File size: 28,613 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
from typing import List, Dict, Any, Tuple, Optional
from collections import namedtuple
import copy
import torch

from ding.torch_utils import RMSprop, to_device
from ding.rl_utils import v_1step_td_data, v_1step_td_error, get_train_sample
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import timestep_collate, default_collate, default_decollate
from .base_policy import Policy


@POLICY_REGISTRY.register('qmix')
class QMIXPolicy(Policy):
    """
    Overview:
        Policy class of QMIX algorithm. QMIX is a multi-agent reinforcement learning algorithm, \
        you can view the paper in the following link https://arxiv.org/abs/1803.11485.
    Config:
        == ==================== ======== ============== ======================================== =======================
        ID Symbol               Type     Default Value  Description                              Other(Shape)
        == ==================== ======== ============== ======================================== =======================
        1  ``type``             str      qmix           | RL policy register name, refer to      | this arg is optional,
                                                        | registry ``POLICY_REGISTRY``           | a placeholder
        2  ``cuda``             bool     True           | Whether to use cuda for network        | this arg can be diff-
                                                                                                 | erent from modes
        3  ``on_policy``        bool     False          | Whether the RL algorithm is on-policy
                                                        | or off-policy
        4. ``priority``         bool     False          | Whether use priority(PER)              | priority sample,
                                                                                                 | update priority
        5  | ``priority_``      bool     False          | Whether use Importance Sampling        | IS weight
           | ``IS_weight``                              | Weight to correct biased update.
        6  | ``learn.update_``  int      20             | How many updates(iterations) to train  | this args can be vary
           | ``per_collect``                            | after collector's one collection. Only | from envs. Bigger val
                                                        | valid in serial training               | means more off-policy
        7  | ``learn.target_``   float    0.001         | Target network update momentum         | between[0,1]
           | ``update_theta``                           | parameter.
        8  | ``learn.discount`` float    0.99           | Reward's future discount factor, aka.  | may be 1 when sparse
           | ``_factor``                                | gamma                                  | reward env
        == ==================== ======== ============== ======================================== =======================
    """
    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='qmix',
        # (bool) Whether to use cuda for network.
        cuda=True,
        # (bool) Whether the RL algorithm is on-policy or off-policy.
        on_policy=False,
        # (bool) Whether use priority(priority sample, IS weight, update priority)
        priority=False,
        # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
        priority_IS_weight=False,
        # learn_mode config
        learn=dict(
            # (int) How many updates(iterations) to train after collector's one collection.
            # Bigger "update_per_collect" means bigger off-policy.
            # collect data -> update policy-> collect data -> ...
            update_per_collect=20,
            # (int) How many samples in a training batch.
            batch_size=32,
            # (float) The step size of gradient descent.
            learning_rate=0.0005,
            clip_value=100,
            # (float) Target network update momentum parameter, in [0, 1].
            target_update_theta=0.008,
            # (float) The discount factor for future rewards, in [0, 1].
            discount_factor=0.99,
            # (bool) Whether to use double DQN mechanism(target q for surpassing over estimation).
            double_q=False,
        ),
        # collect_mode config
        collect=dict(
            # (int) How many training samples collected in one collection procedure.
            # In each collect phase, we collect a total of <n_sample> sequence samples, a sample with length unroll_len.
            # n_sample=32,
            # (int) Split trajectories into pieces with length ``unroll_len``, the length of timesteps
            # in each forward when training. In qmix, it is greater than 1 because there is RNN.
            unroll_len=10,
        ),
        eval=dict(),  # for compatibility
        other=dict(
            eps=dict(
                # (str) Type of epsilon decay.
                type='exp',
                # (float) Start value for epsilon decay, in [0, 1].
                start=1,
                # (float) Start value for epsilon decay, in [0, 1].
                end=0.05,
                # (int) Decay length(env step).
                decay=50000,
            ),
            replay_buffer=dict(
                # (int) Maximum size of replay buffer. Usually, larger buffer size is better.
                replay_buffer_size=5000,
            ),
        ),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        """
        Overview:
            Return this algorithm default model setting for demonstration.
        Returns:
            - model_info (:obj:`Tuple[str, List[str]]`): model name and mode import_names

        .. note::
            The user can define and use customized network model but must obey the same inferface definition indicated \
            by import_names path. For QMIX, ``ding.model.qmix.qmix``
        """
        return 'qmix', ['ding.model.template.qmix']

    def _init_learn(self) -> None:
        """
        Overview:
            Initialize the learn mode of policy, including some attributes and modules. For QMIX, it mainly contains \
            optimizer, algorithm-specific arguments such as gamma, main and target model. Because of the use of RNN, \
            all the models should be wrappered with ``hidden_state`` which needs to be initialized with proper size.
            This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.

