File size: 28,516 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
"""
Overview:
This file implements the core modules of GTrXL Transformer as described in
"Stabilizing Transformer for Reinforcement Learning" (https://arxiv.org/abs/1910.06764).
"""
from typing import Optional, Dict, List
import warnings
import numpy as np
import torch
import torch.nn as nn
from ding.torch_utils.network.nn_module import fc_block, build_normalization, F
class PositionalEmbedding(nn.Module):
"""
Overview:
The PositionalEmbedding module implements the positional embedding used in the vanilla Transformer model.
Interfaces:
``__init__``, ``forward``
.. note::
This implementation is adapted from https://github.com/kimiyoung/transformer-xl/blob/ \
master/pytorch/mem_transformer.py
"""
def __init__(self, embedding_dim: int):
"""
Overview:
Initialize the PositionalEmbedding module.
Arguments:
- embedding_dim: (:obj:`int`): The dimensionality of the embeddings.
"""
super(PositionalEmbedding, self).__init__()
self.embedding_dim = embedding_dim
inv_freq = 1 / (10000 ** (torch.arange(0.0, embedding_dim, 2.0) / embedding_dim)) # (embedding_dim / 2)
self.register_buffer('inv_freq', inv_freq)
def forward(self, pos_seq: torch.Tensor) -> torch.Tensor:
"""
Overview:
Compute positional embedding given a sequence of positions.
Arguments:
- pos_seq (:obj:`torch.Tensor`): The positional sequence, \
typically a 1D tensor of integers in the form of [seq_len-1, seq_len-2, ..., 1, 0],
Returns:
- pos_embedding (:obj:`torch.Tensor`): The computed positional embeddings. \
The shape of the tensor is (seq_len, 1, embedding_dim).
"""
sinusoid_inp = torch.outer(pos_seq, self.inv_freq)
# For position embedding, the order of sin/cos is negligible.
# This is because tokens are consumed by the matrix multiplication which is permutation-invariant.
pos_embedding = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
return pos_embedding.unsqueeze(1)
class GRUGatingUnit(torch.nn.Module):
"""
Overview:
The GRUGatingUnit module implements the GRU gating mechanism used in the GTrXL model.
Interfaces:
``__init__``, ``forward``
"""
def __init__(self, input_dim: int, bg: float = 2.):
"""
Overview:
Initialize the GRUGatingUnit module.
Arguments:
- input_dim (:obj:`int`): The dimensionality of the input.
- bg (:obj:`bg`): The gate bias. By setting bg > 0 we can explicitly initialize the gating mechanism to \
be close to the identity map. This can greatly improve the learning speed and stability since it \
initializes the agent close to a Markovian policy (ignore attention at the beginning).
"""
super(GRUGatingUnit, self).__init__()
self.Wr = torch.nn.Linear(input_dim, input_dim, bias=False)
self.Ur = torch.nn.Linear(input_dim, input_dim, bias=False)
self.Wz = torch.nn.Linear(input_dim, input_dim, bias=False)
self.Uz = torch.nn.Linear(input_dim, input_dim, bias=False)
self.Wg = torch.nn.Linear(input_dim, input_dim, bias=False)
self.Ug = torch.nn.Linear(input_dim, input_dim, bias=False)
self.bg = nn.Parameter(torch.full([input_dim], bg)) # bias
self.sigmoid = torch.nn.Sigmoid()
self.tanh = torch.nn.Tanh()
def forward(self, x: torch.Tensor, y: torch.Tensor):
"""
Overview:
Compute the output value using the GRU gating mechanism.
Arguments:
- x: (:obj:`torch.Tensor`): The first input tensor.
- y: (:obj:`torch.Tensor`): The second input tensor. \
x and y should have the same shape and their last dimension should match the input_dim.
Returns:
- g: (:obj:`torch.Tensor`): The output of the GRU gating mechanism. \
The shape of g matches the shapes of x and y.
"""
r = self.sigmoid(self.Wr(y) + self.Ur(x))
z = self.sigmoid(self.Wz(y) + self.Uz(x) - self.bg)
h = self.tanh(self.Wg(y) + self.Ug(torch.mul(r, x))) # element wise multiplication
g = torch.mul(1 - z, x) + torch.mul(z, h)
return g # x.shape == y.shape == g.shape
class Memory:
"""
Overview:
A class that stores the context used to add memory to Transformer.
