File size: 25,818 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 |
from typing import Iterable, Any, Optional, List
from collections.abc import Sequence
import numbers
import time
import copy
from threading import Thread
from queue import Queue
import numpy as np
import torch
import treetensor.torch as ttorch
from ding.utils.default_helper import get_shape0
def to_device(item: Any, device: str, ignore_keys: list = []) -> Any:
"""
Overview:
Transfer data to certain device.
Arguments:
- item (:obj:`Any`): The item to be transferred.
- device (:obj:`str`): The device wanted.
- ignore_keys (:obj:`list`): The keys to be ignored in transfer, default set to empty.
Returns:
- item (:obj:`Any`): The transferred item.
Examples:
>>> setup_data_dict['module'] = nn.Linear(3, 5)
>>> device = 'cuda'
>>> cuda_d = to_device(setup_data_dict, device, ignore_keys=['module'])
>>> assert cuda_d['module'].weight.device == torch.device('cpu')
Examples:
>>> setup_data_dict['module'] = nn.Linear(3, 5)
>>> device = 'cuda'
>>> cuda_d = to_device(setup_data_dict, device)
>>> assert cuda_d['module'].weight.device == torch.device('cuda:0')
.. note:
Now supports item type: :obj:`torch.nn.Module`, :obj:`torch.Tensor`, :obj:`Sequence`, \
:obj:`dict`, :obj:`numbers.Integral`, :obj:`numbers.Real`, :obj:`np.ndarray`, :obj:`str` and :obj:`None`.
"""
if isinstance(item, torch.nn.Module):
return item.to(device)
elif isinstance(item, ttorch.Tensor):
if 'prev_state' in item:
prev_state = to_device(item.prev_state, device)
del item.prev_state
item = item.to(device)
item.prev_state = prev_state
return item
else:
return item.to(device)
elif isinstance(item, torch.Tensor):
return item.to(device)
elif isinstance(item, Sequence):
if isinstance(item, str):
return item
else:
return [to_device(t, device) for t in item]
elif isinstance(item, dict):
new_item = {}
for k in item.keys():
if k in ignore_keys:
new_item[k] = item[k]
else:
new_item[k] = to_device(item[k], device)
return new_item
elif isinstance(item, numbers.Integral) or isinstance(item, numbers.Real):
return item
elif isinstance(item, np.ndarray) or isinstance(item, np.bool_):
return item
elif item is None or isinstance(item, str):
return item
elif isinstance(item, torch.distributions.Distribution): # for compatibility
return item
else:
raise TypeError("not support item type: {}".format(type(item)))
def to_dtype(item: Any, dtype: type) -> Any:
"""
Overview:
Change data to certain dtype.
Arguments:
- item (:obj:`Any`): The item for changing the dtype.
- dtype (:obj:`type`): The type wanted.
Returns:
- item (:obj:`object`): The item with changed dtype.
Examples (tensor):
>>> t = torch.randint(0, 10, (3, 5))
>>> tfloat = to_dtype(t, torch.float)
>>> assert tfloat.dtype == torch.float
Examples (list):
>>> tlist = [torch.randint(0, 10, (3, 5))]
>>> tlfloat = to_dtype(tlist, torch.float)
>>> assert tlfloat[0].dtype == torch.float
Examples (dict):
>>> tdict = {'t': torch.randint(0, 10, (3, 5))}
>>> tdictf = to_dtype(tdict, torch.float)
>>> assert tdictf['t'].dtype == torch.float
.. note:
Now supports item type: :obj:`torch.Tensor`, :obj:`Sequence`, :obj:`dict`.
"""
if isinstance(item, torch.Tensor):
return item.to(dtype=dtype)
elif isinstance(item, Sequence):
return [to_dtype(t, dtype) for t in item]
elif isinstance(item, dict):
return {k: to_dtype(item[k], dtype) for k in item.keys()}
else:
raise TypeError("not support item type: {}".format(type(item)))
def to_tensor(
item: Any, dtype: Optional[torch.dtype] = None, ignore_keys: list = [], transform_scalar: bool = True
) -> Any:
"""
Overview:
Convert ``numpy.ndarray`` object to ``torch.Tensor``.
