File size: 16,184 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
from typing import List, Dict, Any, Tuple, Union, Callable, Optional
from collections import namedtuple
from easydict import EasyDict
import copy
import random
import numpy as np
import torch
import treetensor.torch as ttorch
from torch.optim import AdamW

from ding.rl_utils import ppo_data, ppo_error, ppo_policy_error, ppo_policy_data, gae, gae_data, ppo_error_continuous, \
    get_gae, ppo_policy_error_continuous, ArgmaxSampler, MultinomialSampler, ReparameterizationSampler, MuSampler, \
    HybridStochasticSampler, HybridDeterminsticSampler, value_transform, value_inv_transform, symlog, inv_symlog
from ding.utils import POLICY_REGISTRY, RunningMeanStd


@POLICY_REGISTRY.register('ppof')
class PPOFPolicy:
    config = dict(
        type='ppo',
        on_policy=True,
        cuda=True,
        action_space='discrete',
        discount_factor=0.99,
        gae_lambda=0.95,
        # learn
        epoch_per_collect=10,
        batch_size=64,
        learning_rate=3e-4,
        # learningrate scheduler, which the format is (10000, 0.1)
        lr_scheduler=None,
        weight_decay=0,
        value_weight=0.5,
        entropy_weight=0.01,
        clip_ratio=0.2,
        adv_norm=True,
        value_norm='baseline',
        ppo_param_init=True,
        grad_norm=0.5,
        # collect
        n_sample=128,
        unroll_len=1,
        # eval
        deterministic_eval=True,
        # model
        model=dict(),
    )
    mode = ['learn', 'collect', 'eval']

    @classmethod
    def default_config(cls: type) -> EasyDict:
        cfg = EasyDict(copy.deepcopy(cls.config))
        cfg.cfg_type = cls.__name__ + 'Dict'
        return cfg

    @classmethod
    def default_model(cls: type) -> Callable:
        from .model import PPOFModel
        return PPOFModel

    def __init__(self, cfg: "EasyDict", model: torch.nn.Module, enable_mode: List[str] = None) -> None:
        self._cfg = cfg
        if model is None:
            self._model = self.default_model()
        else:
            self._model = model
        if self._cfg.cuda and torch.cuda.is_available():
            self._device = 'cuda'
            self._model.cuda()
        else:
            self._device = 'cpu'
        assert self._cfg.action_space in ["continuous", "discrete", "hybrid", 'multi_discrete']
        self._action_space = self._cfg.action_space
        if self._cfg.ppo_param_init:
            self._model_param_init()

        if enable_mode is None:
            enable_mode = self.mode
        self.enable_mode = enable_mode
        if 'learn' in enable_mode:
            self._optimizer = AdamW(
                self._model.parameters(),
                lr=self._cfg.learning_rate,
                weight_decay=self._cfg.weight_decay,
            )
            # define linear lr scheduler
            if self._cfg.lr_scheduler is not None:
                epoch_num, min_lr_lambda = self._cfg.lr_scheduler

                self._lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
                    self._optimizer,
                    lr_lambda=lambda epoch: max(1.0 - epoch * (1.0 - min_lr_lambda) / epoch_num, min_lr_lambda)
                )

            if self._cfg.value_norm:
                self._running_mean_std = RunningMeanStd(epsilon=1e-4, device=self._device)
        if 'collect' in enable_mode:
            if self._action_space == 'discrete':
                self._collect_sampler = MultinomialSampler()
            elif self._action_space == 'continuous':
                self._collect_sampler = ReparameterizationSampler()
            elif self._action_space == 'hybrid':
                self._collect_sampler = HybridStochasticSampler()
        if 'eval' in enable_mode:
            if self._action_space == 'discrete':
                if self._cfg.deterministic_eval:
                    self._eval_sampler = ArgmaxSampler()
                else:
                    self._eval_sampler = MultinomialSampler()
            elif self._action_space == 'continuous':
                if self._cfg.deterministic_eval:
                    self._eval_sampler = MuSampler()
                else:
                    self._eval_sampler = ReparameterizationSampler()
            elif self._action_space == 'hybrid':
                if self._cfg.deterministic_eval:
                    self._eval_sampler = HybridDeterminsticSampler()
                else:
                    self._eval_sampler = HybridStochasticSampler()
        # for compatibility
        self.learn_mode = self
        self.collect_mode = self
        self.eval_mode = self

