File size: 15,500 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import numbers
import os
from abc import ABC, abstractmethod
from typing import Any, Dict, List
import torch
from easydict import EasyDict

import ding
from ding.utils import allreduce, read_file, save_file, get_rank


class Hook(ABC):
    """
    Overview:
        Abstract class for hooks.
    Interfaces:
        __init__, __call__
    Property:
        name, priority
    """

    def __init__(self, name: str, priority: float, **kwargs) -> None:
        """
        Overview:
            Init method for hooks. Set name and priority.
        Arguments:
            - name (:obj:`str`): The name of hook
            - priority (:obj:`float`): The priority used in ``call_hook``'s calling sequence. \
                Lower value means higher priority.
        """
        self._name = name
        assert priority >= 0, "invalid priority value: {}".format(priority)
        self._priority = priority

    @property
    def name(self) -> str:
        return self._name

    @property
    def priority(self) -> float:
        return self._priority

    @abstractmethod
    def __call__(self, engine: Any) -> Any:
        """
        Overview:
            Should be overwritten by subclass.
        Arguments:
            - engine (:obj:`Any`): For LearnerHook, it should be ``BaseLearner`` or its subclass.
        """
        raise NotImplementedError


class LearnerHook(Hook):
    """
    Overview:
        Abstract class for hooks used in Learner.
    Interfaces:
        __init__
    Property:
        name, priority, position

    .. note::

        Subclass should implement ``self.__call__``.
    """
    positions = ['before_run', 'after_run', 'before_iter', 'after_iter']

    def __init__(self, *args, position: str, **kwargs) -> None:
        """
        Overview:
            Init LearnerHook.
        Arguments:
            - position (:obj:`str`): The position to call hook in learner. \
                Must be in ['before_run', 'after_run', 'before_iter', 'after_iter'].
        """
        super().__init__(*args, **kwargs)
        assert position in self.positions
        self._position = position

    @property
    def position(self) -> str:
        return self._position


class LoadCkptHook(LearnerHook):
    """
    Overview:
        Hook to load checkpoint
    Interfaces:
        __init__, __call__
    Property:
        name, priority, position
    """

    def __init__(self, *args, ext_args: EasyDict = EasyDict(), **kwargs) -> None:
        """
        Overview:
            Init LoadCkptHook.
        Arguments:
            - ext_args (:obj:`EasyDict`): Extended arguments. Use ``ext_args.freq`` to set ``load_ckpt_freq``.
        """
        super().__init__(*args, **kwargs)
        self._load_path = ext_args['load_path']

    def __call__(self, engine: 'BaseLearner') -> None:  # noqa
        """
        Overview:
            Load checkpoint to learner. Checkpoint info includes policy state_dict and iter num.
        Arguments:
            - engine (:obj:`BaseLearner`): The BaseLearner to load checkpoint to.
        """
        path = self._load_path
        if path == '':  # not load
            return
        state_dict = read_file(path)
        if 'last_iter' in state_dict:
            last_iter = state_dict.pop('last_iter')
            engine.last_iter.update(last_iter)
        engine.policy.load_state_dict(state_dict)
        engine.info('{} load ckpt in {}'.format(engine.instance_name, path))


class SaveCkptHook(LearnerHook):
    """
    Overview:
        Hook to save checkpoint
    Interfaces:
        __init__, __call__
    Property:
        name, priority, position
    """

    def __init__(self, *args, ext_args: EasyDict = EasyDict(), **kwargs) -> None:
        """
        Overview:
            init SaveCkptHook
        Arguments:
            - ext_args (:obj:`EasyDict`): extended_args, use ext_args.freq to set save_ckpt_freq
        """
        super().__init__(*args, **kwargs)
        if ext_args == {}:
            self._freq = 1
        else:
            self._freq = ext_args.freq

    def __call__(self, engine: 'BaseLearner') -> None:  # noqa
        """
        Overview:
            Save checkpoint in corresponding path.
            Checkpoint info includes policy state_dict and iter num.
        Arguments:
            - engine (:obj:`BaseLearner`): the BaseLearner which needs to save checkpoint
        """
        if engine.rank == 0 and engine.last_iter.val % self._freq == 0:
            if engine.instance_name == 'learner':
                dirname = './{}/ckpt'.format(engine.exp_name)
            else:
                dirname = './{}/ckpt_{}'.format(engine.exp_name, engine.instance_name)
            if not os.path.exists(dirname):
                try:
                    os.makedirs(dirname)
                except FileExistsError:
                    pass
            ckpt_name = engine.ckpt_name if engine.ckpt_name else 'iteration_{}.pth.tar'.format(engine.last_iter.val)
            path = os.path.join(dirname, ckpt_name)
            state_dict = engine.policy.state_dict()
            state_dict.update({'last_iter': engine.last_iter.val})
            save_file(path, state_dict)
            engine.info('{} save ckpt in {}'.format(engine.instance_name, path))


class LogShowHook(LearnerHook):
    """
    Overview:
        Hook to show log
    Interfaces:
        __init__, __call__
    Property:
        name, priority, position
    """