Arguments:
- item (:obj:`Any`): The ``numpy.ndarray`` objects to be converted. It can be exactly a ``numpy.ndarray`` \
object or a container (list, tuple or dict) that contains several ``numpy.ndarray`` objects.
- dtype (:obj:`torch.dtype`): The type of wanted tensor. If set to ``None``, its dtype will be unchanged.
- ignore_keys (:obj:`list`): If the ``item`` is a dict, values whose keys are in ``ignore_keys`` will not \
be converted.
- transform_scalar (:obj:`bool`): If set to ``True``, a scalar will be also converted to a tensor object.
Returns:
- item (:obj:`Any`): The converted tensors.
Examples (scalar):
>>> i = 10
>>> t = to_tensor(i)
>>> assert t.item() == i
Examples (dict):
>>> d = {'i': i}
>>> dt = to_tensor(d, torch.int)
>>> assert dt['i'].item() == i
Examples (named tuple):
>>> data_type = namedtuple('data_type', ['x', 'y'])
>>> inputs = data_type(np.random.random(3), 4)
>>> outputs = to_tensor(inputs, torch.float32)
>>> assert type(outputs) == data_type
>>> assert isinstance(outputs.x, torch.Tensor)
>>> assert isinstance(outputs.y, torch.Tensor)
>>> assert outputs.x.dtype == torch.float32
>>> assert outputs.y.dtype == torch.float32
.. note:
Now supports item type: :obj:`dict`, :obj:`list`, :obj:`tuple` and :obj:`None`.
"""
def transform(d):
if dtype is None:
return torch.as_tensor(d)
else:
return torch.tensor(d, dtype=dtype)
if isinstance(item, dict):
new_data = {}
for k, v in item.items():
if k in ignore_keys:
new_data[k] = v
else:
new_data[k] = to_tensor(v, dtype, ignore_keys, transform_scalar)
return new_data
elif isinstance(item, list) or isinstance(item, tuple):
if len(item) == 0:
return []
elif isinstance(item[0], numbers.Integral) or isinstance(item[0], numbers.Real):
return transform(item)
elif hasattr(item, '_fields'): # namedtuple
return type(item)(*[to_tensor(t, dtype) for t in item])
else:
new_data = []
for t in item:
new_data.append(to_tensor(t, dtype, ignore_keys, transform_scalar))
return new_data
elif isinstance(item, np.ndarray):
if dtype is None:
if item.dtype == np.float64:
return torch.FloatTensor(item)
else:
return torch.from_numpy(item)
else:
return torch.from_numpy(item).to(dtype)
elif isinstance(item, bool) or isinstance(item, str):
return item
elif np.isscalar(item):
if transform_scalar:
if dtype is None:
return torch.as_tensor(item)
else:
return torch.as_tensor(item).to(dtype)
else:
return item
elif item is None:
return None
elif isinstance(item, torch.Tensor):
if dtype is None:
return item
else:
return item.to(dtype)
else:
raise TypeError("not support item type: {}".format(type(item)))
def to_ndarray(item: Any, dtype: np.dtype = None) -> Any:
"""
Overview:
Convert ``torch.Tensor`` to ``numpy.ndarray``.
Arguments:
- item (:obj:`Any`): The ``torch.Tensor`` objects to be converted. It can be exactly a ``torch.Tensor`` \
object or a container (list, tuple or dict) that contains several ``torch.Tensor`` objects.
- dtype (:obj:`np.dtype`): The type of wanted array. If set to ``None``, its dtype will be unchanged.
Returns:
- item (:obj:`object`): The changed arrays.
Examples (ndarray):
>>> t = torch.randn(3, 5)
>>> tarray1 = to_ndarray(t)
>>> assert tarray1.shape == (3, 5)
>>> assert isinstance(tarray1, np.ndarray)
Examples (list):
>>> t = [torch.randn(5, ) for i in range(3)]
>>> tarray1 = to_ndarray(t, np.float32)
>>> assert isinstance(tarray1, list)
>>> assert tarray1[0].shape == (5, )
>>> assert isinstance(tarray1[0], np.ndarray)
.. note:
Now supports item type: :obj:`torch.Tensor`, :obj:`dict`, :obj:`list`, :obj:`tuple` and :obj:`None`.