    def _model_param_init(self):
        for n, m in self._model.named_modules():
            if isinstance(m, torch.nn.Linear):
                torch.nn.init.orthogonal_(m.weight)
                torch.nn.init.zeros_(m.bias)
        if self._action_space in ['continuous', 'hybrid']:
            for m in list(self._model.critic.modules()) + list(self._model.actor.modules()):
                if isinstance(m, torch.nn.Linear):
                    # orthogonal initialization
                    torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
                    torch.nn.init.zeros_(m.bias)
            # init log sigma
            if self._action_space == 'continuous':
                torch.nn.init.constant_(self._model.actor_head.log_sigma_param, -0.5)
                for m in self._model.actor_head.mu.modules():
                    if isinstance(m, torch.nn.Linear):
                        torch.nn.init.zeros_(m.bias)
                        m.weight.data.copy_(0.01 * m.weight.data)
            elif self._action_space == 'hybrid':  # actor_head[1]: ReparameterizationHead, for action_args
                if hasattr(self._model.actor_head[1], 'log_sigma_param'):
                    torch.nn.init.constant_(self._model.actor_head[1].log_sigma_param, -0.5)
                    for m in self._model.actor_head[1].mu.modules():
                        if isinstance(m, torch.nn.Linear):
                            torch.nn.init.zeros_(m.bias)
                            m.weight.data.copy_(0.01 * m.weight.data)

    def forward(self, data: ttorch.Tensor) -> Dict[str, Any]:
        return_infos = []
        self._model.train()
        bs = self._cfg.batch_size
        data = data[:self._cfg.n_sample // bs * bs]  # rounding

        # outer training loop
        for epoch in range(self._cfg.epoch_per_collect):
            # recompute adv
            with torch.no_grad():
                # get the value dictionary
                # In popart, the dictionary has two keys: 'pred' and 'unnormalized_pred'
                value = self._model.compute_critic(data.obs)
                next_value = self._model.compute_critic(data.next_obs)
                reward = data.reward

                assert self._cfg.value_norm in ['popart', 'value_rescale', 'symlog', 'baseline'],\
                    'Not supported value normalization! Value normalization supported: \
                        popart, value rescale, symlog, baseline'

                if self._cfg.value_norm == 'popart':
                    unnormalized_value = value['unnormalized_pred']
                    unnormalized_next_value = value['unnormalized_pred']

                    mu = self._model.critic_head.popart.mu
                    sigma = self._model.critic_head.popart.sigma
                    reward = (reward - mu) / sigma

                    value = value['pred']
                    next_value = next_value['pred']
                elif self._cfg.value_norm == 'value_rescale':
                    value = value_inv_transform(value['pred'])
                    next_value = value_inv_transform(next_value['pred'])
                elif self._cfg.value_norm == 'symlog':
                    value = inv_symlog(value['pred'])
                    next_value = inv_symlog(next_value['pred'])
                elif self._cfg.value_norm == 'baseline':
                    value = value['pred'] * self._running_mean_std.std
                    next_value = next_value['pred'] * self._running_mean_std.std

                traj_flag = data.get('traj_flag', None)  # traj_flag indicates termination of trajectory
                adv_data = gae_data(value, next_value, reward, data.done, traj_flag)
                data.adv = gae(adv_data, self._cfg.discount_factor, self._cfg.gae_lambda)

                unnormalized_returns = value + data.adv  # In popart, this return is normalized

                if self._cfg.value_norm == 'popart':
                    self._model.critic_head.popart.update_parameters((data.reward).unsqueeze(1))
                elif self._cfg.value_norm == 'value_rescale':
                    value = value_transform(value)
                    unnormalized_returns = value_transform(unnormalized_returns)
                elif self._cfg.value_norm == 'symlog':
                    value = symlog(value)
                    unnormalized_returns = symlog(unnormalized_returns)
                elif self._cfg.value_norm == 'baseline':
                    value /= self._running_mean_std.std
                    unnormalized_returns /= self._running_mean_std.std
                    self._running_mean_std.update(unnormalized_returns.cpu().numpy())
                data.value = value
                data.return_ = unnormalized_returns

            # inner training loop
            split_data = ttorch.split(data, self._cfg.batch_size)
            random.shuffle(list(split_data))
            for batch in split_data:
                output = self._model.compute_actor_critic(batch.obs)
                adv = batch.adv
                if self._cfg.adv_norm:
                    # Normalize advantage in a train_batch
                    adv = (adv - adv.mean()) / (adv.std() + 1e-8)