Interfaces:
``__init__``, ``init``, ``update``, ``get``, ``to``
.. note::
For details, refer to Transformer-XL: https://arxiv.org/abs/1901.02860
"""
def __init__(
self,
memory_len: int = 20,
batch_size: int = 64,
embedding_dim: int = 256,
layer_num: int = 3,
memory: Optional[torch.Tensor] = None
) -> None:
"""
Overview:
Initialize the Memory module.
Arguments:
- memory_len (:obj:`int`): The dimension of memory, i.e., how many past observations to use as memory.
- batch_size (:obj:`int`): The dimension of each batch.
- embedding_dim (:obj:`int`): The dimension of embedding, which is the dimension of a single observation \
after embedding.
- layer_num (:obj:`int`): The number of transformer layers.
- memory (:obj:`Optional[torch.Tensor]`): The initial memory. Default is None.
"""
super(Memory, self).__init__()
self.embedding_dim = embedding_dim
self.bs = batch_size
self.layer_num = layer_num
self.memory_len = memory_len
self.memory = None
self.init(memory)
def init(self, memory: Optional[torch.Tensor] = None):
"""
Overview:
Initialize memory with an input list of tensors or create it automatically given its dimensions.
Arguments:
- memory (:obj:`Optional[torch.Tensor]`): Input memory tensor with shape \
(layer_num, memory_len, bs, embedding_dim). Its shape is (layer_num, memory_len, bs, embedding_dim), \
where memory_len is length of memory, bs is batch size and embedding_dim is the dimension of embedding.
"""
if memory is not None:
self.memory = memory
layer_num_plus1, self.memory_len, self.bs, self.embedding_dim = memory.shape
self.layer_num = layer_num_plus1 - 1
else:
self.memory = torch.zeros(
self.layer_num + 1, self.memory_len, self.bs, self.embedding_dim, dtype=torch.float
)
def update(self, hidden_state: List[torch.Tensor]):
"""
Overview:
Update the memory given a sequence of hidden states.
Example for single layer:
memory_len=3, hidden_size_len=2, bs=3
m00 m01 m02 h00 h01 h02 m20 m21 m22
m = m10 m11 m12 h = h10 h11 h12 => new_m = h00 h01 h02
m20 m21 m22 h10 h11 h12
Arguments:
- hidden_state: (:obj:`List[torch.Tensor]`): The hidden states to update the memory. \
Each tensor in the list has shape (cur_seq, bs, embedding_dim), where cur_seq \
is the length of the sequence.
Returns:
- memory: (:obj:`Optional[torch.Tensor]`): The updated memory, with shape \
(layer_num, memory_len, bs, embedding_dim).
"""
if self.memory is None or hidden_state is None:
raise ValueError('Failed to update memory! Memory would be None') # TODO add support of no memory
sequence_len = hidden_state[0].shape[0]
with torch.no_grad():
new_memory = []
end = self.memory_len + sequence_len
beg = max(0, end - self.memory_len)
for i in range(self.layer_num + 1):
m = self.memory[i]
h = hidden_state[i]
cat = torch.cat([m, h], dim=0)
new_memory.append(cat[beg:end].detach())
new_memory = torch.stack(new_memory, dim=0)
self.memory = new_memory
return new_memory
def get(self):
"""
Overview:
Get the current memory.
Returns:
- memory: (:obj:`Optional[torch.Tensor]`): The current memory, \
with shape (layer_num, memory_len, bs, embedding_dim).
"""
return self.memory
def to(self, device: str = 'cpu'):
"""
Overview:
Move the current memory to the specified device.
Arguments:
device (:obj:`str`): The device to move the memory to. Default is 'cpu'.
"""
self.memory = self.memory.to(device)
class AttentionXL(torch.nn.Module):
"""
Overview:
An implementation of the Attention mechanism used in the TransformerXL model.
Interfaces:
``__init__``, ``forward``
"""
def __init__(self, input_dim: int, head_dim: int, head_num: int, dropout: nn.Module) -> None:
"""
Overview:
Initialize the AttentionXL module.
Arguments:
- input_dim (:obj:`int`): The dimensionality of the input features.
- head_dim (:obj:`int`): The dimensionality of each attention head.
- head_num (:obj:`int`): The number of attention heads.