    def __init__(self, *args, ext_args: EasyDict = EasyDict(), **kwargs) -> None:
        """
        Overview:
            init LogShowHook
        Arguments:
            - ext_args (:obj:`EasyDict`): extended_args, use ext_args.freq to set freq
        """
        super().__init__(*args, **kwargs)
        if ext_args == {}:
            self._freq = 1
        else:
            self._freq = ext_args.freq

    def __call__(self, engine: 'BaseLearner') -> None:  # noqa
        """
        Overview:
            Show log, update record and tb_logger if rank is 0 and at interval iterations,
            clear the log buffer for all learners regardless of rank
        Arguments:
            - engine (:obj:`BaseLearner`): the BaseLearner
        """
        # Only show log for rank 0 learner
        if engine.rank != 0:
            for k in engine.log_buffer:
                engine.log_buffer[k].clear()
            return
        # For 'scalar' type variables: log_buffer -> tick_monitor -> monitor_time.step
        for k, v in engine.log_buffer['scalar'].items():
            setattr(engine.monitor, k, v)
        engine.monitor.time.step()

        iters = engine.last_iter.val
        if iters % self._freq == 0:
            engine.info("=== Training Iteration {} Result ===".format(iters))
            # For 'scalar' type variables: tick_monitor -> var_dict -> text_logger & tb_logger
            var_dict = {}
            log_vars = engine.policy.monitor_vars()
            attr = 'avg'
            for k in log_vars:
                k_attr = k + '_' + attr
                var_dict[k_attr] = getattr(engine.monitor, attr)[k]()
            engine.logger.info(engine.logger.get_tabulate_vars_hor(var_dict))
            for k, v in var_dict.items():
                engine.tb_logger.add_scalar('{}_iter/'.format(engine.instance_name) + k, v, iters)
                engine.tb_logger.add_scalar('{}_step/'.format(engine.instance_name) + k, v, engine._collector_envstep)
            # For 'histogram' type variables: log_buffer -> tb_var_dict -> tb_logger
            tb_var_dict = {}
            for k in engine.log_buffer['histogram']:
                new_k = '{}/'.format(engine.instance_name) + k
                tb_var_dict[new_k] = engine.log_buffer['histogram'][k]
            for k, v in tb_var_dict.items():
                engine.tb_logger.add_histogram(k, v, iters)
        for k in engine.log_buffer:
            engine.log_buffer[k].clear()


class LogReduceHook(LearnerHook):
    """
    Overview:
        Hook to reduce the distributed(multi-gpu) logs
    Interfaces:
        __init__, __call__
    Property:
        name, priority, position
    """

    def __init__(self, *args, ext_args: EasyDict = EasyDict(), **kwargs) -> None:
        """
        Overview:
            init LogReduceHook
        Arguments:
            - ext_args (:obj:`EasyDict`): extended_args, use ext_args.freq to set log_reduce_freq
        """
        super().__init__(*args, **kwargs)

    def __call__(self, engine: 'BaseLearner') -> None:  # noqa
        """
        Overview:
            reduce the logs from distributed(multi-gpu) learners
        Arguments:
            - engine (:obj:`BaseLearner`): the BaseLearner
        """

        def aggregate(data):
            r"""
            Overview:
                aggregate the information from all ranks(usually use sync allreduce)
            Arguments:
                - data (:obj:`dict`): Data that needs to be reduced. \
                    Could be dict, torch.Tensor, numbers.Integral or numbers.Real.
            Returns:
                - new_data (:obj:`dict`): data after reduce
            """
            if isinstance(data, dict):
                new_data = {k: aggregate(v) for k, v in data.items()}
            elif isinstance(data, list) or isinstance(data, tuple):
                new_data = [aggregate(t) for t in data]
            elif isinstance(data, torch.Tensor):
                new_data = data.clone().detach()
                if ding.enable_linklink:
                    allreduce(new_data)
                else:
                    new_data = new_data.to(get_rank())
                    allreduce(new_data)
                    new_data = new_data.cpu()
            elif isinstance(data, numbers.Integral) or isinstance(data, numbers.Real):
                new_data = torch.scalar_tensor(data).reshape([1])
                if ding.enable_linklink:
                    allreduce(new_data)
                else:
                    new_data = new_data.to(get_rank())
                    allreduce(new_data)
                    new_data = new_data.cpu()
                new_data = new_data.item()
            else:
                raise TypeError("invalid type in reduce: {}".format(type(data)))
            return new_data

        engine.log_buffer = aggregate(engine.log_buffer)


hook_mapping = {
    'load_ckpt': LoadCkptHook,
    'save_ckpt': SaveCkptHook,
    'log_show': LogShowHook,
    'log_reduce': LogReduceHook,
}


