File size: 31,434 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import xavier_normal_, kaiming_normal_, orthogonal_
from typing import Union, Tuple, List, Callable
from ding.compatibility import torch_ge_131
from .normalization import build_normalization
def weight_init_(weight: torch.Tensor, init_type: str = "xavier", activation: str = None) -> None:
"""
Overview:
Initialize weight according to the specified type.
Arguments:
- weight (:obj:`torch.Tensor`): The weight that needs to be initialized.
- init_type (:obj:`str`, optional): The type of initialization to implement, \
supports ["xavier", "kaiming", "orthogonal"].
- activation (:obj:`str`, optional): The activation function name. Recommended to use only with \
['relu', 'leaky_relu'].
"""
def xavier_init(weight, *args):
xavier_normal_(weight)
def kaiming_init(weight, activation):
assert activation is not None
if hasattr(activation, "negative_slope"):
kaiming_normal_(weight, a=activation.negative_slope)
else:
kaiming_normal_(weight, a=0)
def orthogonal_init(weight, *args):
orthogonal_(weight)
if init_type is None:
return
init_type_dict = {"xavier": xavier_init, "kaiming": kaiming_init, "orthogonal": orthogonal_init}
if init_type in init_type_dict:
init_type_dict[init_type](weight, activation)
else:
raise KeyError("Invalid Value in init type: {}".format(init_type))
def sequential_pack(layers: List[nn.Module]) -> nn.Sequential:
"""
Overview:
Pack the layers in the input list to a `nn.Sequential` module.
If there is a convolutional layer in module, an extra attribute `out_channels` will be added
to the module and set to the out_channel of the conv layer.
Arguments:
- layers (:obj:`List[nn.Module]`): The input list of layers.
Returns:
- seq (:obj:`nn.Sequential`): Packed sequential container.
"""
assert isinstance(layers, list)
seq = nn.Sequential(*layers)
for item in reversed(layers):
if isinstance(item, nn.Conv2d) or isinstance(item, nn.ConvTranspose2d):
seq.out_channels = item.out_channels
break
elif isinstance(item, nn.Conv1d):
seq.out_channels = item.out_channels
break
return seq
def conv1d_block(
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
groups: int = 1,
activation: nn.Module = None,
norm_type: str = None
) -> nn.Sequential:
"""
Overview:
Create a 1-dimensional convolution layer with activation and normalization.
Arguments:
- in_channels (:obj:`int`): Number of channels in the input tensor.
- out_channels (:obj:`int`): Number of channels in the output tensor.
- kernel_size (:obj:`int`): Size of the convolving kernel.
- stride (:obj:`int`, optional): Stride of the convolution. Default is 1.
- padding (:obj:`int`, optional): Zero-padding added to both sides of the input. Default is 0.
- dilation (:obj:`int`, optional): Spacing between kernel elements. Default is 1.
- groups (:obj:`int`, optional): Number of blocked connections from input channels to output channels. \
Default is 1.
- activation (:obj:`nn.Module`, optional): The optional activation function.
- norm_type (:obj:`str`, optional): Type of the normalization.
Returns:
- block (:obj:`nn.Sequential`): A sequential list containing the torch layers of the 1-dimensional \
convolution layer.
.. note::
Conv1d (https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv1d)
"""
block = []
block.append(nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups))
if norm_type is not None:
block.append(build_normalization(norm_type, dim=1)(out_channels))
if activation is not None:
block.append(activation)
return sequential_pack(block)
def conv2d_block(
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
groups: int = 1,
pad_type: str = 'zero',
activation: nn.Module = None,
norm_type: str = None,
num_groups_for_gn: int = 1,
bias: bool = True
) -> nn.Sequential:
"""
Overview:
Create a 2-dimensional convolution layer with activation and normalization.
Arguments:
- in_channels (:obj:`int`): Number of channels in the input tensor.
- out_channels (:obj:`int`): Number of channels in the output tensor.
