File size: 12,262 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from typing import List, Dict, Any, Tuple, Union
import copy
import torch

from ding.torch_utils import Adam, to_device
from ding.rl_utils import qrdqn_nstep_td_data, qrdqn_nstep_td_error, get_train_sample, get_nstep_return_data
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate
from .dqn import DQNPolicy
from .common_utils import default_preprocess_learn


@POLICY_REGISTRY.register('qrdqn')
class QRDQNPolicy(DQNPolicy):
    r"""
    Overview:
        Policy class of QRDQN algorithm. QRDQN (https://arxiv.org/pdf/1710.10044.pdf) is a distributional RL \
        algorithm, which is an extension of DQN. The main idea of QRDQN is to use quantile regression to \
        estimate the quantile of the distribution of the return value, and then use the quantile to calculate \
        the quantile loss.

    Config:
        == ==================== ======== ============== ======================================== =======================
        ID Symbol               Type     Default Value  Description                              Other(Shape)
        == ==================== ======== ============== ======================================== =======================
        1  ``type``             str      qrdqn          | RL policy register name, refer to      | this arg is optional,
                                                        | registry ``POLICY_REGISTRY``           | a placeholder
        2  ``cuda``             bool     False          | Whether to use cuda for network        | this arg can be diff-
                                                                                                 | erent from modes
        3  ``on_policy``        bool     False          | Whether the RL algorithm is on-policy
                                                        | or off-policy
        4  ``priority``         bool     True           | Whether use priority(PER)              | priority sample,
                                                                                                 | update priority
        6  | ``other.eps``      float    0.05           | Start value for epsilon decay. It's
           | ``.start``                                 | small because rainbow use noisy net.
        7  | ``other.eps``      float    0.05           | End value for epsilon decay.
           | ``.end``
        8  | ``discount_``      float    0.97,          | Reward's future discount factor, aka.  | may be 1 when sparse
           | ``factor``                  [0.95, 0.999]  | gamma                                  | reward env
        9  ``nstep``            int      3,             | N-step reward discount sum for target
                                         [3, 5]         | q_value estimation
        10 | ``learn.update``   int      3              | How many updates(iterations) to train  | this args can be vary
           | ``per_collect``                            | after collector's one collection. Only | from envs. Bigger val
                                                        | valid in serial training               | means more off-policy
        11 ``learn.kappa``      float    /              | Threshold of Huber loss
        == ==================== ======== ============== ======================================== =======================
    """

    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='qrdqn',
        # (bool) Whether to use cuda for network.
        cuda=False,
        # (bool) Whether the RL algorithm is on-policy or off-policy.
        on_policy=False,
        # (bool) Whether use priority(priority sample, IS weight, update priority)
        priority=False,
        # (float) Reward's future discount factor, aka. gamma.
        discount_factor=0.97,
        # (int) N-step reward for target q_value estimation
        nstep=1,
        learn=dict(

            # How many updates(iterations) to train after collector's one collection.
            # Bigger "update_per_collect" means bigger off-policy.
            # collect data -> update policy-> collect data -> ...
            update_per_collect=3,
            batch_size=64,
            learning_rate=0.001,
            # ==============================================================
            # The following configs are algorithm-specific
            # ==============================================================
            # (int) Frequence of target network update.
            target_update_freq=100,
            # (bool) Whether ignore done(usually for max step termination env)
            ignore_done=False,
        ),
        # collect_mode config
        collect=dict(
            # (int) Only one of [n_sample, n_step, n_episode] shoule be set
            # n_sample=8,
            # (int) Cut trajectories into pieces with length "unroll_len".
            unroll_len=1,
        ),
        eval=dict(),
        # other config
        other=dict(
            # Epsilon greedy with decay.
            eps=dict(
                # (str) Decay type. Support ['exp', 'linear'].
                type='exp',
                start=0.95,
                end=0.1,
                # (int) Decay length(env step)
                decay=10000,
            ),
            replay_buffer=dict(replay_buffer_size=10000, )
        ),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        """
        Overview:
            Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \
            automatically call this method to get the default model setting and create model.

        Returns:
            - model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.
        """
        return 'qrdqn', ['ding.model.template.q_learning']

    def _init_learn(self) -> None:
        """
        Overview:
            Initialize the learn mode of policy, including related attributes and modules. For QRDQN, it mainly \
            contains optimizer, algorithm-specific arguments such as nstep and gamma. This method \
            also executes some special network initializations and prepares running mean/std monitor for value.
            This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.