        .. tip::
            For multi-agent algorithm, we often need to use ``agent_num`` to initialize some necessary variables.

        .. note::
            For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
            and ``_load_state_dict_learn`` methods.

        .. note::
            For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.

        .. note::
            If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
            with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
            - agent_num (:obj:`int`): Since this is a multi-agent algorithm, we need to input the agent num.
        """
        self._priority = self._cfg.priority
        self._priority_IS_weight = self._cfg.priority_IS_weight
        assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in QMIX"
        self._optimizer = RMSprop(
            params=self._model.parameters(),
            lr=self._cfg.learn.learning_rate,
            alpha=0.99,
            eps=0.00001,
            weight_decay=1e-5
        )
        self._gamma = self._cfg.learn.discount_factor

        self._target_model = copy.deepcopy(self._model)
        self._target_model = model_wrap(
            self._target_model,
            wrapper_name='target',
            update_type='momentum',
            update_kwargs={'theta': self._cfg.learn.target_update_theta}
        )
        self._target_model = model_wrap(
            self._target_model,
            wrapper_name='hidden_state',
            state_num=self._cfg.learn.batch_size,
            init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)]
        )
        self._learn_model = model_wrap(
            self._model,
            wrapper_name='hidden_state',
            state_num=self._cfg.learn.batch_size,
            init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)]
        )
        self._learn_model.reset()
        self._target_model.reset()

    def _data_preprocess_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
        """
        Overview:
            Preprocess the data to fit the required data format for learning
        Arguments:
            - data (:obj:`List[Dict[str, Any]]`): the data collected from collect function
        Returns:
            - data (:obj:`Dict[str, Any]`): the processed data, from \
                [len=B, ele={dict_key: [len=T, ele=Tensor(any_dims)]}] -> {dict_key: Tensor([T, B, any_dims])}
        """
        # data preprocess
        data = timestep_collate(data)
        if self._cuda:
            data = to_device(data, self._device)
        data['weight'] = data.get('weight', None)
        data['done'] = data['done'].float()
        return data

    def _forward_learn(self, data: List[List[Dict[str, Any]]]) -> Dict[str, Any]:
        """
        Overview:
            Policy forward function of learn mode (training policy and updating parameters). Forward means \
            that the policy inputs some training batch data (trajectory for QMIX) from the replay buffer and then \
            returns the output result, including various training information such as loss, q value, grad_norm.
        Arguments:
            - data (:obj:`List[List[Dict[int, Any]]]`): The input data used for policy forward, including a batch of \
                training samples. For each dict element, the key of the dict is the name of data items and the \
                value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \
                combinations. In the ``_forward_learn`` method, data often need to first be stacked in the time and \
                batch dimension by the utility functions ``self._data_preprocess_learn``. \
                For QMIX, each element in list is a trajectory with the length of ``unroll_len``, and the element in \
                trajectory list is a dict containing at least the following keys: ``obs``, ``action``, ``prev_state``, \
                ``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as ``weight`` \
                and ``value_gamma``.
        Returns:
            - info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \
                recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \
                detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for QMIXPolicy: ``ding.policy.tests.test_qmix``.
        """
        data = self._data_preprocess_learn(data)
        # ====================
        # Q-mix forward
        # ====================
        self._learn_model.train()
        self._target_model.train()
        # for hidden_state plugin, we need to reset the main model and target model
        self._learn_model.reset(state=data['prev_state'][0])
        self._target_model.reset(state=data['prev_state'][0])
        inputs = {'obs': data['obs'], 'action': data['action']}
        total_q = self._learn_model.forward(inputs, single_step=False)['total_q']

        if self._cfg.learn.double_q:
            next_inputs = {'obs': data['next_obs']}
            self._learn_model.reset(state=data['prev_state'][1])
            logit_detach = self._learn_model.forward(next_inputs, single_step=False)['logit'].clone().detach()
            next_inputs = {'obs': data['next_obs'], 'action': logit_detach.argmax(dim=-1)}
        else:
            next_inputs = {'obs': data['next_obs']}
        with torch.no_grad():
            target_total_q = self._target_model.forward(next_inputs, single_step=False)['total_q']

        with torch.no_grad():
            if data['done'] is not None:
                target_v = self._gamma * (1 - data['done']) * target_total_q + data['reward']
            else:
                target_v = self._gamma * target_total_q + data['reward']