"""
def transform(d):
if dtype is None:
return np.array(d)
else:
return np.array(d, dtype=dtype)
if isinstance(item, dict):
new_data = {}
for k, v in item.items():
new_data[k] = to_ndarray(v, dtype)
return new_data
elif isinstance(item, list) or isinstance(item, tuple):
if len(item) == 0:
return None
elif isinstance(item[0], numbers.Integral) or isinstance(item[0], numbers.Real):
return transform(item)
elif hasattr(item, '_fields'): # namedtuple
return type(item)(*[to_ndarray(t, dtype) for t in item])
else:
new_data = []
for t in item:
new_data.append(to_ndarray(t, dtype))
return new_data
elif isinstance(item, torch.Tensor):
if dtype is None:
return item.numpy()
else:
return item.numpy().astype(dtype)
elif isinstance(item, np.ndarray):
if dtype is None:
return item
else:
return item.astype(dtype)
elif isinstance(item, bool) or isinstance(item, str):
return item
elif np.isscalar(item):
if dtype is None:
return np.array(item)
else:
return np.array(item, dtype=dtype)
elif item is None:
return None
else:
raise TypeError("not support item type: {}".format(type(item)))
def to_list(item: Any) -> Any:
"""
Overview:
Convert ``torch.Tensor``, ``numpy.ndarray`` objects to ``list`` objects, and keep their dtypes unchanged.
Arguments:
- item (:obj:`Any`): The item to be converted.
Returns:
- item (:obj:`Any`): The list after conversion.
Examples:
>>> data = { \
'tensor': torch.randn(4), \
'list': [True, False, False], \
'tuple': (4, 5, 6), \
'bool': True, \
'int': 10, \
'float': 10., \
'array': np.random.randn(4), \
'str': "asdf", \
'none': None, \
} \
>>> transformed_data = to_list(data)
.. note::
Now supports item type: :obj:`torch.Tensor`, :obj:`numpy.ndarray`, :obj:`dict`, :obj:`list`, \
:obj:`tuple` and :obj:`None`.
"""
if item is None:
return item
elif isinstance(item, torch.Tensor):
return item.tolist()
elif isinstance(item, np.ndarray):
return item.tolist()
elif isinstance(item, list) or isinstance(item, tuple):
return [to_list(t) for t in item]
elif isinstance(item, dict):
return {k: to_list(v) for k, v in item.items()}
elif np.isscalar(item):
return item
else:
raise TypeError("not support item type: {}".format(type(item)))
def tensor_to_list(item: Any) -> Any:
"""
Overview:
Convert ``torch.Tensor`` objects to ``list``, and keep their dtypes unchanged.
Arguments:
- item (:obj:`Any`): The item to be converted.
Returns:
- item (:obj:`Any`): The lists after conversion.
Examples (2d-tensor):
>>> t = torch.randn(3, 5)
>>> tlist1 = tensor_to_list(t)
>>> assert len(tlist1) == 3
>>> assert len(tlist1[0]) == 5
Examples (1d-tensor):
>>> t = torch.randn(3, )
>>> tlist1 = tensor_to_list(t)
>>> assert len(tlist1) == 3
Examples (list)
>>> t = [torch.randn(5, ) for i in range(3)]
>>> tlist1 = tensor_to_list(t)
>>> assert len(tlist1) == 3
>>> assert len(tlist1[0]) == 5
Examples (dict):
>>> td = {'t': torch.randn(3, 5)}
>>> tdlist1 = tensor_to_list(td)
>>> assert len(tdlist1['t']) == 3
>>> assert len(tdlist1['t'][0]) == 5
.. note::
Now supports item type: :obj:`torch.Tensor`, :obj:`dict`, :obj:`list`, :obj:`tuple` and :obj:`None`.
