File size: 10,439 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from typing import Dict, List
import pickle
import random
import torch
import torch.nn as nn
import torch.optim as optim

from ding.utils import REWARD_MODEL_REGISTRY, one_time_warning
from .base_reward_model import BaseRewardModel


class SENet(nn.Module):
    """support estimation network"""

    def __init__(self, input_size: int, hidden_size: int, output_dims: int) -> None:
        super(SENet, self).__init__()
        self.l_1 = nn.Linear(input_size, hidden_size)
        self.l_2 = nn.Linear(hidden_size, output_dims)
        self.act = nn.Tanh()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        out = self.l_1(x)
        out = self.act(out)
        out = self.l_2(out)
        out = self.act(out)
        return out


@REWARD_MODEL_REGISTRY.register('red')
class RedRewardModel(BaseRewardModel):
    """
    Overview:
         The implement of reward model in RED (https://arxiv.org/abs/1905.06750)
    Interface:
        ``estimate``, ``train``, ``load_expert_data``, ``collect_data``, ``clear_date``, \
            ``__init__``, ``_train``
    Config:
        == ==================  =====   =============  =======================================  =======================
        ID Symbol              Type    Default Value  Description                              Other(Shape)
        == ==================  =====   =============  =======================================  =======================
        1  ``type``             str      red          | Reward model register name, refer       |
                                                      | to registry ``REWARD_MODEL_REGISTRY``   |
        2  | ``expert_data_``   str      expert_data  | Path to the expert dataset              | Should be a '.pkl'
           | ``path``                    .pkl         |                                         | file
        3  | ``sample_size``    int      1000         | sample data from expert dataset         |
                                                      | with fixed size                         |
        4  | ``sigma``          int      5            | hyperparameter of r(s,a)                | r(s,a) = exp(
                                                                                                | -sigma* L(s,a))
        5  | ``batch_size``     int      64           | Training batch size                     |
        6  | ``hidden_size``    int      128          | Linear model hidden size                |
        7  | ``update_per_``    int      100          | Number of updates per collect           |
           | ``collect``                              |                                         |
        8  | ``clear_buffer``   int      1            | clear buffer per fixed iters            | make sure replay
             ``_per_iters``                                                                     | buffer's data count
                                                                                                | isn't too few.
                                                                                                | (code work in entry)
        == ==================  =====   =============  =======================================  =======================
    Properties:
        - online_net (:obj: `SENet`): The reward model, in default initialized once as the training begins.
    """
    config = dict(
        # (str) Reward model register name, refer to registry ``REWARD_MODEL_REGISTRY``.
        type='red',
        # (int) Linear model input size.
        # input_size=4,
        # (int) Sample data from expert dataset with fixed size.
        sample_size=1000,
        # (int) Linear model hidden size.
        hidden_size=128,
        # (float) The step size of gradient descent.
        learning_rate=1e-3,
        # (int) How many updates(iterations) to train after collector's one collection.
        # Bigger "update_per_collect" means bigger off-policy.
        # collect data -> update policy-> collect data -> ...
        update_per_collect=100,
        # (str) Path to the expert dataset
        # expert_data_path='expert_data.pkl',
        # (int) How many samples in a training batch.
        batch_size=64,
        # (float) Hyperparameter at estimated score of r(s,a).
        # r(s,a) = exp(-sigma* L(s,a))
        sigma=0.5,
        # (int) Clear buffer per fixed iters.
        clear_buffer_per_iters=1,
    )

    def __init__(self, config: Dict, device: str, tb_logger: 'SummaryWriter') -> None:  # noqa
        """
        Overview:
            Initialize ``self.`` See ``help(type(self))`` for accurate signature.
        Arguments:
            - cfg (:obj:`Dict`): Training config
            - device (:obj:`str`): Device usage, i.e. "cpu" or "cuda"
            - tb_logger (:obj:`str`): Logger, defaultly set as 'SummaryWriter' for model summary
        """
        super(RedRewardModel, self).__init__()
        self.cfg: Dict = config
        self.expert_data: List[tuple] = []
        self.device = device
        assert device in ["cpu", "cuda"] or "cuda" in device
        self.tb_logger = tb_logger
        self.target_net: SENet = SENet(config.input_size, config.hidden_size, 1)
        self.online_net: SENet = SENet(config.input_size, config.hidden_size, 1)
        self.target_net.to(device)
        self.online_net.to(device)
        self.opt: optim.Adam = optim.Adam(self.online_net.parameters(), config.learning_rate)
        self.train_once_flag = False