- kernel_size (:obj:`int`): Size of the convolving kernel.
- stride (:obj:`int`, optional): Stride of the convolution. Default is 1.
- padding (:obj:`int`, optional): Zero-padding added to both sides of the input. Default is 0.
- dilation (:obj:`int`): Spacing between kernel elements.
- groups (:obj:`int`, optional): Number of blocked connections from input channels to output channels. \
Default is 1.
- pad_type (:obj:`str`, optional): The way to add padding, include ['zero', 'reflect', 'replicate']. \
Default is 'zero'.
- activation (:obj:`nn.Module`): the optional activation function.
- norm_type (:obj:`str`): The type of the normalization, now support ['BN', 'LN', 'IN', 'GN', 'SyncBN'], \
default set to None, which means no normalization.
- num_groups_for_gn (:obj:`int`): Number of groups for GroupNorm.
- bias (:obj:`bool`): whether to add a learnable bias to the nn.Conv2d. Default is True.
Returns:
- block (:obj:`nn.Sequential`): A sequential list containing the torch layers of the 2-dimensional \
convolution layer.
.. note::
Conv2d (https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d)
"""
block = []
assert pad_type in ['zero', 'reflect', 'replication'], "invalid padding type: {}".format(pad_type)
if pad_type == 'zero':
pass
elif pad_type == 'reflect':
block.append(nn.ReflectionPad2d(padding))
padding = 0
elif pad_type == 'replication':
block.append(nn.ReplicationPad2d(padding))
padding = 0
block.append(
nn.Conv2d(
in_channels,
out_channels,
kernel_size,
stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias
)
)
if norm_type is not None:
if norm_type == 'LN':
# LN is implemented as GroupNorm with 1 group.
block.append(nn.GroupNorm(1, out_channels))
elif norm_type == 'GN':
block.append(nn.GroupNorm(num_groups_for_gn, out_channels))
elif norm_type in ['BN', 'IN', 'SyncBN']:
block.append(build_normalization(norm_type, dim=2)(out_channels))
else:
raise KeyError(
"Invalid value in norm_type: {}. The valid norm_type are "
"BN, LN, IN, GN and SyncBN.".format(norm_type)
)
if activation is not None:
block.append(activation)
return sequential_pack(block)
def deconv2d_block(
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: int = 0,
output_padding: int = 0,
groups: int = 1,
activation: int = None,
norm_type: int = None
) -> nn.Sequential:
"""
Overview:
Create a 2-dimensional transpose convolution layer with activation and normalization.
Arguments:
- in_channels (:obj:`int`): Number of channels in the input tensor.
- out_channels (:obj:`int`): Number of channels in the output tensor.
- kernel_size (:obj:`int`): Size of the convolving kernel.
- stride (:obj:`int`, optional): Stride of the convolution. Default is 1.
- padding (:obj:`int`, optional): Zero-padding added to both sides of the input. Default is 0.
- output_padding (:obj:`int`, optional): Additional size added to one side of the output shape. Default is 0.
- groups (:obj:`int`, optional): Number of blocked connections from input channels to output channels. \
Default is 1.
- activation (:obj:`int`, optional): The optional activation function.
- norm_type (:obj:`int`, optional): Type of the normalization.
Returns:
- block (:obj:`nn.Sequential`): A sequential list containing the torch layers of the 2-dimensional \
transpose convolution layer.
.. note::
ConvTranspose2d (https://pytorch.org/docs/master/generated/torch.nn.ConvTranspose2d.html)
"""
block = [
nn.ConvTranspose2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
output_padding=output_padding,
groups=groups
)
]
if norm_type is not None:
block.append(build_normalization(norm_type, dim=2)(out_channels))
if activation is not None:
block.append(activation)
return sequential_pack(block)
def fc_block(
in_channels: int,
out_channels: int,
activation: nn.Module = None,
norm_type: str = None,
use_dropout: bool = False,
dropout_probability: float = 0.5
) -> nn.Sequential:
"""
Overview:
Create a fully-connected block with activation, normalization, and dropout.
