Arguments:
- data (:obj:`dict`): Dict type data
Returns:
- info_dict (:obj:`Dict[str, Any]`):
Including current lr, total_loss, policy_loss, value_loss, entropy_loss, \
adv_abs_max, approx_kl, clipfrac
"""
data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=False)
if self._cuda:
data = to_device(data, self._device)
# ====================
# PPO forward
# ====================
return_infos = []
self._learn_model.train()
for epoch in range(self._cfg.learn.epoch_per_collect):
if self._recompute_adv: # calculate new value using the new updated value network
with torch.no_grad():
value = self._learn_model.forward(data['obs'], mode='compute_critic')['value']
next_value = self._learn_model.forward(data['next_obs'], mode='compute_critic')['value']
if self._value_norm:
value *= self._running_mean_std.std
next_value *= self._running_mean_std.std
traj_flag = data.get('traj_flag', None) # traj_flag indicates termination of trajectory
compute_adv_data = gae_data(value, next_value, data['reward'], data['done'], traj_flag)
data['adv'] = gae(compute_adv_data, self._gamma, self._gae_lambda)
unnormalized_returns = value + data['adv']
if self._value_norm:
data['value'] = value / self._running_mean_std.std
data['return'] = unnormalized_returns / self._running_mean_std.std
self._running_mean_std.update(unnormalized_returns.cpu().numpy())
else:
data['value'] = value
data['return'] = unnormalized_returns
else: # don't recompute adv
if self._value_norm:
unnormalized_return = data['adv'] + data['value'] * self._running_mean_std.std
data['return'] = unnormalized_return / self._running_mean_std.std
self._running_mean_std.update(unnormalized_return.cpu().numpy())
else:
data['return'] = data['adv'] + data['value']
for batch in split_data_generator(data, self._cfg.learn.batch_size, shuffle=True):
# ======================
# Auxiliary model update
# ======================
# RL network encoding
# To train the auxiliary network, the gradients of x, y should be 0.
with torch.no_grad():
x_no_grad, y_no_grad = self._model_encode(batch)
# the forward function of the auxiliary network
self._aux_model.train()
aux_loss_learn = self._aux_model.forward(x_no_grad, y_no_grad)
# the BP process of the auxiliary network
self._aux_optimizer.zero_grad()
aux_loss_learn.backward()
if self._cfg.multi_gpu:
self.sync_gradients(self._aux_model)
self._aux_optimizer.step()
output = self._learn_model.forward(batch['obs'], mode='compute_actor_critic')
adv = batch['adv']
if self._adv_norm:
# Normalize advantage in a train_batch
adv = (adv - adv.mean()) / (adv.std() + 1e-8)
# Calculate ppo loss
if self._action_space == 'continuous':
ppo_batch = ppo_data(
output['logit'], batch['logit'], batch['action'], output['value'], batch['value'], adv,
batch['return'], batch['weight']
)
ppo_loss, ppo_info = ppo_error_continuous(ppo_batch, self._clip_ratio)
elif self._action_space == 'discrete':
ppo_batch = ppo_data(
output['logit'], batch['logit'], batch['action'], output['value'], batch['value'], adv,
batch['return'], batch['weight']
)
ppo_loss, ppo_info = ppo_error(ppo_batch, self._clip_ratio)
# ======================
# Compute auxiliary loss
# ======================
# In total_loss BP, the gradients of x, y are required to update the encoding network.
# The auxiliary network won't be updated since the self._optimizer does not contain
# its weights.
x, y = self._model_encode(data)
self._aux_model.eval()
aux_loss_eval = self._aux_model.forward(x, y) * self._aux_loss_weight
wv, we = self._value_weight, self._entropy_weight
total_loss = ppo_loss.policy_loss + wv * ppo_loss.value_loss - we * ppo_loss.entropy_loss\
+ aux_loss_eval
self._optimizer.zero_grad()
total_loss.backward()
self._optimizer.step()
return_info = {
'cur_lr': self._optimizer.defaults['lr'],
'total_loss': total_loss.item(),
'aux_loss_learn': aux_loss_learn.item(),
'aux_loss_eval': aux_loss_eval.item(),
'policy_loss': ppo_loss.policy_loss.item(),
'value_loss': ppo_loss.value_loss.item(),
'entropy_loss': ppo_loss.entropy_loss.item(),
'adv_max': adv.max().item(),
'adv_mean': adv.mean().item(),
'value_mean': output['value'].mean().item(),
'value_max': output['value'].max().item(),
'approx_kl': ppo_info.approx_kl,
'clipfrac': ppo_info.clipfrac,
}
if self._action_space == 'continuous':
return_info.update(
{
'act': batch['action'].float().mean().item(),
'mu_mean': output['logit']['mu'].mean().item(),
'sigma_mean': output['logit']['sigma'].mean().item(),
}
)
return_infos.append(return_info)
return return_infos
def _state_dict_learn(self) -> Dict[str, Any]:
"""
Overview:
Return the state_dict of learn mode, usually including model, optimizer and aux_optimizer for \
representation learning.
Returns:
- state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn state, for saving and restoring.
"""
return {
'model': self._learn_model.state_dict(),
'optimizer': self._optimizer.state_dict(),
'aux_optimizer': self._aux_optimizer.state_dict(),
}
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
"""
Overview:
Load the state_dict variable into policy learn mode.
Arguments:
- state_dict (:obj:`Dict[str, Any]`): The dict of policy learn state saved before.
.. tip::
If you want to only load some parts of model, you can simply set the ``strict`` argument in \
load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \
complicated operation.
"""
self._learn_model.load_state_dict(state_dict['model'])
self._optimizer.load_state_dict(state_dict['optimizer'])
self._aux_optimizer.load_state_dict(state_dict['aux_optimizer'])
def _monitor_vars_learn(self) -> List[str]:
"""
Overview:
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
as text logger, tensorboard logger, will use these keys to save the corresponding data.
Returns:
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
"""
return super()._monitor_vars_learn() + ["aux_loss_learn", "aux_loss_eval"]
|