- dropout (:obj:`nn.Module`): The dropout layer to use
"""
super(AttentionXL, self).__init__()
self.head_num = head_num
self.head_dim = head_dim
self.dropout = dropout
self.attention_kv = fc_block(input_dim, head_dim * head_num * 2) # key, value
self.attention_q = fc_block(input_dim, head_dim * head_num) # query (not computed with past hidden states)
self.project = fc_block(head_dim * head_num, input_dim) # project attention output back to input_dim
self.project_pos = fc_block(input_dim, head_dim * head_num) # project the positional embedding
self.scale = 1 / (head_dim ** 0.5) # for scaled dot product attention
def _rel_shift(self, x: torch.Tensor, zero_upper: bool = False) -> torch.Tensor:
"""
Overview:
Perform a relative shift operation on the attention score matrix.
Example:
a00 a01 a02 0 a00 a01 a02 0 a00 a01 a02 0 a10 a02 0 0
a10 a11 a12 => 0 a10 a11 a12 => a02 0 a10 => a11 a12 0 => a11 a12 0
a20 a21 a22 0 a20 a21 a22 a11 a12 0 a20 a21 a22 a20 a21 a22
a20 a21 a22
1) Append one "column" of zeros to the left
2) Reshape the matrix from [3 x 4] into [4 x 3]
3) Remove the first "row"
4) Mask out the upper triangle (optional)
.. note::
See the following material for better understanding:
https://github.com/kimiyoung/transformer-xl/issues/8
https://arxiv.org/pdf/1901.02860.pdf (Appendix B)
Arguments:
- x (:obj:`torch.Tensor`): The input tensor with shape (cur_seq, full_seq, bs, head_num).
- zero_upper (:obj:`bool`): If True, the upper-right triangle of the matrix is set to zero.
Returns:
- x (:obj:`torch.Tensor`): The input tensor after the relative shift operation, \
with shape (cur_seq, full_seq, bs, head_num).
"""
x_padded = F.pad(x, [1, 0]) # step 1
x_padded = x_padded.view(x.size(0), x.size(1), x.size(3) + 1, x.size(2)) # step 2
x = x_padded[:, :, 1:].view_as(x) # step 3
if zero_upper:
ones = torch.ones((x.size(2), x.size(3))).unsqueeze(0).unsqueeze(0)
x = x * torch.tril(ones.to(x.device), x.size(3) - x.size(2)) # step 4
return x
def forward(
self,
inputs: torch.Tensor,
pos_embedding: torch.Tensor,
full_input: torch.Tensor,
u: torch.nn.Parameter,
v: torch.nn.Parameter,
mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Overview:
Compute the forward pass for the AttentionXL module.
Arguments:
- inputs (:obj:`torch.Tensor`): The attention input with shape (cur_seq, bs, input_dim).
- pos_embedding (:obj:`torch.Tensor`): The positional embedding with shape (full_seq, 1, full_seq).
- full_input (:obj:`torch.Tensor`): The concatenated memory and input tensor with shape \
(full_seq, bs, input_dim).
- u (:obj:`torch.nn.Parameter`): The content parameter with shape (head_num, head_dim).
- v (:obj:`torch.nn.Parameter`): The position parameter with shape (head_num, head_dim).
- mask (:obj:`Optional[torch.Tensor]`): The attention mask with shape (cur_seq, full_seq, 1). \
If None, no masking is applied.
Returns:
- output (:obj:`torch.Tensor`): The output of the attention mechanism with shape (cur_seq, bs, input_dim).
"""
bs, cur_seq, full_seq = inputs.shape[1], inputs.shape[0], full_input.shape[0]
prev_seq = full_seq - cur_seq
kv = self.attention_kv(full_input)
key, value = torch.chunk(kv, 2, dim=-1) # full_seq x bs x num_head*dim_head
query = self.attention_q(inputs) # cur_seq x bs x num_head*dim_head
r = self.project_pos(pos_embedding) # full_seq x 1 x num_head*dim_head
key = key.view(full_seq, bs, self.head_num, self.head_dim)
query = query.view(cur_seq, bs, self.head_num, self.head_dim)
value = value.view(cur_seq + prev_seq, bs, self.head_num, self.head_dim)
r = r.view(full_seq, self.head_num, self.head_dim)
# (query + u) * key^T
q_u = query + u
content_attn = q_u.permute(1, 2, 0, 3) @ key.permute(1, 2, 3, 0) # bs x head_num x cur_seq x full_seq
# (query + v) * R^T
q_v = query + v
position_attn = q_v.permute(1, 2, 0, 3) @ r.permute(1, 2, 0) # bs x head_num x cur_seq x full_seq
position_attn = self._rel_shift(position_attn)
attn = content_attn + position_attn # bs x head_num x cur_seq x full_seq
attn.mul_(self.scale)