"""
if item is None:
return item
elif isinstance(item, torch.Tensor):
return item.tolist()
elif isinstance(item, list) or isinstance(item, tuple):
return [tensor_to_list(t) for t in item]
elif isinstance(item, dict):
return {k: tensor_to_list(v) for k, v in item.items()}
elif np.isscalar(item):
return item
else:
raise TypeError("not support item type: {}".format(type(item)))
def to_item(data: Any, ignore_error: bool = True) -> Any:
"""
Overview:
Convert data to python native scalar (i.e. data item), and keep their dtypes unchanged.
Arguments:
- data (:obj:`Any`): The data that needs to be converted.
- ignore_error (:obj:`bool`): Whether to ignore the error when the data type is not supported. That is to \
say, only the data can be transformed into a python native scalar will be returned.
Returns:
- data (:obj:`Any`): Converted data.
Examples:
>>>> data = { \
'tensor': torch.randn(1), \
'list': [True, False, torch.randn(1)], \
'tuple': (4, 5, 6), \
'bool': True, \
'int': 10, \
'float': 10., \
'array': np.random.randn(1), \
'str': "asdf", \
'none': None, \
}
>>>> new_data = to_item(data)
>>>> assert np.isscalar(new_data['tensor'])
>>>> assert np.isscalar(new_data['array'])
>>>> assert np.isscalar(new_data['list'][-1])
.. note::
Now supports item type: :obj:`torch.Tensor`, :obj:`torch.Tensor`, :obj:`ttorch.Tensor`, \
:obj:`bool`, :obj:`str`, :obj:`dict`, :obj:`list`, :obj:`tuple` and :obj:`None`.
"""
if data is None:
return data
elif isinstance(data, bool) or isinstance(data, str):
return data
elif np.isscalar(data):
return data
elif isinstance(data, np.ndarray) or isinstance(data, torch.Tensor) or isinstance(data, ttorch.Tensor):
return data.item()
elif isinstance(data, list) or isinstance(data, tuple):
return [to_item(d) for d in data]
elif isinstance(data, dict):
new_data = {}
for k, v in data.items():
if ignore_error:
try:
new_data[k] = to_item(v)
except (ValueError, RuntimeError):
pass
else:
new_data[k] = to_item(v)
return new_data
else:
raise TypeError("not support data type: {}".format(data))
def same_shape(data: list) -> bool:
"""
Overview:
Judge whether all data elements in a list have the same shapes.
Arguments:
- data (:obj:`list`): The list of data.
Returns:
- same (:obj:`bool`): Whether the list of data all have the same shape.
Examples:
>>> tlist = [torch.randn(3, 5) for i in range(5)]
>>> assert same_shape(tlist)
>>> tlist = [torch.randn(3, 5), torch.randn(4, 5)]
>>> assert not same_shape(tlist)
"""
assert (isinstance(data, list))
shapes = [t.shape for t in data]
return len(set(shapes)) == 1
class LogDict(dict):
"""
Overview:
Derived from ``dict``. Would convert ``torch.Tensor`` to ``list`` for convenient logging.
Interfaces:
``_transform``, ``__setitem__``, ``update``.
"""
def _transform(self, data: Any) -> None:
"""
Overview:
Convert tensor objects to lists for better logging.
Arguments:
- data (:obj:`Any`): The input data to be converted.
"""
if isinstance(data, torch.Tensor):
new_data = data.tolist()
else:
new_data = data
return new_data
def __setitem__(self, key: Any, value: Any) -> None:
"""
Overview:
Override the ``__setitem__`` function of built-in dict.
Arguments:
- key (:obj:`Any`): The key of the data item.
- value (:obj:`Any`): The value of the data item.
"""
new_value = self._transform(value)
super().__setitem__(key, new_value)
def update(self, data: dict) -> None:
"""
Overview:
Override the ``update`` function of built-in dict.
Arguments:
- data (:obj:`dict`): The dict for updating current object.
"""
for k, v in data.items():
self.__setitem__(k, v)
def build_log_buffer() -> LogDict:
"""
Overview:
Build log buffer, a subclass of dict, which can convert the input data into log format.
Returns:
- log_buffer (:obj:`LogDict`): Log buffer dict.