Optional normalization can be done to the dim 1 (across the channels).
x -> fc -> norm -> act -> dropout -> out
Arguments:
- in_channels (:obj:`int`): Number of channels in the input tensor.
- out_channels (:obj:`int`): Number of channels in the output tensor.
- activation (:obj:`nn.Module`, optional): The optional activation function.
- norm_type (:obj:`str`, optional): Type of the normalization.
- use_dropout (:obj:`bool`, optional): Whether to use dropout in the fully-connected block. Default is False.
- dropout_probability (:obj:`float`, optional): Probability of an element to be zeroed in the dropout. \
Default is 0.5.
Returns:
- block (:obj:`nn.Sequential`): A sequential list containing the torch layers of the fully-connected block.
.. note::
You can refer to nn.linear (https://pytorch.org/docs/master/generated/torch.nn.Linear.html).
"""
block = []
block.append(nn.Linear(in_channels, out_channels))
if norm_type is not None:
block.append(build_normalization(norm_type, dim=1)(out_channels))
if activation is not None:
block.append(activation)
if use_dropout:
block.append(nn.Dropout(dropout_probability))
return sequential_pack(block)
def normed_linear(
in_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=None,
scale: float = 1.0
) -> nn.Linear:
"""
Overview:
Create a nn.Linear module but with normalized fan-in init.
Arguments:
- in_features (:obj:`int`): Number of features in the input tensor.
- out_features (:obj:`int`): Number of features in the output tensor.
- bias (:obj:`bool`, optional): Whether to add a learnable bias to the nn.Linear. Default is True.
- device (:obj:`torch.device`, optional): The device to put the created module on. Default is None.
- dtype (:obj:`torch.dtype`, optional): The desired data type of created module. Default is None.
- scale (:obj:`float`, optional): The scale factor for initialization. Default is 1.0.
Returns:
- out (:obj:`nn.Linear`): A nn.Linear module with normalized fan-in init.
"""
out = nn.Linear(in_features, out_features, bias)
out.weight.data *= scale / out.weight.norm(dim=1, p=2, keepdim=True)
if bias:
out.bias.data.zero_()
return out
def normed_conv2d(
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]],
stride: Union[int, Tuple[int, int]] = 1,
padding: Union[int, Tuple[int, int]] = 0,
dilation: Union[int, Tuple[int, int]] = 1,
groups: int = 1,
bias: bool = True,
padding_mode: str = 'zeros',
device=None,
dtype=None,
scale: float = 1
) -> nn.Conv2d:
"""
Overview:
Create a nn.Conv2d module but with normalized fan-in init.
Arguments:
- in_channels (:obj:`int`): Number of channels in the input tensor.
- out_channels (:obj:`int`): Number of channels in the output tensor.
- kernel_size (:obj:`Union[int, Tuple[int, int]]`): Size of the convolving kernel.
- stride (:obj:`Union[int, Tuple[int, int]]`, optional): Stride of the convolution. Default is 1.
- padding (:obj:`Union[int, Tuple[int, int]]`, optional): Zero-padding added to both sides of the input. \
Default is 0.
- dilation (:`Union[int, Tuple[int, int]]`, optional): Spacing between kernel elements. Default is 1.
- groups (:obj:`int`, optional): Number of blocked connections from input channels to output channels. \
Default is 1.
- bias (:obj:`bool`, optional): Whether to add a learnable bias to the nn.Conv2d. Default is True.
- padding_mode (:obj:`str`, optional): The type of padding algorithm to use. Default is 'zeros'.
- device (:obj:`torch.device`, optional): The device to put the created module on. Default is None.
- dtype (:obj:`torch.dtype`, optional): The desired data type of created module. Default is None.