# fills float('-inf') where mask is True to let softmax ignore those positions.
if mask is not None and mask.any().item():
mask = mask.permute(2, 0, 1).unsqueeze(1) # 1 x 1 x cur_seq x full_seq
assert mask.shape[2:] == attn.shape[2:] # check shape of mask
attn = attn.masked_fill(mask, -float("inf")).type_as(attn)
attn = F.softmax(attn, dim=-1)
attn = self.dropout(attn)
# multiply softmax output by value
attn_vec = attn @ value.permute(1, 2, 0, 3)
attn_vec = attn_vec.permute(2, 0, 1, 3)
attn_vec = attn_vec.contiguous().view(cur_seq, bs, self.head_num * self.head_dim)
# cur_seq x bs x head_num * head_dim
output = self.dropout(self.project(attn_vec)) # cur_seq x bs x input_dim
return output
class GatedTransformerXLLayer(torch.nn.Module):
"""
Overview:
This class implements the attention layer of GTrXL (Gated Transformer-XL).
Interfaces:
``__init__``, ``forward``
"""
def __init__(
self,
input_dim: int,
head_dim: int,
hidden_dim: int,
head_num: int,
mlp_num: int,
dropout: nn.Module,
activation: nn.Module,
gru_gating: bool = True,
gru_bias: float = 2.
) -> None:
"""
Overview:
Initialize GatedTransformerXLLayer.
Arguments:
- input_dim (:obj:`int`): The dimension of the input tensor.
- head_dim (:obj:`int`): The dimension of each head in the multi-head attention.
- hidden_dim (:obj:`int`): The dimension of the hidden layer in the MLP.
- head_num (:obj:`int`): The number of heads for the multi-head attention.
- mlp_num (:obj:`int`): The number of MLP layers in the attention layer.
- dropout (:obj:`nn.Module`): The dropout module used in the MLP and attention layers.
- activation (:obj:`nn.Module`): The activation function to be used in the MLP layers.
- gru_gating (:obj:`bool`, optional): Whether to use GRU gates. If False, replace GRU gates with \
residual connections. Default is True.
- gru_bias (:obj:`float`, optional): The bias of the GRU gate. Default is 2.
"""
super(GatedTransformerXLLayer, self).__init__()
self.dropout = dropout
self.gating = gru_gating
if self.gating is True:
self.gate1 = GRUGatingUnit(input_dim, gru_bias)
self.gate2 = GRUGatingUnit(input_dim, gru_bias)
self.attention = AttentionXL(
input_dim,
head_dim,
head_num,
dropout,
)
layers = []
dims = [input_dim] + [hidden_dim] * (mlp_num - 1) + [input_dim]
for i in range(mlp_num):
layers.append(fc_block(dims[i], dims[i + 1], activation=activation))
if i != mlp_num - 1:
layers.append(self.dropout)
layers.append(self.dropout)
self.mlp = nn.Sequential(*layers)
self.layernorm1 = build_normalization('LN')(input_dim)
self.layernorm2 = build_normalization('LN')(input_dim)
self.activation = activation
def forward(
self,
inputs: torch.Tensor,
pos_embedding: torch.Tensor,
u: torch.nn.Parameter,
v: torch.nn.Parameter,
memory: torch.Tensor,
mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Overview:
Compute forward pass of GTrXL layer.
Arguments:
- inputs (:obj:`torch.Tensor`): The attention input tensor of shape (cur_seq, bs, input_dim).
- pos_embedding (:obj:`torch.Tensor`): The positional embedding tensor of shape (full_seq, 1, full_seq).
- u (:obj:`torch.nn.Parameter`): The content parameter tensor of shape (head_num, head_dim).
- v (:obj:`torch.nn.Parameter`): The position parameter tensor of shape (head_num, head_dim).
- memory (:obj:`torch.Tensor`): The memory tensor of shape (prev_seq, bs, input_dim).
- mask (:obj:`Optional[torch.Tensor]`): The attention mask tensor of shape (cur_seq, full_seq, 1).
