File size: 13,378 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
from typing import Union, Optional
import traceback
import numbers
import copy
import time
from functools import reduce
from threading import Thread
from easydict import EasyDict
from ding.interaction import Master, Slave, TaskFail
from ding.interaction.master.task import TaskStatus
from ding.utils import build_logger, get_operator_server_kwargs, exist_operator_server
from ..coordinator.operator_server import OperatorServer
class LearnerAggregatorSlave(Slave):
"""
Overview:
A slave, whose master is coordinator.
"""
def __init__(self, *args, callback_fn: Optional[dict] = None, **kwargs) -> None:
"""
Overview:
Init callback functions additionally. Callback functions are methods in ``LearnerAggregator``.
As for callback mechanisim, you can refer to ``worker/learner/comm/flask_fs_learner.py`` for help.
"""
super().__init__(*args, **kwargs)
self._callback_fn = callback_fn
def _process_task(self, task: dict) -> Union[dict, TaskFail]:
"""
Overview:
Process a task according to input task info dict, which is passed in by coordinator's master.
For each type of task, you can refer to corresponding callback function in
``LearnerAggregator`` for details.
Arguments:
- cfg (:obj:`EasyDict`): Task dict. Must contain key "name".
Returns:
- result (:obj:`Union[dict, TaskFail]`): Task result dict, or task fail exception.
"""
task_name = task['name']
if task_name == 'resource':
return self._callback_fn['deal_with_get_resource']()
elif task_name == 'learner_start_task':
return self._callback_fn['deal_with_learner_start'](task)
elif task_name == 'learner_get_data_task':
return self._callback_fn['deal_with_get_data'](task)
elif task_name == 'learner_learn_task':
return self._callback_fn['deal_with_learn'](task)
else:
raise TaskFail(result={'message': 'task name error'}, message='illegal learner task <{}>'.format(task_name))
class LearnerAggregator(object):
"""
Overview:
Aggregate multiple learners.
Interfaces:
__init__, start, close, merge_info
"""
def __init__(self, cfg: dict) -> None:
"""
Overview:
Init method.
Arguments:
- cfg (:obj:`EasyDict`): Config dict.
"""
self._cfg = cfg
callback_fn = {
'deal_with_get_resource': self.deal_with_get_resource,
'deal_with_learner_start': self.deal_with_learner_start,
'deal_with_get_data': self.deal_with_get_data,
'deal_with_learn': self.deal_with_learn,
}
host, port = cfg.slave.host, cfg.slave.port
self._slave = LearnerAggregatorSlave(host, port, callback_fn=callback_fn)
self._logger, _ = build_logger(path='./log', name='learner_aggregator', need_tb=False)
self._end_flag = True
self._max_retry_second = 60
# ``_world_size`` indicates how many learners are connected;
# And ``_learner_connection`` lists those connections in dict type.
self._world_size = 0
self._learner_connection = {}
# create operator server
if exist_operator_server():
# get from default or env vars
server_kwargs = get_operator_server_kwargs(EasyDict({}))
self._operator_server = OperatorServer(**server_kwargs)
self._operator_server.set_worker_type('aggregator')
else:
self._operator_server = None
# failed connection
self._failed_learner_conn = set()
def start(self) -> None:
"""
Overview:
Start the aggregator. Set up a master and build connections with all learners within max retry time.
"""
self._end_flag = False
try:
self._slave.start()
except Exception as e:
self._logger.error(
"learner_aggregator slave start error:\n" + ''.join(traceback.format_tb(e.__traceback__)) + repr(e)
)
return
try:
self._master = Master(self._cfg.master.host, self._cfg.master.port)
self._master.start()
self._master.ping()
except Exception as e:
self._logger.error(
"learner_aggregator master start error:\n" + ''.join(traceback.format_tb(e.__traceback__)) + repr(e)
)
return
self._world_size = 0
for _, (learner_id, learner_host, learner_port) in self._cfg.learner.items():
self._new_connection_learner(learner_id, learner_host, int(learner_port))
if self._operator_server:
self._init_conn_flag = False
# create sync learner thread
self._period_sync_with_server_thread = Thread(
target=self._period_sync_with_server, name="period_sync", daemon=True
)
self._period_sync_with_server_thread.start()
start_time = time.time()
while time.time() - start_time <= self._max_retry_second and not self._end_flag:
if not self._init_conn_flag:
time.sleep(0.2)
# Exceeds max retry time and no learner connection found.
if len(self._learner_connection) == 0:
self._logger.error("learner_aggregator master max retries failed")
else:
self._logger.info("learner aggregator is started")
def close(self) -> None:
"""
Overview:
Close aggregator slave, connections with learners, and master.
