File size: 2,672 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from easydict import EasyDict

# ==============================================================
# begin of the most frequently changed config specified by the user
# ==============================================================
collector_env_num = 8
n_episode = 8
evaluator_env_num = 3
num_simulations = 25
update_per_collect = 100
batch_size = 256
max_env_step = int(1e5)
reanalyze_ratio = 0
# ==============================================================
# end of the most frequently changed config specified by the user
# ==============================================================

cfg = dict(
    main_config=dict(
        exp_name='CartPole-v0-MuZero',
        seed=0,
        env=dict(
            env_id='CartPole-v0',
            continuous=False,
            manually_discretization=False,
            collector_env_num=collector_env_num,
            evaluator_env_num=evaluator_env_num,
            n_evaluator_episode=evaluator_env_num,
            manager=dict(shared_memory=False, ),
        ),
        policy=dict(
            model=dict(
                observation_shape=4,
                action_space_size=2,
                model_type='mlp',
                lstm_hidden_size=128,
                latent_state_dim=128,
                self_supervised_learning_loss=True,  # NOTE: default is False.
                discrete_action_encoding_type='one_hot',
                norm_type='BN',
            ),
            cuda=True,
            env_type='not_board_games',
            game_segment_length=50,
            update_per_collect=update_per_collect,
            batch_size=batch_size,
            optim_type='Adam',
            lr_piecewise_constant_decay=False,
            learning_rate=0.003,
            ssl_loss_weight=2,  # NOTE: default is 0.
            num_simulations=num_simulations,
            reanalyze_ratio=reanalyze_ratio,
            n_episode=n_episode,
            eval_freq=int(2e2),
            replay_buffer_size=int(1e6),  # the size/capacity of replay_buffer, in the terms of transitions.
            collector_env_num=collector_env_num,
            evaluator_env_num=evaluator_env_num,
        ),
        wandb_logger=dict(
            gradient_logger=False, video_logger=False, plot_logger=False, action_logger=False, return_logger=False
        ),
    ),
    create_config=dict(
        env=dict(
            type='cartpole_lightzero',
            import_names=['zoo.classic_control.cartpole.envs.cartpole_lightzero_env'],
        ),
        env_manager=dict(type='subprocess'),
        policy=dict(
            type='muzero',
            import_names=['lzero.policy.muzero'],
        ),
    ),
)

cfg = EasyDict(cfg)