- scale (:obj:`float`, optional): The scale factor for initialization. Default is 1.
Returns:
- out (:obj:`nn.Conv2d`): A nn.Conv2d module with normalized fan-in init.
"""
out = nn.Conv2d(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
padding_mode,
)
out.weight.data *= scale / out.weight.norm(dim=(1, 2, 3), p=2, keepdim=True)
if bias:
out.bias.data.zero_()
return out
def MLP(
in_channels: int,
hidden_channels: int,
out_channels: int,
layer_num: int,
layer_fn: Callable = None,
activation: nn.Module = None,
norm_type: str = None,
use_dropout: bool = False,
dropout_probability: float = 0.5,
output_activation: bool = True,
output_norm: bool = True,
last_linear_layer_init_zero: bool = False
):
"""
Overview:
Create a multi-layer perceptron using fully-connected blocks with activation, normalization, and dropout,
optional normalization can be done to the dim 1 (across the channels).
x -> fc -> norm -> act -> dropout -> out
Arguments:
- in_channels (:obj:`int`): Number of channels in the input tensor.
- hidden_channels (:obj:`int`): Number of channels in the hidden tensor.
- out_channels (:obj:`int`): Number of channels in the output tensor.
- layer_num (:obj:`int`): Number of layers.
- layer_fn (:obj:`Callable`, optional): Layer function.
- activation (:obj:`nn.Module`, optional): The optional activation function.
- norm_type (:obj:`str`, optional): The type of the normalization.
- use_dropout (:obj:`bool`, optional): Whether to use dropout in the fully-connected block. Default is False.
- dropout_probability (:obj:`float`, optional): Probability of an element to be zeroed in the dropout. \
Default is 0.5.
- output_activation (:obj:`bool`, optional): Whether to use activation in the output layer. If True, \
we use the same activation as front layers. Default is True.
- output_norm (:obj:`bool`, optional): Whether to use normalization in the output layer. If True, \
we use the same normalization as front layers. Default is True.
- last_linear_layer_init_zero (:obj:`bool`, optional): Whether to use zero initializations for the last \
linear layer (including w and b), which can provide stable zero outputs in the beginning, \
usually used in the policy network in RL settings.
Returns:
- block (:obj:`nn.Sequential`): A sequential list containing the torch layers of the multi-layer perceptron.
.. note::
you can refer to nn.linear (https://pytorch.org/docs/master/generated/torch.nn.Linear.html).
"""
assert layer_num >= 0, layer_num
if layer_num == 0:
return sequential_pack([nn.Identity()])
channels = [in_channels] + [hidden_channels] * (layer_num - 1) + [out_channels]
if layer_fn is None:
layer_fn = nn.Linear
block = []
for i, (in_channels, out_channels) in enumerate(zip(channels[:-2], channels[1:-1])):
block.append(layer_fn(in_channels, out_channels))
if norm_type is not None:
block.append(build_normalization(norm_type, dim=1)(out_channels))
if activation is not None:
block.append(activation)
if use_dropout:
block.append(nn.Dropout(dropout_probability))
# The last layer
in_channels = channels[-2]
out_channels = channels[-1]
block.append(layer_fn(in_channels, out_channels))
"""
In the final layer of a neural network, whether to use normalization and activation are typically determined
based on user specifications. These specifications depend on the problem at hand and the desired properties of
the model's output.
"""
if output_norm is True:
# The last layer uses the same norm as front layers.
if norm_type is not None:
block.append(build_normalization(norm_type, dim=1)(out_channels))
if output_activation is True:
# The last layer uses the same activation as front layers.
if activation is not None:
block.append(activation)
if use_dropout:
block.append(nn.Dropout(dropout_probability))
if last_linear_layer_init_zero:
# Locate the last linear layer and initialize its weights and biases to 0.
for _, layer in enumerate(reversed(block)):
if isinstance(layer, nn.Linear):
nn.init.zeros_(layer.weight)
nn.init.zeros_(layer.bias)
break
return sequential_pack(block)
class ChannelShuffle(nn.Module):
"""
Overview:
Apply channel shuffle to the input tensor. For more details about the channel shuffle,
please refer to the 'ShuffleNet' paper: https://arxiv.org/abs/1707.01083
Interfaces:
``__init__``, ``forward``
"""
def __init__(self, group_num: int) -> None:
"""
Overview:
Initialize the ChannelShuffle class.