Default is None.
Returns:
- output (:obj:`torch.Tensor`): layer output of shape (cur_seq, bs, input_dim)
"""
# concat memory with input across sequence dimension
full_input = torch.cat([memory, inputs], dim=0) # full_seq x bs x input_dim
x1 = self.layernorm1(full_input)
a1 = self.dropout(self.attention(inputs, pos_embedding, x1, u, v, mask=mask))
a1 = self.activation(a1) # RELU after attention
o1 = self.gate1(inputs, a1) if self.gating else inputs + a1
x2 = self.layernorm2(o1)
m2 = self.dropout(self.mlp(x2))
o2 = self.gate2(o1, m2) if self.gating else o1 + m2
return o2
class GTrXL(nn.Module):
"""
Overview:
GTrXL Transformer implementation as described in "Stabilizing Transformer for Reinforcement Learning"
(https://arxiv.org/abs/1910.06764).
Interfaces:
``__init__``, ``forward``, ``reset_memory``, ``get_memory``
"""
def __init__(
self,
input_dim: int,
head_dim: int = 128,
embedding_dim: int = 256,
head_num: int = 2,
mlp_num: int = 2,
layer_num: int = 3,
memory_len: int = 64,
dropout_ratio: float = 0.,
activation: nn.Module = nn.ReLU(),
gru_gating: bool = True,
gru_bias: float = 2.,
use_embedding_layer: bool = True,
) -> None:
"""Overview:
Init GTrXL Model.
Arguments:
- input_dim (:obj:`int`): The dimension of the input observation.
- head_dim (:obj:`int`, optional): The dimension of each head. Default is 128.
- embedding_dim (:obj:`int`, optional): The dimension of the embedding. Default is 256.
- head_num (:obj:`int`, optional): The number of heads for multi-head attention. Default is 2.
- mlp_num (:obj:`int`, optional): The number of MLP layers in the attention layer. Default is 2.
- layer_num (:obj:`int`, optional): The number of transformer layers. Default is 3.
- memory_len (:obj:`int`, optional): The length of memory. Default is 64.
- dropout_ratio (:obj:`float`, optional): The dropout ratio. Default is 0.
- activation (:obj:`nn.Module`, optional): The activation function. Default is nn.ReLU().
- gru_gating (:obj:`bool`, optional): If False, replace GRU gates with residual connections. \
Default is True.
- gru_bias (:obj:`float`, optional): The GRU gate bias. Default is 2.0.
- use_embedding_layer (:obj:`bool`, optional): If False, don't use input embedding layer. Default is True.
Raises:
- AssertionError: If `embedding_dim` is not an even number.
"""
super(GTrXL, self).__init__()
assert embedding_dim % 2 == 0, 'embedding_dim={} should be even'.format(input_dim)
self.head_num = head_num
self.head_dim = head_dim
self.layer_num = layer_num
if isinstance(input_dim, list):
input_dim = np.prod(input_dim)
self.use_embedding_layer = use_embedding_layer
if use_embedding_layer:
self.embedding = fc_block(input_dim, embedding_dim, activation=activation)
self.activation = activation
self.pos_embedding = PositionalEmbedding(embedding_dim)
# memory to save hidden states of past segments
# it will be initialized in the forward method to get its size dynamically
self.memory = None
self.memory_len = memory_len
layers = []
dims = [embedding_dim] + [embedding_dim] * layer_num
self.dropout = nn.Dropout(dropout_ratio) if dropout_ratio > 0 else nn.Identity()
for i in range(layer_num):
layers.append(
GatedTransformerXLLayer(
dims[i], head_dim, embedding_dim, head_num, mlp_num, self.dropout, self.activation, gru_gating,
gru_bias
)
)
self.layers = nn.Sequential(*layers)
self.embedding_dim = embedding_dim
# u and v are the parameters to compute global content bias and global positional bias
self.u, self.v = (
torch.nn.Parameter(torch.zeros(self.head_num, self.head_dim)),
torch.nn.Parameter(torch.zeros(self.head_num, self.head_dim)),
)
self.att_mask = {} # create an attention mask for each different seq_len, in this way we don't need to create a
# new one each time we call the forward method
self.pos_embedding_dict = {} # create a pos embedding for each different seq_len
def reset_memory(self, batch_size: Optional[int] = None, state: Optional[torch.Tensor] = None):
"""
Overview:
Clear or set the memory of GTrXL.