Examples:
>>> log_buffer = build_log_buffer()
>>> log_buffer['not_tensor'] = torch.randn(3)
>>> assert isinstance(log_buffer['not_tensor'], list)
>>> assert len(log_buffer['not_tensor']) == 3
>>> log_buffer.update({'not_tensor': 4, 'a': 5})
>>> assert log_buffer['not_tensor'] == 4
"""
return LogDict()
class CudaFetcher(object):
"""
Overview:
Fetch data from source, and transfer it to a specified device.
Interfaces:
``__init__``, ``__next__``, ``run``, ``close``.
"""
def __init__(self, data_source: Iterable, device: str, queue_size: int = 4, sleep: float = 0.1) -> None:
"""
Overview:
Initialize the CudaFetcher object using the given arguments.
Arguments:
- data_source (:obj:`Iterable`): The iterable data source.
- device (:obj:`str`): The device to put data to, such as "cuda:0".
- queue_size (:obj:`int`): The internal size of queue, such as 4.
- sleep (:obj:`float`): Sleeping time when the internal queue is full.
"""
self._source = data_source
self._queue = Queue(maxsize=queue_size)
self._stream = torch.cuda.Stream()
self._producer_thread = Thread(target=self._producer, args=(), name='cuda_fetcher_producer')
self._sleep = sleep
self._device = device
def __next__(self) -> Any:
"""
Overview:
Response to the request for data. Return one data item from the internal queue.
Returns:
- item (:obj:`Any`): The data item on the required device.
"""
return self._queue.get()
def run(self) -> None:
"""
Overview:
Start ``producer`` thread: Keep fetching data from source, change the device, and put into \
``queue`` for request.
Examples:
>>> timer = EasyTimer()
>>> dataloader = iter([torch.randn(3, 3) for _ in range(10)])
>>> dataloader = CudaFetcher(dataloader, device='cuda', sleep=0.1)
>>> dataloader.run()
>>> data = next(dataloader)
"""
self._end_flag = False
self._producer_thread.start()
def close(self) -> None:
"""
Overview:
Stop ``producer`` thread by setting ``end_flag`` to ``True`` .
"""
self._end_flag = True
def _producer(self) -> None:
"""
Overview:
Keep fetching data from source, change the device, and put into ``queue`` for request.
"""
with torch.cuda.stream(self._stream):
while not self._end_flag:
if self._queue.full():
time.sleep(self._sleep)
else:
data = next(self._source)
data = to_device(data, self._device)
self._queue.put(data)
def get_tensor_data(data: Any) -> Any:
"""
Overview:
Get pure tensor data from the given data (without disturbing grad computation graph).
Arguments:
- data (:obj:`Any`): The original data. It can be exactly a tensor or a container (Sequence or dict).
Returns:
- output (:obj:`Any`): The output data.
Examples:
>>> a = { \
'tensor': torch.tensor([1, 2, 3.], requires_grad=True), \
'list': [torch.tensor([1, 2, 3.], requires_grad=True) for _ in range(2)], \
'none': None \
}
>>> tensor_a = get_tensor_data(a)
>>> assert not tensor_a['tensor'].requires_grad
>>> for t in tensor_a['list']:
>>> assert not t.requires_grad
"""
if isinstance(data, torch.Tensor):
return data.data.clone()
elif data is None:
return None
elif isinstance(data, Sequence):
return [get_tensor_data(d) for d in data]
elif isinstance(data, dict):
return {k: get_tensor_data(v) for k, v in data.items()}
else:
raise TypeError("not support type in get_tensor_data: {}".format(type(data)))
def unsqueeze(data: Any, dim: int = 0) -> Any:
"""
Overview:
Unsqueeze the tensor data.
Arguments:
- data (:obj:`Any`): The original data. It can be exactly a tensor or a container (Sequence or dict).
- dim (:obj:`int`): The dimension to be unsqueezed.
Returns:
- output (:obj:`Any`): The output data.