Arguments:
- group_num (:obj:`int`): The number of groups to exchange.
"""
super().__init__()
self.group_num = group_num
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
Forward pass through the ChannelShuffle module.
Arguments:
- x (:obj:`torch.Tensor`): The input tensor.
Returns:
- x (:obj:`torch.Tensor`): The shuffled input tensor.
"""
b, c, h, w = x.shape
g = self.group_num
assert (c % g == 0)
x = x.view(b, g, c // g, h, w).permute(0, 2, 1, 3, 4).contiguous().view(b, c, h, w)
return x
def one_hot(val: torch.LongTensor, num: int, num_first: bool = False) -> torch.FloatTensor:
"""
Overview:
Convert a torch.LongTensor to one-hot encoding. This implementation can be slightly faster than
``torch.nn.functional.one_hot``.
Arguments:
- val (:obj:`torch.LongTensor`): Each element contains the state to be encoded, the range should be [0, num-1]
- num (:obj:`int`): Number of states of the one-hot encoding
- num_first (:obj:`bool`, optional): If False, the one-hot encoding is added as the last dimension; otherwise, \
it is added as the first dimension. Default is False.
Returns:
- one_hot (:obj:`torch.FloatTensor`): The one-hot encoded tensor.
Example:
>>> one_hot(2*torch.ones([2,2]).long(),3)
tensor([[[0., 0., 1.],
[0., 0., 1.]],
[[0., 0., 1.],
[0., 0., 1.]]])
>>> one_hot(2*torch.ones([2,2]).long(),3,num_first=True)
tensor([[[0., 0.], [1., 0.]],
[[0., 1.], [0., 0.]],
[[1., 0.], [0., 1.]]])
"""
assert (isinstance(val, torch.Tensor)), type(val)
assert val.dtype == torch.long
assert (len(val.shape) >= 1)
old_shape = val.shape
val_reshape = val.reshape(-1, 1)
ret = torch.zeros(val_reshape.shape[0], num, device=val.device)
# To remember the location where the original value is -1 in val.
# If the value is -1, then it should be converted to all zeros encodings and
# the corresponding entry in index_neg_one is 1, which is used to transform
# the ret after the operation of ret.scatter_(1, val_reshape, 1) to their correct encodings bellowing
index_neg_one = torch.eq(val_reshape, -1).float()
if index_neg_one.sum() != 0: # if -1 exists in val
# convert the original value -1 to 0
val_reshape = torch.where(
val_reshape != -1, val_reshape,
torch.zeros(val_reshape.shape, device=val.device).long()
)
try:
ret.scatter_(1, val_reshape, 1)
if index_neg_one.sum() != 0: # if -1 exists in val
ret = ret * (1 - index_neg_one) # change -1's encoding from [1,0,...,0] to [0,0,...,0]
except RuntimeError:
raise RuntimeError('value: {}\nnum: {}\t:val_shape: {}\n'.format(val_reshape, num, val_reshape.shape))
if num_first:
return ret.permute(1, 0).reshape(num, *old_shape)
else:
return ret.reshape(*old_shape, num)
class NearestUpsample(nn.Module):
"""
Overview:
This module upsamples the input to the given scale_factor using the nearest mode.
Interfaces:
``__init__``, ``forward``
"""
def __init__(self, scale_factor: Union[float, List[float]]) -> None:
"""
Overview:
Initialize the NearestUpsample class.