def register_learner_hook(name: str, hook_type: type) -> None:
    """
    Overview:
        Add a new LearnerHook class to hook_mapping, so you can build one instance with `build_learner_hook_by_cfg`.
    Arguments:
        - name (:obj:`str`): name of the register hook
        - hook_type (:obj:`type`): the register hook_type you implemented that realize LearnerHook
    Examples:
        >>> class HookToRegister(LearnerHook):
        >>>     def __init__(*args, **kargs):
        >>>         ...
        >>>         ...
        >>>     def __call__(*args, **kargs):
        >>>         ...
        >>>         ...
        >>> ...
        >>> register_learner_hook('name_of_hook', HookToRegister)
        >>> ...
        >>> hooks = build_learner_hook_by_cfg(cfg)
    """
    assert issubclass(hook_type, LearnerHook)
    hook_mapping[name] = hook_type


simplified_hook_mapping = {
    'log_show_after_iter': lambda freq: hook_mapping['log_show']
    ('log_show', 20, position='after_iter', ext_args=EasyDict({'freq': freq})),
    'load_ckpt_before_run': lambda path: hook_mapping['load_ckpt']
    ('load_ckpt', 20, position='before_run', ext_args=EasyDict({'load_path': path})),
    'save_ckpt_after_iter': lambda freq: hook_mapping['save_ckpt']
    ('save_ckpt_after_iter', 20, position='after_iter', ext_args=EasyDict({'freq': freq})),
    'save_ckpt_after_run': lambda _: hook_mapping['save_ckpt']('save_ckpt_after_run', 20, position='after_run'),
    'log_reduce_after_iter': lambda _: hook_mapping['log_reduce']('log_reduce_after_iter', 10, position='after_iter'),
}


def find_char(s: str, flag: str, num: int, reverse: bool = False) -> int:
    assert num > 0, num
    count = 0
    iterable_obj = reversed(range(len(s))) if reverse else range(len(s))
    for i in iterable_obj:
        if s[i] == flag:
            count += 1
            if count == num:
                return i
    return -1


def build_learner_hook_by_cfg(cfg: EasyDict) -> Dict[str, List[Hook]]:
    """
    Overview:
        Build the learner hooks in hook_mapping by config.
        This function is often used to initialize ``hooks`` according to cfg,
        while add_learner_hook() is often used to add an existing LearnerHook to `hooks`.
    Arguments:
        - cfg (:obj:`EasyDict`): Config dict. Should be like {'hook': xxx}.
    Returns:
        - hooks (:obj:`Dict[str, List[Hook]`): Keys should be in ['before_run', 'after_run', 'before_iter', \
            'after_iter'], each value should be a list containing all hooks in this position.
    Note:
        Lower value means higher priority.
    """
    hooks = {k: [] for k in LearnerHook.positions}
    for key, value in cfg.items():
        if key in simplified_hook_mapping and not isinstance(value, dict):
            pos = key[find_char(key, '_', 2, reverse=True) + 1:]
            hook = simplified_hook_mapping[key](value)
            priority = hook.priority
        else:
            priority = value.get('priority', 100)
            pos = value.position
            ext_args = value.get('ext_args', {})
            hook = hook_mapping[value.type](value.name, priority, position=pos, ext_args=ext_args)
        idx = 0
        for i in reversed(range(len(hooks[pos]))):
            if priority >= hooks[pos][i].priority:
                idx = i + 1
                break
        hooks[pos].insert(idx, hook)
    return hooks


def add_learner_hook(hooks: Dict[str, List[Hook]], hook: LearnerHook) -> None:
    """
    Overview:
        Add a learner hook(:obj:`LearnerHook`) to hooks(:obj:`Dict[str, List[Hook]`)
    Arguments:
        - hooks (:obj:`Dict[str, List[Hook]`): You can refer to ``build_learner_hook_by_cfg``'s return ``hooks``.
        - hook (:obj:`LearnerHook`): The LearnerHook which will be added to ``hooks``.
    """
    position = hook.position
    priority = hook.priority
    idx = 0
    for i in reversed(range(len(hooks[position]))):
        if priority >= hooks[position][i].priority:
            idx = i + 1
            break
    assert isinstance(hook, LearnerHook)
    hooks[position].insert(idx, hook)


def merge_hooks(hooks1: Dict[str, List[Hook]], hooks2: Dict[str, List[Hook]]) -> Dict[str, List[Hook]]:
    """
    Overview:
        Merge two hooks dict, which have the same keys, and each value is sorted by hook priority with stable method.
    Arguments:
        - hooks1 (:obj:`Dict[str, List[Hook]`): hooks1 to be merged.
        - hooks2 (:obj:`Dict[str, List[Hook]`): hooks2 to be merged.
    Returns:
        - new_hooks (:obj:`Dict[str, List[Hook]`): New merged hooks dict.
    Note:
        This merge function uses stable sort method without disturbing the same priority hook.
    """
    assert set(hooks1.keys()) == set(hooks2.keys())
    new_hooks = {}
    for k in hooks1.keys():
        new_hooks[k] = sorted(hooks1[k] + hooks2[k], key=lambda x: x.priority)
    return new_hooks


def show_hooks(hooks: Dict[str, List[Hook]]) -> None:
    for k in hooks.keys():
        print('{}: {}'.format(k, [x.__class__.__name__ for x in hooks[k]]))