        data = v_1step_td_data(total_q, target_total_q, data['reward'], data['done'], data['weight'])
        loss, td_error_per_sample = v_1step_td_error(data, self._gamma)
        # ====================
        # Q-mix update
        # ====================
        self._optimizer.zero_grad()
        loss.backward()
        grad_norm = torch.nn.utils.clip_grad_norm_(self._model.parameters(), self._cfg.learn.clip_value)
        self._optimizer.step()
        # =============
        # after update
        # =============
        self._target_model.update(self._learn_model.state_dict())
        return {
            'cur_lr': self._optimizer.defaults['lr'],
            'total_loss': loss.item(),
            'total_q': total_q.mean().item() / self._cfg.model.agent_num,
            'target_reward_total_q': target_v.mean().item() / self._cfg.model.agent_num,
            'target_total_q': target_total_q.mean().item() / self._cfg.model.agent_num,
            'grad_norm': grad_norm,
        }

    def _reset_learn(self, data_id: Optional[List[int]] = None) -> None:
        """
        Overview:
            Reset some stateful variables for learn mode when necessary, such as the hidden state of RNN or the \
            memory bank of some special algortihms. If ``data_id`` is None, it means to reset all the stateful \
            varaibles. Otherwise, it will reset the stateful variables according to the ``data_id``. For example, \
            different trajectories in ``data_id`` will have different hidden state in RNN.
        Arguments:
            - data_id (:obj:`Optional[List[int]]`): The id of the data, which is used to reset the stateful variables \
                (i.e. RNN hidden_state in QMIX) specified by ``data_id``.
        """
        self._learn_model.reset(data_id=data_id)

    def _state_dict_learn(self) -> Dict[str, Any]:
        """
        Overview:
            Return the state_dict of learn mode, usually including model, target_model and optimizer.
        Returns:
            - state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn state, for saving and restoring.
        """
        return {
            'model': self._learn_model.state_dict(),
            'target_model': self._target_model.state_dict(),
            'optimizer': self._optimizer.state_dict(),
        }

    def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
        """
        Overview:
            Load the state_dict variable into policy learn mode.
        Arguments:
            - state_dict (:obj:`Dict[str, Any]`): The dict of policy learn state saved before.

        .. tip::
            If you want to only load some parts of model, you can simply set the ``strict`` argument in \
            load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \
            complicated operation.
        """
        self._learn_model.load_state_dict(state_dict['model'])
        self._target_model.load_state_dict(state_dict['target_model'])
        self._optimizer.load_state_dict(state_dict['optimizer'])

    def _init_collect(self) -> None:
        """
        Overview:
            Initialize the collect mode of policy, including related attributes and modules. For QMIX, it contains the \
            collect_model to balance the exploration and exploitation with epsilon-greedy sample mechanism and \
            maintain the hidden state of rnn. Besides, there are some initialization operations about other \
            algorithm-specific arguments such as burnin_step, unroll_len and nstep.
            This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``.

        .. note::
            If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \
            with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``.
        """
        self._unroll_len = self._cfg.collect.unroll_len
        self._collect_model = model_wrap(
            self._model,
            wrapper_name='hidden_state',
            state_num=self._cfg.collect.env_num,
            save_prev_state=True,
            init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)]
        )
        self._collect_model = model_wrap(self._collect_model, wrapper_name='eps_greedy_sample')
        self._collect_model.reset()

    def _forward_collect(self, data: Dict[int, Any], eps: float) -> Dict[int, Any]:
        """
        Overview:
            Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \
            that the policy gets some necessary data (mainly observation) from the envs and then returns the output \
            data, such as the action to interact with the envs. Besides, this policy also needs ``eps`` argument for \
            exploration, i.e., classic epsilon-greedy exploration strategy.
        Arguments:
            - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
                key of the dict is environment id and the value is the corresponding data of the env.
            - eps (:obj:`float`): The epsilon value for exploration.
        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \
                other necessary data (prev_state) for learn mode defined in ``self._process_transition`` method. The \
                key of the dict is the same as the input data, i.e. environment id.