        self.load_expert_data()

    def load_expert_data(self) -> None:
        """
        Overview:
            Getting the expert data from ``config['expert_data_path']`` attribute in self.
        Effects:
            This is a side effect function which updates the expert data attribute (e.g.  ``self.expert_data``)
        """
        with open(self.cfg.expert_data_path, 'rb') as f:
            self.expert_data = pickle.load(f)
        sample_size = min(len(self.expert_data), self.cfg.sample_size)
        self.expert_data = random.sample(self.expert_data, sample_size)
        print('the expert data size is:', len(self.expert_data))

    def _train(self, batch_data: torch.Tensor) -> float:
        """
        Overview:
            Helper function for ``train`` which caclulates loss for train data and expert data.
        Arguments:
            - batch_data (:obj:`torch.Tensor`): Data used for training
        Returns:
            - Combined loss calculated of reward model from using ``batch_data`` in both target and reward models.
        """
        with torch.no_grad():
            target = self.target_net(batch_data)
        hat: torch.Tensor = self.online_net(batch_data)
        loss: torch.Tensor = ((hat - target) ** 2).mean()
        self.opt.zero_grad()
        loss.backward()
        self.opt.step()
        return loss.item()

    def train(self) -> None:
        """
        Overview:
            Training the RED reward model. In default, RED model should be trained once.
        Effects:
            - This is a side effect function which updates the reward model and increment the train iteration count.
        """
        if self.train_once_flag:
            one_time_warning('RED model should be trained once, we do not train it anymore')
        else:
            for i in range(self.cfg.update_per_collect):
                sample_batch = random.sample(self.expert_data, self.cfg.batch_size)
                states_data = []
                actions_data = []
                for item in sample_batch:
                    states_data.append(item['obs'])
                    actions_data.append(item['action'])
                states_tensor: torch.Tensor = torch.stack(states_data).float()
                actions_tensor: torch.Tensor = torch.stack(actions_data).float()
                states_actions_tensor: torch.Tensor = torch.cat([states_tensor, actions_tensor], dim=1)
                states_actions_tensor = states_actions_tensor.to(self.device)
                loss = self._train(states_actions_tensor)
                self.tb_logger.add_scalar('reward_model/red_loss', loss, i)
            self.train_once_flag = True

    def estimate(self, data: list) -> List[Dict]:
        """
        Overview:
            Estimate reward by rewriting the reward key
        Arguments:
            - data (:obj:`list`): the list of data used for estimation, \
                with at least ``obs`` and ``action`` keys.
        Effects:
            - This is a side effect function which updates the reward values in place.
        """
        # NOTE: deepcopy reward part of data is very important,
        # otherwise the reward of data in the replay buffer will be incorrectly modified.
        train_data_augmented = self.reward_deepcopy(data)
        states_data = []
        actions_data = []
        for item in train_data_augmented:
            states_data.append(item['obs'])
            actions_data.append(item['action'])
        states_tensor = torch.stack(states_data).float()
        actions_tensor = torch.stack(actions_data).float()
        states_actions_tensor = torch.cat([states_tensor, actions_tensor], dim=1)
        states_actions_tensor = states_actions_tensor.to(self.device)
        with torch.no_grad():
            hat_1 = self.online_net(states_actions_tensor)
            hat_2 = self.target_net(states_actions_tensor)
        c = ((hat_1 - hat_2) ** 2).mean(dim=1)
        r = torch.exp(-self.cfg.sigma * c)
        for item, rew in zip(train_data_augmented, r):
            item['reward'] = rew
        return train_data_augmented

    def collect_data(self, data) -> None:
        """
        Overview:
            Collecting training data, not implemented if reward model (i.e. online_net) is only trained ones, \
                if online_net is trained continuously, there should be some implementations in collect_data method
        """
        # if online_net is trained continuously, there should be some implementations in collect_data method
        pass

    def clear_data(self):
        """
        Overview:
            Collecting clearing data, not implemented if reward model (i.e. online_net) is only trained ones, \
                if online_net is trained continuously, there should be some implementations in clear_data method
        """
        # if online_net is trained continuously, there should be some implementations in clear_data method
        pass