Arguments:
- scale_factor (:obj:`Union[float, List[float]]`): The multiplier for the spatial size.
"""
super(NearestUpsample, self).__init__()
self.scale_factor = scale_factor
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
Return the upsampled input tensor.
Arguments:
- x (:obj:`torch.Tensor`): The input tensor.
Returns:
- upsample(:obj:`torch.Tensor`): The upsampled input tensor.
"""
return F.interpolate(x, scale_factor=self.scale_factor, mode='nearest')
class BilinearUpsample(nn.Module):
"""
Overview:
This module upsamples the input to the given scale_factor using the bilinear mode.
Interfaces:
``__init__``, ``forward``
"""
def __init__(self, scale_factor: Union[float, List[float]]) -> None:
"""
Overview:
Initialize the BilinearUpsample class.
Arguments:
- scale_factor (:obj:`Union[float, List[float]]`): The multiplier for the spatial size.
"""
super(BilinearUpsample, self).__init__()
self.scale_factor = scale_factor
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
Return the upsampled input tensor.
Arguments:
- x (:obj:`torch.Tensor`): The input tensor.
Returns:
- upsample(:obj:`torch.Tensor`): The upsampled input tensor.
"""
return F.interpolate(x, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
def binary_encode(y: torch.Tensor, max_val: torch.Tensor) -> torch.Tensor:
"""
Overview:
Convert elements in a tensor to its binary representation.
Arguments:
- y (:obj:`torch.Tensor`): The tensor to be converted into its binary representation.
- max_val (:obj:`torch.Tensor`): The maximum value of the elements in the tensor.
Returns:
- binary (:obj:`torch.Tensor`): The input tensor in its binary representation.
Example:
>>> binary_encode(torch.tensor([3,2]),torch.tensor(8))
tensor([[0, 0, 1, 1],[0, 0, 1, 0]])
"""
assert (max_val > 0)
x = y.clamp(0, max_val)
L = int(math.log(max_val, 2)) + 1
binary = []
one = torch.ones_like(x)
zero = torch.zeros_like(x)
for i in range(L):
num = 1 << (L - i - 1) # 2**(L-i-1)
bit = torch.where(x >= num, one, zero)
x -= bit * num
binary.append(bit)
return torch.stack(binary, dim=1)
class NoiseLinearLayer(nn.Module):
"""
Overview:
This is a linear layer with random noise.
Interfaces:
``__init__``, ``reset_noise``, ``reset_parameters``, ``forward``
"""
def __init__(self, in_channels: int, out_channels: int, sigma0: int = 0.4) -> None:
"""
Overview:
Initialize the NoiseLinearLayer class.
Arguments:
- in_channels (:obj:`int`): Number of channels in the input tensor.
- out_channels (:obj:`int`): Number of channels in the output tensor.
- sigma0 (:obj:`int`, optional): Default noise volume when initializing NoiseLinearLayer. \
Default is 0.4.
"""
super(NoiseLinearLayer, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.weight_mu = nn.Parameter(torch.Tensor(out_channels, in_channels))
self.weight_sigma = nn.Parameter(torch.Tensor(out_channels, in_channels))
self.bias_mu = nn.Parameter(torch.Tensor(out_channels))
self.bias_sigma = nn.Parameter(torch.Tensor(out_channels))
self.register_buffer("weight_eps", torch.empty(out_channels, in_channels))
self.register_buffer("bias_eps", torch.empty(out_channels))
self.sigma0 = sigma0
self.reset_parameters()
self.reset_noise()
def _scale_noise(self, size: Union[int, Tuple]):
"""
Overview:
Scale the noise.
Arguments:
- size (:obj:`Union[int, Tuple]`): The size of the noise.
"""
x = torch.randn(size)
x = x.sign().mul(x.abs().sqrt())
return x
def reset_noise(self):
"""
Overview:
Reset the noise settings in the layer.