                # Calculate ppo error
                if self._action_space == 'continuous':
                    ppo_batch = ppo_data(
                        output.logit, batch.logit, batch.action, output.value, batch.value, adv, batch.return_, None
                    )
                    ppo_loss, ppo_info = ppo_error_continuous(ppo_batch, self._cfg.clip_ratio)
                elif self._action_space == 'discrete':
                    ppo_batch = ppo_data(
                        output.logit, batch.logit, batch.action, output.value, batch.value, adv, batch.return_, None
                    )
                    ppo_loss, ppo_info = ppo_error(ppo_batch, self._cfg.clip_ratio)
                elif self._action_space == 'hybrid':
                    # discrete part (discrete policy loss and entropy loss)
                    ppo_discrete_batch = ppo_policy_data(
                        output.logit.action_type, batch.logit.action_type, batch.action.action_type, adv, None
                    )
                    ppo_discrete_loss, ppo_discrete_info = ppo_policy_error(ppo_discrete_batch, self._cfg.clip_ratio)
                    # continuous part (continuous policy loss and entropy loss, value loss)
                    ppo_continuous_batch = ppo_data(
                        output.logit.action_args, batch.logit.action_args, batch.action.action_args, output.value,
                        batch.value, adv, batch.return_, None
                    )
                    ppo_continuous_loss, ppo_continuous_info = ppo_error_continuous(
                        ppo_continuous_batch, self._cfg.clip_ratio
                    )
                    # sum discrete and continuous loss
                    ppo_loss = type(ppo_continuous_loss)(
                        ppo_continuous_loss.policy_loss + ppo_discrete_loss.policy_loss, ppo_continuous_loss.value_loss,
                        ppo_continuous_loss.entropy_loss + ppo_discrete_loss.entropy_loss
                    )
                    ppo_info = type(ppo_continuous_info)(
                        max(ppo_continuous_info.approx_kl, ppo_discrete_info.approx_kl),
                        max(ppo_continuous_info.clipfrac, ppo_discrete_info.clipfrac)
                    )
                wv, we = self._cfg.value_weight, self._cfg.entropy_weight
                total_loss = ppo_loss.policy_loss + wv * ppo_loss.value_loss - we * ppo_loss.entropy_loss

                self._optimizer.zero_grad()
                total_loss.backward()
                torch.nn.utils.clip_grad_norm_(self._model.parameters(), self._cfg.grad_norm)
                self._optimizer.step()

                return_info = {
                    'cur_lr': self._optimizer.defaults['lr'],
                    'total_loss': total_loss.item(),
                    'policy_loss': ppo_loss.policy_loss.item(),
                    'value_loss': ppo_loss.value_loss.item(),
                    'entropy_loss': ppo_loss.entropy_loss.item(),
                    'adv_max': adv.max().item(),
                    'adv_mean': adv.mean().item(),
                    'value_mean': output.value.mean().item(),
                    'value_max': output.value.max().item(),
                    'approx_kl': ppo_info.approx_kl,
                    'clipfrac': ppo_info.clipfrac,
                }
                if self._action_space == 'continuous':
                    return_info.update(
                        {
                            'action': batch.action.float().mean().item(),
                            'mu_mean': output.logit.mu.mean().item(),
                            'sigma_mean': output.logit.sigma.mean().item(),
                        }
                    )
                elif self._action_space == 'hybrid':
                    return_info.update(
                        {
                            'action': batch.action.action_args.float().mean().item(),
                            'mu_mean': output.logit.action_args.mu.mean().item(),
                            'sigma_mean': output.logit.action_args.sigma.mean().item(),
                        }
                    )
                return_infos.append(return_info)

        if self._cfg.lr_scheduler is not None:
            self._lr_scheduler.step()

        return return_infos

    def state_dict(self) -> Dict[str, Any]:
        state_dict = {
            'model': self._model.state_dict(),
        }
        if 'learn' in self.enable_mode:
            state_dict['optimizer'] = self._optimizer.state_dict()
        return state_dict

    def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
        self._model.load_state_dict(state_dict['model'])
        if 'learn' in self.enable_mode:
            self._optimizer.load_state_dict(state_dict['optimizer'])

    def collect(self, data: ttorch.Tensor) -> ttorch.Tensor:
        self._model.eval()
        with torch.no_grad():
            output = self._model.compute_actor_critic(data)
            action = self._collect_sampler(output.logit)
            output.action = action
        return output

    def process_transition(self, obs: ttorch.Tensor, inference_output: dict, timestep: namedtuple) -> ttorch.Tensor:
        return ttorch.as_tensor(
            {
                'obs': obs,
                'next_obs': timestep.obs,
                'action': inference_output.action,
                'logit': inference_output.logit,
                'value': inference_output.value,
                'reward': timestep.reward,
                'done': timestep.done,
            }
        )

    def eval(self, data: ttorch.Tensor) -> ttorch.Tensor:
        self._model.eval()
        with torch.no_grad():
            logit = self._model.compute_actor(data)
            action = self._eval_sampler(logit)
        return ttorch.as_tensor({'logit': logit, 'action': action})

    def monitor_vars(self) -> List[str]:
        variables = [
            'cur_lr',
            'policy_loss',
            'value_loss',
            'entropy_loss',
            'adv_max',
            'adv_mean',
            'approx_kl',
            'clipfrac',
            'value_max',
            'value_mean',
        ]
        if self._action_space in ['action', 'mu_mean', 'sigma_mean']:
            variables += ['mu_mean', 'sigma_mean', 'action']
        return variables

    def reset(self, env_id_list: Optional[List[int]] = None) -> None:
        pass