        .. note::
            RNN's hidden states are maintained in the policy, so we don't need pass them into data but to reset the \
            hidden states with ``_reset_collect`` method when episode ends. Besides, the previous hidden states are \
            necessary for training, so we need to return them in ``_process_transition`` method.
        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for QMIXPolicy: ``ding.policy.tests.test_qmix``.
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        data = {'obs': data}
        self._collect_model.eval()
        with torch.no_grad():
            output = self._collect_model.forward(data, eps=eps, data_id=data_id)
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _reset_collect(self, data_id: Optional[List[int]] = None) -> None:
        """
        Overview:
            Reset some stateful variables for eval mode when necessary, such as the hidden state of RNN or the \
            memory bank of some special algortihms. If ``data_id`` is None, it means to reset all the stateful \
            varaibles. Otherwise, it will reset the stateful variables according to the ``data_id``. For example, \
            different environments/episodes in evaluation in ``data_id`` will have different hidden state in RNN.
        Arguments:
            - data_id (:obj:`Optional[List[int]]`): The id of the data, which is used to reset the stateful variables \
                (i.e., RNN hidden_state in QMIX) specified by ``data_id``.
        """
        self._collect_model.reset(data_id=data_id)

    def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor],
                            timestep: namedtuple) -> Dict[str, torch.Tensor]:
        """
        Overview:
            Process and pack one timestep transition data into a dict, which can be directly used for training and \
            saved in replay buffer. For QMIX, it contains obs, next_obs, action, prev_state, reward, done.
        Arguments:
            - obs (:obj:`torch.Tensor`): The env observation of current timestep, usually including ``agent_obs`` \
                and ``global_obs`` in multi-agent environment like MPE and SMAC.
            - policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \
                as input. For QMIX, it contains the action and the prev_state of RNN.
            - timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \
                except all the elements have been transformed into tensor data. Usually, it contains the next obs, \
                reward, done, info, etc.
        Returns:
            - transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep.
        """
        transition = {
            'obs': obs,
            'next_obs': timestep.obs,
            'prev_state': policy_output['prev_state'],
            'action': policy_output['action'],
            'reward': timestep.reward,
            'done': timestep.done,
        }
        return transition

    def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """
        Overview:
            For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \
            can be used for training directly. In QMIX, a train sample is processed transitions with unroll_len \
            length. This method is usually used in collectors to execute necessary \
            RL data preprocessing before training, which can help learner amortize revelant time consumption. \
            In addition, you can also implement this method as an identity function and do the data processing \
            in ``self._forward_learn`` method.
        Arguments:
            - transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \
                the same format as the return value of ``self._process_transition`` method.
        Returns:
            - samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each sample is a fixed-length \
                trajectory, and each element in a sample is the similar format as input transitions.
        """
        return get_train_sample(transitions, self._unroll_len)

    def _init_eval(self) -> None:
        """
        Overview:
            Initialize the eval mode of policy, including related attributes and modules. For QMIX, it contains the \
            eval model to greedily select action with argmax q_value mechanism and main the hidden state.
            This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``.

        .. note::
            If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \
            with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``.
        """
        self._eval_model = model_wrap(
            self._model,
            wrapper_name='hidden_state',
            state_num=self._cfg.eval.env_num,
            save_prev_state=True,
            init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)]
        )
        self._eval_model = model_wrap(self._eval_model, wrapper_name='argmax_sample')
        self._eval_model.reset()

    def _forward_eval(self, data: dict) -> dict:
        """
        Overview:
            Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \
            means that the policy gets some necessary data (mainly observation) from the envs and then returns the \
            action to interact with the envs. ``_forward_eval`` often use argmax sample method to get actions that \
            q_value is the highest.
        Arguments:
            - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
                key of the dict is environment id and the value is the corresponding data of the env.
        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \
                key of the dict is the same as the input data, i.e. environment id.

        .. note::
            RNN's hidden states are maintained in the policy, so we don't need pass them into data but to reset the \
            hidden states with ``_reset_eval`` method when the episode ends.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for QMIXPolicy: ``ding.policy.tests.test_qmix``.
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        data = {'obs': data}
        self._eval_model.eval()
        with torch.no_grad():
            output = self._eval_model.forward(data, data_id=data_id)
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _reset_eval(self, data_id: Optional[List[int]] = None) -> None:
        """
        Overview:
            Reset some stateful variables for eval mode when necessary, such as the hidden state of RNN or the \
            memory bank of some special algortihms. If ``data_id`` is None, it means to reset all the stateful \
            varaibles. Otherwise, it will reset the stateful variables according to the ``data_id``. For example, \
            different environments/episodes in evaluation in ``data_id`` will have different hidden state in RNN.
        Arguments:
            - data_id (:obj:`Optional[List[int]]`): The id of the data, which is used to reset the stateful variables \
                (i.e., RNN hidden_state in QMIX) specified by ``data_id``.
        """
        self._eval_model.reset(data_id=data_id)

    def _monitor_vars_learn(self) -> List[str]:
        """
        Overview:
            Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
            as text logger, tensorboard logger, will use these keys to save the corresponding data.
        Returns:
            - necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
        """
        return ['cur_lr', 'total_loss', 'total_q', 'target_total_q', 'grad_norm', 'target_reward_total_q']