File size: 21,050 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
from typing import List, Dict, Any, Tuple, Union, Optional
from collections import namedtuple
import torch
import torch.nn.functional as F
import copy
from easydict import EasyDict

from ding.torch_utils import Adam, RMSprop, to_device
from ding.rl_utils import v_1step_td_data, v_1step_td_error, get_epsilon_greedy_fn, get_train_sample
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import timestep_collate, default_collate, default_decollate
from .base_policy import Policy


@POLICY_REGISTRY.register('qtran')
class QTRANPolicy(Policy):
    """
    Overview:
        Policy class of QTRAN algorithm. QTRAN is a multi model reinforcement learning algorithm, \
        you can view the paper in the following link https://arxiv.org/abs/1803.11485
    Config:
        == ==================== ======== ============== ======================================== =======================
        ID Symbol               Type     Default Value  Description                              Other(Shape)
        == ==================== ======== ============== ======================================== =======================
        1  ``type``             str      qtran          | RL policy register name, refer to      | this arg is optional,
                                                        | registry ``POLICY_REGISTRY``           | a placeholder
        2  ``cuda``             bool     True           | Whether to use cuda for network        | this arg can be diff-
                                                                                                 | erent from modes
        3  ``on_policy``        bool     False          | Whether the RL algorithm is on-policy
                                                        | or off-policy
        4. ``priority``         bool     False          | Whether use priority(PER)              | priority sample,
                                                                                                 | update priority
        5  | ``priority_``      bool     False          | Whether use Importance Sampling        | IS weight
           | ``IS_weight``                              | Weight to correct biased update.
        6  | ``learn.update_``  int      20             | How many updates(iterations) to train  | this args can be vary
           | ``per_collect``                            | after collector's one collection. Only | from envs. Bigger val
                                                        | valid in serial training               | means more off-policy
        7  | ``learn.target_``  float    0.001          | Target network update momentum         | between[0,1]
           | ``update_theta``                           | parameter.
        8  | ``learn.discount`` float    0.99           | Reward's future discount factor, aka.  | may be 1 when sparse
           | ``_factor``                                | gamma                                  | reward env
        == ==================== ======== ============== ======================================== =======================
    """
    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='qtran',
        # (bool) Whether to use cuda for network.
        cuda=True,
        # (bool) Whether the RL algorithm is on-policy or off-policy.
        on_policy=False,
        # (bool) Whether use priority(priority sample, IS weight, update priority)
        priority=False,
        # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
        priority_IS_weight=False,
        learn=dict(
            update_per_collect=20,
            batch_size=32,
            learning_rate=0.0005,
            clip_value=1.5,
            # ==============================================================
            # The following configs is algorithm-specific
            # ==============================================================
            # (float) Target network update momentum parameter.
            # in [0, 1].
            target_update_theta=0.008,
            # (float) The discount factor for future rewards,
            # in [0, 1].
            discount_factor=0.99,
            # (float) the loss weight of TD-error
            td_weight=1,
            # (float) the loss weight of Opt Loss
            opt_weight=0.01,
            # (float) the loss weight of Nopt Loss
            nopt_min_weight=0.0001,
            # (bool) Whether to use double DQN mechanism(target q for surpassing over estimation)
            double_q=True,
        ),
        collect=dict(
            # (int) Only one of [n_sample, n_episode] shoule be set
            # n_sample=32 * 16,
            # (int) Cut trajectories into pieces with length "unroll_len", the length of timesteps
            # in each forward when training. In qtran, it is greater than 1 because there is RNN.
            unroll_len=10,
        ),
        eval=dict(),
        other=dict(
            eps=dict(
                # (str) Type of epsilon decay
                type='exp',
                # (float) Start value for epsilon decay, in [0, 1].
                # 0 means not use epsilon decay.
                start=1,
                # (float) Start value for epsilon decay, in [0, 1].
                end=0.05,
                # (int) Decay length(env step)
                decay=50000,
            ),
            replay_buffer=dict(
                replay_buffer_size=5000,
                # (int) The maximum reuse times of each data
                max_reuse=1e+9,
                max_staleness=1e+9,
            ),
        ),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        """
        Overview:
            Return this algorithm default model setting for demonstration.
        Returns:
            - model_info (:obj:`Tuple[str, List[str]]`): model name and mode import_names
        .. note::
            The user can define and use customized network model but must obey the same inferface definition indicated \
            by import_names path. For QTRAN, ``ding.model.qtran.qtran``
        """
        return 'qtran', ['ding.model.template.qtran']