        .. note::
            For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
            and ``_load_state_dict_learn`` methods.

        .. note::
            If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
            with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
        """
        self._priority = self._cfg.priority
        # Optimizer
        self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate)

        self._gamma = self._cfg.discount_factor
        self._nstep = self._cfg.nstep

        # use model_wrapper for specialized demands of different modes
        self._target_model = copy.deepcopy(self._model)
        self._target_model = model_wrap(
            self._target_model,
            wrapper_name='target',
            update_type='assign',
            update_kwargs={'freq': self._cfg.learn.target_update_freq}
        )
        self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample')
        self._learn_model.reset()
        self._target_model.reset()

    def _forward_learn(self, data: dict) -> Dict[str, Any]:
        """
        Overview:
            Policy forward function of learn mode (training policy and updating parameters). Forward means \
            that the policy inputs some training batch data from the replay buffer and then returns the output \
            result, including various training information such as loss, current lr.

        Arguments:
            - data (:obj:`dict`): Input data used for policy forward, including the \
                collected training samples from replay buffer. For each element in dict, the key of the \
                dict is the name of data items and the value is the corresponding data. Usually, the value is \
                torch.Tensor or np.ndarray or there dict/list combinations. In the ``_forward_learn`` method, data \
                often need to first be stacked in the batch dimension by some utility functions such as \
                ``default_preprocess_learn``. \
                For QRDQN, each element in list is a dict containing at least the following keys: ``obs``, \
                ``action``, ``reward``, ``next_obs``. Sometimes, it also contains other keys such as ``weight``.

        Returns:
            - info_dict (:obj:`Dict[str, Any]`): The output result dict of forward learn, \
                containing current lr, total_loss and priority. When discrete action satisfying \
                len(data['action'])==1, it also could contain ``action_distribution`` which is used \
                to draw histogram on tensorboard. For more information, please refer to the :class:`DQNPolicy`.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for QRDQNPolicy: ``ding.policy.tests.test_qrdqn``.
        """

        data = default_preprocess_learn(
            data, use_priority=self._priority, ignore_done=self._cfg.learn.ignore_done, use_nstep=True
        )
        if self._cuda:
            data = to_device(data, self._device)
        # ====================
        # Q-learning forward
        # ====================
        self._learn_model.train()
        self._target_model.train()
        # Current q value (main model)
        ret = self._learn_model.forward(data['obs'])
        q_value, tau = ret['q'], ret['tau']
        # Target q value
        with torch.no_grad():
            target_q_value = self._target_model.forward(data['next_obs'])['q']
            # Max q value action (main model)
            target_q_action = self._learn_model.forward(data['next_obs'])['action']

        data_n = qrdqn_nstep_td_data(
            q_value, target_q_value, data['action'], target_q_action, data['reward'], data['done'], tau, data['weight']
        )
        value_gamma = data.get('value_gamma')
        loss, td_error_per_sample = qrdqn_nstep_td_error(
            data_n, self._gamma, nstep=self._nstep, value_gamma=value_gamma
        )

        # ====================
        # Q-learning update
        # ====================
        self._optimizer.zero_grad()
        loss.backward()
        if self._cfg.multi_gpu:
            self.sync_gradients(self._learn_model)
        self._optimizer.step()

        # =============
        # after update
        # =============
        self._target_model.update(self._learn_model.state_dict())
        return {
            'cur_lr': self._optimizer.defaults['lr'],
            'total_loss': loss.item(),
            'priority': td_error_per_sample.abs().tolist(),
            # Only discrete action satisfying len(data['action'])==1 can return this and draw histogram on tensorboard.
            # '[histogram]action_distribution': data['action'],
        }

    def _state_dict_learn(self) -> Dict[str, Any]:
        return {
            'model': self._learn_model.state_dict(),
            'target_model': self._target_model.state_dict(),
            'optimizer': self._optimizer.state_dict(),
        }

    def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
        self._learn_model.load_state_dict(state_dict['model'])
        self._target_model.load_state_dict(state_dict['target_model'])
        self._optimizer.load_state_dict(state_dict['optimizer'])