Examples (tensor):
>>> t = torch.randn(3, 3)
>>> tt = unsqueeze(t, dim=0)
>>> assert tt.shape == torch.Shape([1, 3, 3])
Examples (list):
>>> t = [torch.randn(3, 3)]
>>> tt = unsqueeze(t, dim=0)
>>> assert tt[0].shape == torch.Shape([1, 3, 3])
Examples (dict):
>>> t = {"t": torch.randn(3, 3)}
>>> tt = unsqueeze(t, dim=0)
>>> assert tt["t"].shape == torch.Shape([1, 3, 3])
"""
if isinstance(data, torch.Tensor):
return data.unsqueeze(dim)
elif isinstance(data, Sequence):
return [unsqueeze(d) for d in data]
elif isinstance(data, dict):
return {k: unsqueeze(v, 0) for k, v in data.items()}
else:
raise TypeError("not support type in unsqueeze: {}".format(type(data)))
def squeeze(data: Any, dim: int = 0) -> Any:
"""
Overview:
Squeeze the tensor data.
Arguments:
- data (:obj:`Any`): The original data. It can be exactly a tensor or a container (Sequence or dict).
- dim (:obj:`int`): The dimension to be Squeezed.
Returns:
- output (:obj:`Any`): The output data.
Examples (tensor):
>>> t = torch.randn(1, 3, 3)
>>> tt = squeeze(t, dim=0)
>>> assert tt.shape == torch.Shape([3, 3])
Examples (list):
>>> t = [torch.randn(1, 3, 3)]
>>> tt = squeeze(t, dim=0)
>>> assert tt[0].shape == torch.Shape([3, 3])
Examples (dict):
>>> t = {"t": torch.randn(1, 3, 3)}
>>> tt = squeeze(t, dim=0)
>>> assert tt["t"].shape == torch.Shape([3, 3])
"""
if isinstance(data, torch.Tensor):
return data.squeeze(dim)
elif isinstance(data, Sequence):
return [squeeze(d) for d in data]
elif isinstance(data, dict):
return {k: squeeze(v, 0) for k, v in data.items()}
else:
raise TypeError("not support type in squeeze: {}".format(type(data)))
def get_null_data(template: Any, num: int) -> List[Any]:
"""
Overview:
Get null data given an input template.
Arguments:
- template (:obj:`Any`): The template data.
- num (:obj:`int`): The number of null data items to generate.
Returns:
- output (:obj:`List[Any]`): The generated null data.
Examples:
>>> temp = {'obs': [1, 2, 3], 'action': 1, 'done': False, 'reward': torch.tensor(1.)}
>>> null_data = get_null_data(temp, 2)
>>> assert len(null_data) ==2
>>> assert null_data[0]['null'] and null_data[0]['done']
"""
ret = []
for _ in range(num):
data = copy.deepcopy(template)
data['null'] = True
data['done'] = True
data['reward'].zero_()
ret.append(data)
return ret
def zeros_like(h: Any) -> Any:
"""
Overview:
Generate zero-tensors like the input data.
Arguments:
- h (:obj:`Any`): The original data. It can be exactly a tensor or a container (Sequence or dict).
Returns:
- output (:obj:`Any`): The output zero-tensors.
Examples (tensor):
>>> t = torch.randn(3, 3)
>>> tt = zeros_like(t)
>>> assert tt.shape == torch.Shape([3, 3])
>>> assert torch.sum(torch.abs(tt)) < 1e-8
Examples (list):
>>> t = [torch.randn(3, 3)]
>>> tt = zeros_like(t)
>>> assert tt[0].shape == torch.Shape([3, 3])
>>> assert torch.sum(torch.abs(tt[0])) < 1e-8
Examples (dict):
>>> t = {"t": torch.randn(3, 3)}
>>> tt = zeros_like(t)
>>> assert tt["t"].shape == torch.Shape([3, 3])
>>> assert torch.sum(torch.abs(tt["t"])) < 1e-8
"""
if isinstance(h, torch.Tensor):
return torch.zeros_like(h)
elif isinstance(h, (list, tuple)):
return [zeros_like(t) for t in h]
elif isinstance(h, dict):
return {k: zeros_like(v) for k, v in h.items()}
else:
raise TypeError("not support type: {}".format(h))
|