    def _init_learn(self) -> None:
        """
        Overview:
            Learn mode init method. Called by ``self.__init__``.
            Init the learner model of QTRANPolicy
        Arguments:
            .. note::

                The _init_learn method takes the argument from the self._cfg.learn in the config file

            - learning_rate (:obj:`float`): The learning rate fo the optimizer
            - gamma (:obj:`float`): The discount factor
            - agent_num (:obj:`int`): This is a multi-agent algorithm, we need to input agent num.
            - batch_size (:obj:`int`): Need batch size info to init hidden_state plugins
        """
        self._priority = self._cfg.priority
        self._priority_IS_weight = self._cfg.priority_IS_weight
        assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in QTRAN"
        self._optimizer = RMSprop(
            params=self._model.parameters(), lr=self._cfg.learn.learning_rate, alpha=0.99, eps=0.00001
        )
        self._gamma = self._cfg.learn.discount_factor
        self._td_weight = self._cfg.learn.td_weight
        self._opt_weight = self._cfg.learn.opt_weight
        self._nopt_min_weight = self._cfg.learn.nopt_min_weight

        self._target_model = copy.deepcopy(self._model)
        self._target_model = model_wrap(
            self._target_model,
            wrapper_name='target',
            update_type='momentum',
            update_kwargs={'theta': self._cfg.learn.target_update_theta}
        )
        self._target_model = model_wrap(
            self._target_model,
            wrapper_name='hidden_state',
            state_num=self._cfg.learn.batch_size,
            init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)]
        )
        self._learn_model = model_wrap(
            self._model,
            wrapper_name='hidden_state',
            state_num=self._cfg.learn.batch_size,
            init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)]
        )
        self._learn_model.reset()
        self._target_model.reset()

    def _data_preprocess_learn(self, data: List[Any]) -> dict:
        r"""
        Overview:
            Preprocess the data to fit the required data format for learning
        Arguments:
            - data (:obj:`List[Dict[str, Any]]`): the data collected from collect function
        Returns:
            - data (:obj:`Dict[str, Any]`): the processed data, from \
                [len=B, ele={dict_key: [len=T, ele=Tensor(any_dims)]}] -> {dict_key: Tensor([T, B, any_dims])}
        """
        # data preprocess
        data = timestep_collate(data)
        if self._cuda:
            data = to_device(data, self._device)
        data['weight'] = data.get('weight', None)
        data['done'] = data['done'].float()
        return data

    def _forward_learn(self, data: dict) -> Dict[str, Any]:
        r"""
        Overview:
            Forward and backward function of learn mode.
        Arguments:
            - data (:obj:`Dict[str, Any]`): Dict type data, a batch of data for training, values are torch.Tensor or \
                np.ndarray or dict/list combinations.
        Returns:
            - info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \
                recorded in text log and tensorboard, values are python scalar or a list of scalars.
        ArgumentsKeys:
            - necessary: ``obs``, ``next_obs``, ``action``, ``reward``, ``weight``, ``prev_state``, ``done``
        ReturnsKeys:
            - necessary: ``cur_lr``, ``total_loss``
                - cur_lr (:obj:`float`): Current learning rate
                - total_loss (:obj:`float`): The calculated loss
        """
        data = self._data_preprocess_learn(data)
        # ====================
        # Q-mix forward
        # ====================
        self._learn_model.train()
        self._target_model.train()
        # for hidden_state plugin, we need to reset the main model and target model
        self._learn_model.reset(state=data['prev_state'][0])
        self._target_model.reset(state=data['prev_state'][0])
        inputs = {'obs': data['obs'], 'action': data['action']}
        learn_ret = self._learn_model.forward(inputs, single_step=False)
        total_q = learn_ret['total_q']
        vs = learn_ret['vs']
        agent_q_act = learn_ret['agent_q_act']
        logit_detach = learn_ret['logit'].clone()
        logit_detach[data['obs']['action_mask'] == 0.0] = -9999999
        logit_q, logit_action = logit_detach.max(dim=-1, keepdim=False)