"""
if self._end_flag:
return
self._end_flag = True
try:
self._slave.close()
for _, conn in self._learner_connection.items():
conn.disconnect()
assert not conn.is_connected
self._master.close()
except Exception: # Ignore close exception.
pass
def deal_with_get_resource(self) -> dict:
return {'gpu': self._world_size}
def deal_with_learner_start(self, task: dict) -> dict:
if len(self._learner_connection) == 0:
raise TaskFail(message='no connected learner', result={'message': 'no connected learner'})
name = task['name']
start_task = {}
for k, v in self._learner_connection.items():
start_task[k] = v.new_task({'name': name, 'task_info': task['task_info']})
start_task[k].start()
for k, v in start_task.items():
v.join()
task_status = [v.status for v in start_task.values()]
if any([s != TaskStatus.COMPLETED for s in task_status]):
# TODO(nyz) dynamic learner gpu add/remove
message = "one of learner can't start_task"
raise TaskFail(message=message, result={'message': message})
return {'message': 'learner task has started'}
def deal_with_get_data(self, task: dict) -> dict:
data_task = {}
for k, v in self._learner_connection.items():
data_task[k] = v.new_task({'name': task['name']})
data_task[k].start()
for k, v in data_task.items():
v.join()
# TODO deal with task fail
self._data_demand = {k: v.result for k, v in data_task.items()}
demand_list = list(self._data_demand.values())
# Merge data demand info by adding up all learners' demand batch size.
merged_demand = copy.deepcopy(demand_list[0])
merged_demand['batch_size'] = sum([d['batch_size'] for d in demand_list])
return merged_demand
def deal_with_learn(self, task: dict) -> dict:
learn_task = {}
merged_data = task['data']
# Split training data for each learner according to ``self._data_demand``.
split_data = []
start = 0
for item in self._data_demand.values():
end = item['batch_size'] + start
split_data.append(merged_data[start:end])
start = end
for (k, v), d in zip(self._learner_connection.items(), split_data):
learn_task[k] = v.new_task({'name': task['name'], 'data': d})
learn_task[k].start()
for k, v in learn_task.items():
v.join()
# TODO deal with task fail
info_list = [v.result for v in learn_task.values()]
# Merge learn info through ``merge_info`` method.
merged_info = self.merge_info(info_list)
return merged_info
@staticmethod
def merge_info(info: list) -> dict:
homogeneous_keys = ['learner_step', 'buffer_id', 'task_id', 'learner_done']
elem = info[0]
if elem is None:
return info
elif isinstance(elem, numbers.Integral) or isinstance(elem, str) or isinstance(elem, float):
return info
elif isinstance(elem, list) or isinstance(elem, tuple):
return list(reduce(lambda x, y: x + y, info))
elif isinstance(elem, dict):
ret = {}
for k in elem.keys():
if k in homogeneous_keys:
ret[k] = elem[k]
else:
ret[k] = LearnerAggregator.merge_info([e[k] for e in info])
return ret
else:
raise TypeError("not support type: {}".format(type(elem)))
def _new_connection_learner(self, learner_id: str, learner_host: str, learner_port: int) -> None:
start_time = time.time()
conn = None
while time.time() - start_time <= self._max_retry_second and not self._end_flag:
try:
if conn is None or not conn.is_connected:
conn = self._master.new_connection(learner_id, learner_host, learner_port)
conn.connect()
assert conn.is_connected
self._learner_connection[learner_id] = conn
self._world_size += 1
break
except Exception as e:
self._logger.error(
f"learner({learner_id}) connection start error:\n" + ''.join(traceback.format_tb(e.__traceback__)) +
repr(e) + '\nAuto Retry...'
)
time.sleep(2)
if learner_id in self._learner_connection:
self._logger.info(f"Succeed to connect to learner({learner_id})")
else:
self._logger.info(f"Fail to connect to learner({learner_id})")
self._failed_learner_conn.add(learner_id)
def _update_connection_learner(self, cur_learners) -> None:
conn_learners = list(self._learner_connection.keys())
new_c = set(cur_learners) - set(conn_learners)
del_c = set(conn_learners) - (set(cur_learners) | self._failed_learner_conn)
# conns which have terminated in server side, clear up
self._failed_learner_conn = self._failed_learner_conn & set(cur_learners)
# connect to each new learner
for learner_id in new_c:
learner_host, learner_port = learner_id.split(':')
self._new_connection_learner(learner_id, learner_host, int(learner_port))
for learner_id in del_c:
if learner_id in conn_learners:
if self._connection_learner[learner_id].is_connected:
conn = self._connection_learner.pop(learner_id)
conn.disconnect()
assert not conn.is_connected
else:
# ignore the operation of disconnect, since the pod will be terminated by server,
# just throw the connection
self._connection_learner.pop(learner_id)
def _period_sync_with_server(self) -> None:
while not self._end_flag:
# First: send failed list to notify server which replicas are failed, then terminate such replicas.
if len(self._failed_learner_conn) > 0:
learner_conn = []
for replica_conn in self._failed_learner_conn:
dns_name = replica_conn.split(":")[0]
pod_name_list = dns_name.split(".")[:-1]
pod_name = ".".join(pod_name_list)
if pod_name not in learner_conn:
learner_conn.append(pod_name)
success, _, message, _ = self._operator_server.post_replicas_failed(learners=list(learner_conn))
if success:
# do not update learner instantly, update at /GET replicas
self._failed_learner_conn.clear()
else:
self._logger.error("Failed to send failed list to server, message: {}".format(message))
# get list from server
success, _, message, data = self._operator_server.get_replicas()
if success:
cur_learners = data["learners"]
# self._logger.info("current list:", cur_learners)
self._update_connection_learner(cur_learners)
self._init_conn_flag = self._init_conn_flag | True
else:
self._logger.error("Failed to sync with server, message: {}".format(message))
time.sleep(3)
|