Arguments:
- batch_size (:obj:`Optional[int]`): The batch size. Default is None.
- state (:obj:`Optional[torch.Tensor]`): The input memory with shape \
(layer_num, memory_len, bs, embedding_dim). Default is None.
"""
self.memory = Memory(memory_len=self.memory_len, layer_num=self.layer_num, embedding_dim=self.embedding_dim)
if batch_size is not None:
self.memory = Memory(self.memory_len, batch_size, self.embedding_dim, self.layer_num)
elif state is not None:
self.memory.init(state)
def get_memory(self):
"""
Overview:
Returns the memory of GTrXL.
Returns:
- memory (:obj:`Optional[torch.Tensor]`): The output memory or None if memory has not been initialized. \
The shape is (layer_num, memory_len, bs, embedding_dim).
"""
if self.memory is None:
return None
else:
return self.memory.get()
def forward(self, x: torch.Tensor, batch_first: bool = False, return_mem: bool = True) -> Dict[str, torch.Tensor]:
"""
Overview:
Performs a forward pass on the GTrXL.
Arguments:
- x (:obj:`torch.Tensor`): The input tensor with shape (seq_len, bs, input_size).
- batch_first (:obj:`bool`, optional): If the input data has shape (bs, seq_len, input_size), \
set this parameter to True to transpose along the first and second dimension and obtain shape \
(seq_len, bs, input_size). This does not affect the output memory. Default is False. \
- return_mem (:obj:`bool`, optional): If False, return only the output tensor without dict. Default is True.
Returns:
- x (:obj:`Dict[str, torch.Tensor]`): A dictionary containing the transformer output of shape \
(seq_len, bs, embedding_size) and memory of shape (layer_num, seq_len, bs, embedding_size).
"""
if batch_first:
x = torch.transpose(x, 1, 0) # bs x cur_seq x input_dim -> cur_seq x bs x input_dim
cur_seq, bs = x.shape[:2]
memory = None if self.memory is None else self.memory.get()
if memory is None:
self.reset_memory(bs) # (layer_num+1) x memory_len x batch_size x embedding_dim
elif memory.shape[-2] != bs or memory.shape[-1] != self.embedding_dim:
warnings.warn(
"Memory {} and Input {} dimensions don't match,"
" this will cause the memory to be initialized to fit your input!".format(
list(memory.shape[-2:]), [x.shape[-2]] + [self.embedding_dim]
)
)
self.reset_memory(bs)
self.memory.to(x.device)
memory = self.memory.get()
if self.use_embedding_layer:
x = self.dropout(self.embedding(x))
prev_seq = self.memory_len
full_seq = cur_seq + prev_seq
if cur_seq in self.att_mask.keys():
attn_mask = self.att_mask[cur_seq]
else:
attn_mask = (
torch.triu(
torch.ones((cur_seq, full_seq)),
diagonal=1 + prev_seq, # fixed in train, eval, collect
).bool().unsqueeze(-1).to(x.device)
) # cur_seq x full_seq x 1
self.att_mask[cur_seq] = attn_mask
if cur_seq in self.pos_embedding_dict.keys():
pos_embedding = self.pos_embedding_dict[cur_seq]
else:
pos_ips = torch.arange(full_seq - 1, -1, -1.0, dtype=torch.float) # full_seq
pos_embedding = self.pos_embedding(pos_ips.to(x.device))
self.pos_embedding_dict[cur_seq] = pos_embedding
pos_embedding = self.dropout(pos_embedding) # full_seq x 1 x embedding_dim
hidden_state = [x]
out = x
for i in range(self.layer_num):
layer = self.layers[i]
out = layer(
out,
pos_embedding,
self.u,
self.v,
mask=attn_mask,
memory=memory[i], # (layer_num+1) x memory_len x batch_size x embedding_dim
) # cur_seq x bs x embedding_dim
hidden_state.append(out.clone())
out = self.dropout(out)
self.memory.update(hidden_state) # (layer_num+1) x memory_len x batch_size x embedding_dim
if batch_first:
out = torch.transpose(out, 1, 0) # cur_seq x bs x embedding_dim -> bs x cur_seq x embedding_dim
if return_mem:
output = {"logit": out, "memory": memory} # return the content of the memory before the last update
else:
output = {"logit": out}
return output
|