        if self._cfg.learn.double_q:
            next_inputs = {'obs': data['next_obs']}
            double_q_detach = self._learn_model.forward(next_inputs, single_step=False)['logit'].clone().detach()
            _, double_q_action = double_q_detach.max(dim=-1, keepdim=False)
            next_inputs = {'obs': data['next_obs'], 'action': double_q_action}
        else:
            next_inputs = {'obs': data['next_obs']}
        with torch.no_grad():
            target_total_q = self._target_model.forward(next_inputs, single_step=False)['total_q']

        # -- TD Loss --
        td_data = v_1step_td_data(total_q, target_total_q.detach(), data['reward'], data['done'], data['weight'])
        td_loss, td_error_per_sample = v_1step_td_error(td_data, self._gamma)
        # -- TD Loss --

        # -- Opt Loss --
        if data['weight'] is None:
            weight = torch.ones_like(data['reward'])
        opt_inputs = {'obs': data['obs'], 'action': logit_action}
        max_q = self._learn_model.forward(opt_inputs, single_step=False)['total_q']
        opt_error = logit_q.sum(dim=2) - max_q.detach() + vs
        opt_loss = (opt_error ** 2 * weight).mean()
        # -- Opt Loss --

        # -- Nopt Loss --
        nopt_values = agent_q_act.sum(dim=2) - total_q.detach() + vs
        nopt_error = nopt_values.clamp(max=0)
        nopt_min_loss = (nopt_error ** 2 * weight).mean()
        # -- Nopt Loss --

        total_loss = self._td_weight * td_loss + self._opt_weight * opt_loss + self._nopt_min_weight * nopt_min_loss
        # ====================
        # Q-mix update
        # ====================
        self._optimizer.zero_grad()
        total_loss.backward()
        # just get grad_norm
        grad_norm = torch.nn.utils.clip_grad_norm_(self._model.parameters(), 10000000)
        self._optimizer.step()
        # =============
        # after update
        # =============
        self._target_model.update(self._learn_model.state_dict())
        return {
            'cur_lr': self._optimizer.defaults['lr'],
            'total_loss': total_loss.item(),
            'td_loss': td_loss.item(),
            'opt_loss': opt_loss.item(),
            'nopt_loss': nopt_min_loss.item(),
            'grad_norm': grad_norm,
        }

    def _reset_learn(self, data_id: Optional[List[int]] = None) -> None:
        r"""
        Overview:
            Reset learn model to the state indicated by data_id
        Arguments:
            - data_id (:obj:`Optional[List[int]]`): The id that store the state and we will reset\
                the model state to the state indicated by data_id
        """
        self._learn_model.reset(data_id=data_id)

    def _state_dict_learn(self) -> Dict[str, Any]:
        r"""
        Overview:
            Return the state_dict of learn mode, usually including model and optimizer.
        Returns:
            - state_dict (:obj:`Dict[str, Any]`): the dict of current policy learn state, for saving and restoring.
        """
        return {
            'model': self._learn_model.state_dict(),
            'target_model': self._target_model.state_dict(),
            'optimizer': self._optimizer.state_dict(),
        }

    def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
        r"""
        Overview:
            Load the state_dict variable into policy learn mode.
        Arguments:
            - state_dict (:obj:`Dict[str, Any]`): the dict of policy learn state saved before.
        .. tip::
            If you want to only load some parts of model, you can simply set the ``strict`` argument in \
            load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \
            complicated operation.
        """
        self._learn_model.load_state_dict(state_dict['model'])
        self._target_model.load_state_dict(state_dict['target_model'])
        self._optimizer.load_state_dict(state_dict['optimizer'])