"""
is_cuda = self.weight_mu.is_cuda
in_noise = self._scale_noise(self.in_channels).to(torch.device("cuda" if is_cuda else "cpu"))
out_noise = self._scale_noise(self.out_channels).to(torch.device("cuda" if is_cuda else "cpu"))
self.weight_eps = out_noise.ger(in_noise)
self.bias_eps = out_noise
def reset_parameters(self):
"""
Overview:
Reset the parameters in the layer.
"""
stdv = 1. / math.sqrt(self.in_channels)
self.weight_mu.data.uniform_(-stdv, stdv)
self.bias_mu.data.uniform_(-stdv, stdv)
std_weight = self.sigma0 / math.sqrt(self.in_channels)
self.weight_sigma.data.fill_(std_weight)
std_bias = self.sigma0 / math.sqrt(self.out_channels)
self.bias_sigma.data.fill_(std_bias)
def forward(self, x: torch.Tensor):
"""
Overview:
Perform the forward pass with noise.
Arguments:
- x (:obj:`torch.Tensor`): The input tensor.
Returns:
- output (:obj:`torch.Tensor`): The output tensor with noise.
"""
if self.training:
return F.linear(
x,
self.weight_mu + self.weight_sigma * self.weight_eps,
self.bias_mu + self.bias_sigma * self.bias_eps,
)
else:
return F.linear(x, self.weight_mu, self.bias_mu)
def noise_block(
in_channels: int,
out_channels: int,
activation: str = None,
norm_type: str = None,
use_dropout: bool = False,
dropout_probability: float = 0.5,
sigma0: float = 0.4
):
"""
Overview:
Create a fully-connected noise layer with activation, normalization, and dropout.
Optional normalization can be done to the dim 1 (across the channels).
Arguments:
- in_channels (:obj:`int`): Number of channels in the input tensor.
- out_channels (:obj:`int`): Number of channels in the output tensor.
- activation (:obj:`str`, optional): The optional activation function. Default is None.
- norm_type (:obj:`str`, optional): Type of normalization. Default is None.
- use_dropout (:obj:`bool`, optional): Whether to use dropout in the fully-connected block.
- dropout_probability (:obj:`float`, optional): Probability of an element to be zeroed in the dropout. \
Default is 0.5.
- sigma0 (:obj:`float`, optional): The sigma0 is the default noise volume when initializing NoiseLinearLayer. \
Default is 0.4.
Returns:
- block (:obj:`nn.Sequential`): A sequential list containing the torch layers of the fully-connected block.
"""
block = [NoiseLinearLayer(in_channels, out_channels, sigma0=sigma0)]
if norm_type is not None:
block.append(build_normalization(norm_type, dim=1)(out_channels))
if activation is not None:
block.append(activation)
if use_dropout:
block.append(nn.Dropout(dropout_probability))
return sequential_pack(block)
class NaiveFlatten(nn.Module):
"""
Overview:
This module is a naive implementation of the flatten operation.
Interfaces:
``__init__``, ``forward``
"""
def __init__(self, start_dim: int = 1, end_dim: int = -1) -> None:
"""
Overview:
Initialize the NaiveFlatten class.
Arguments:
- start_dim (:obj:`int`, optional): The first dimension to flatten. Default is 1.
- end_dim (:obj:`int`, optional): The last dimension to flatten. Default is -1.
"""
super(NaiveFlatten, self).__init__()
self.start_dim = start_dim
self.end_dim = end_dim
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
Perform the flatten operation on the input tensor.
Arguments:
- x (:obj:`torch.Tensor`): The input tensor.
Returns:
- output (:obj:`torch.Tensor`): The flattened output tensor.
"""
if self.end_dim != -1:
return x.view(*x.shape[:self.start_dim], -1, *x.shape[self.end_dim + 1:])
else:
return x.view(*x.shape[:self.start_dim], -1)
if torch_ge_131():
Flatten = nn.Flatten
else:
Flatten = NaiveFlatten
|