    def _init_collect(self) -> None:
        r"""
        Overview:
            Collect mode init method. Called by ``self.__init__``.
            Init traj and unroll length, collect model.
            Enable the eps_greedy_sample and the hidden_state plugin.
        """
        self._unroll_len = self._cfg.collect.unroll_len
        self._collect_model = model_wrap(
            self._model,
            wrapper_name='hidden_state',
            state_num=self._cfg.collect.env_num,
            save_prev_state=True,
            init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)]
        )
        self._collect_model = model_wrap(self._collect_model, wrapper_name='eps_greedy_sample')
        self._collect_model.reset()

    def _forward_collect(self, data: dict, eps: float) -> dict:
        r"""
        Overview:
            Forward function for collect mode with eps_greedy
        Arguments:
            - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
                values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
            - eps (:obj:`float`): epsilon value for exploration, which is decayed by collected env step.
        Returns:
            - output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs.
        ReturnsKeys
            - necessary: ``action``
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        data = {'obs': data}
        self._collect_model.eval()
        with torch.no_grad():
            output = self._collect_model.forward(data, eps=eps, data_id=data_id)
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _reset_collect(self, data_id: Optional[List[int]] = None) -> None:
        r"""
        Overview:
            Reset collect model to the state indicated by data_id
        Arguments:
            - data_id (:obj:`Optional[List[int]]`): The id that store the state and we will reset\
                the model state to the state indicated by data_id
        """
        self._collect_model.reset(data_id=data_id)

    def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict:
        r"""
        Overview:
            Generate dict type transition data from inputs.
        Arguments:
            - obs (:obj:`Any`): Env observation
            - model_output (:obj:`dict`): Output of collect model, including at least ['action', 'prev_state']
            - timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done']\
                (here 'obs' indicates obs after env step).
        Returns:
            - transition (:obj:`dict`): Dict type transition data, including 'obs', 'next_obs', 'prev_state',\
                'action', 'reward', 'done'
        """
        transition = {
            'obs': obs,
            'next_obs': timestep.obs,
            'prev_state': model_output['prev_state'],
            'action': model_output['action'],
            'reward': timestep.reward,
            'done': timestep.done,
        }
        return transition

    def _init_eval(self) -> None:
        r"""
        Overview:
            Evaluate mode init method. Called by ``self.__init__``.
            Init eval model with argmax strategy and the hidden_state plugin.
        """
        self._eval_model = model_wrap(
            self._model,
            wrapper_name='hidden_state',
            state_num=self._cfg.eval.env_num,
            save_prev_state=True,
            init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)]
        )
        self._eval_model = model_wrap(self._eval_model, wrapper_name='argmax_sample')
        self._eval_model.reset()

    def _forward_eval(self, data: dict) -> dict:
        r"""
        Overview:
            Forward function of eval mode, similar to ``self._forward_collect``.
        Arguments:
            - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
                values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
        Returns:
            - output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env.
        ReturnsKeys
            - necessary: ``action``
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        data = {'obs': data}
        self._eval_model.eval()
        with torch.no_grad():
            output = self._eval_model.forward(data, data_id=data_id)
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _reset_eval(self, data_id: Optional[List[int]] = None) -> None:
        r"""
        Overview:
            Reset eval model to the state indicated by data_id
        Arguments:
            - data_id (:obj:`Optional[List[int]]`): The id that store the state and we will reset\
                the model state to the state indicated by data_id
        """
        self._eval_model.reset(data_id=data_id)

    def _get_train_sample(self, data: list) -> Union[None, List[Any]]:
        r"""
        Overview:
            Get the train sample from trajectory.
        Arguments:
            - data (:obj:`list`): The trajectory's cache
        Returns:
            - samples (:obj:`dict`): The training samples generated
        """
        return get_train_sample(data, self._unroll_len)

    def _monitor_vars_learn(self) -> List[str]:
        r"""
        Overview:
            Return variables' name if variables are to used in monitor.
        Returns:
            - vars (:obj:`List[str]`): Variables' name list.
        """
        return ['cur_lr', 'total_loss', 'td_loss', 'opt_loss', 'nopt_loss', 'grad_norm']