File size: 7,816 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import logging
import os
from typing import Optional
from typing import Tuple

import torch
from tensorboardX import SummaryWriter

from ding.config import compile_config
from ding.envs import DingEnvWrapper, BaseEnvManager
from ding.policy import create_policy
from ding.utils import set_pkg_seed
from ding.worker import BaseLearner
from lzero.envs.get_wrapped_env import get_wrappered_env
from lzero.policy import visit_count_temperature
from lzero.worker import MuZeroCollector, MuZeroEvaluator


def train_muzero_with_gym_env(
        input_cfg: Tuple[dict, dict],
        seed: int = 0,
        model: Optional[torch.nn.Module] = None,
        model_path: Optional[str] = None,
        max_train_iter: Optional[int] = int(1e10),
        max_env_step: Optional[int] = int(1e10),
) -> 'Policy':  # noqa
    """
    Overview:
        The train entry for MCTS+RL algorithms, including MuZero, EfficientZero, Sampled EfficientZero.
        We create a gym environment using env_name parameter, and then convert it to the format required by LightZero using LightZeroEnvWrapper class.
        Please refer to the get_wrappered_env method for more details.
    Arguments:
        - input_cfg (:obj:`Tuple[dict, dict]`): Config in dict type.
            ``Tuple[dict, dict]`` type means [user_config, create_cfg].
        - seed (:obj:`int`): Random seed.
        - model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module.
        - model_path (:obj:`Optional[str]`): The pretrained model path, which should
            point to the ckpt file of the pretrained model, and an absolute path is recommended.
            In LightZero, the path is usually something like ``exp_name/ckpt/ckpt_best.pth.tar``.
        - max_train_iter (:obj:`Optional[int]`): Maximum policy update iterations in training.
        - max_env_step (:obj:`Optional[int]`): Maximum collected environment interaction steps.
    Returns:
        - policy (:obj:`Policy`): Converged policy.
    """

    cfg, create_cfg = input_cfg
    assert create_cfg.policy.type in ['efficientzero', 'muzero', 'sampled_efficientzero'], \
        "train_muzero entry now only support the following algo.: 'efficientzero', 'muzero', 'sampled_efficientzero'"

    if create_cfg.policy.type == 'muzero':
        from lzero.mcts import MuZeroGameBuffer as GameBuffer
    elif create_cfg.policy.type == 'efficientzero':
        from lzero.mcts import EfficientZeroGameBuffer as GameBuffer
    elif create_cfg.policy.type == 'sampled_efficientzero':
        from lzero.mcts import SampledEfficientZeroGameBuffer as GameBuffer

    if cfg.policy.cuda and torch.cuda.is_available():
        cfg.policy.device = 'cuda'
    else:
        cfg.policy.device = 'cpu'

    cfg = compile_config(cfg, seed=seed, env=None, auto=True, create_cfg=create_cfg, save_cfg=True)

    # Create main components: env, policy
    collector_env_cfg = DingEnvWrapper.create_collector_env_cfg(cfg.env)
    evaluator_env_cfg = DingEnvWrapper.create_evaluator_env_cfg(cfg.env)
    collector_env = BaseEnvManager(
        [get_wrappered_env(c, cfg.env.env_name) for c in collector_env_cfg], cfg=BaseEnvManager.default_config()
    )
    evaluator_env = BaseEnvManager(
        [get_wrappered_env(c, cfg.env.env_name) for c in evaluator_env_cfg], cfg=BaseEnvManager.default_config()
    )
    collector_env.seed(cfg.seed)
    evaluator_env.seed(cfg.seed, dynamic_seed=False)
    set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda)

    policy = create_policy(cfg.policy, model=model, enable_field=['learn', 'collect', 'eval'])

    # load pretrained model
    if model_path is not None:
        policy.learn_mode.load_state_dict(torch.load(model_path, map_location=cfg.policy.device))

    # Create worker components: learner, collector, evaluator, replay buffer, commander.
    tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial'))
    learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name)

    # ==============================================================
    # MCTS+RL algorithms related core code
    # ==============================================================
    policy_config = cfg.policy
    batch_size = policy_config.batch_size
    # specific game buffer for MCTS+RL algorithms
    replay_buffer = GameBuffer(policy_config)
    collector = MuZeroCollector(
        env=collector_env,
        policy=policy.collect_mode,
        tb_logger=tb_logger,
        exp_name=cfg.exp_name,
        policy_config=policy_config
    )
    evaluator = MuZeroEvaluator(
        eval_freq=cfg.policy.eval_freq,
        n_evaluator_episode=cfg.env.n_evaluator_episode,
        stop_value=cfg.env.stop_value,
        env=evaluator_env,
        policy=policy.eval_mode,
        tb_logger=tb_logger,
        exp_name=cfg.exp_name,
        policy_config=policy_config
    )

    # ==============================================================
    # Main loop
    # ==============================================================
    # Learner's before_run hook.
    learner.call_hook('before_run')
    if cfg.policy.update_per_collect is not None:
        update_per_collect = cfg.policy.update_per_collect
    while True:
        collect_kwargs = {}
        # set temperature for visit count distributions according to the train_iter,
        # please refer to Appendix D in MuZero paper for details.
        collect_kwargs['temperature'] = visit_count_temperature(
            policy_config.manual_temperature_decay,
            policy_config.fixed_temperature_value,
            policy_config.threshold_training_steps_for_final_temperature,
            trained_steps=learner.train_iter
        )

        # Evaluate policy performance.
        if evaluator.should_eval(learner.train_iter):
            stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep)
            if stop:
                break

        # Collect data by default config n_sample/n_episode.
        new_data = collector.collect(train_iter=learner.train_iter, policy_kwargs=collect_kwargs)
        if cfg.policy.update_per_collect is None:
            # update_per_collect is None, then update_per_collect is set to the number of collected transitions multiplied by the model_update_ratio.
            collected_transitions_num = sum([len(game_segment) for game_segment in new_data[0]])
            update_per_collect = int(collected_transitions_num * cfg.policy.model_update_ratio)
        # save returned new_data collected by the collector
        replay_buffer.push_game_segments(new_data)
        # remove the oldest data if the replay buffer is full.
        replay_buffer.remove_oldest_data_to_fit()

        # Learn policy from collected data.
        for i in range(cfg.policy.update_per_collect):
            # Learner will train ``update_per_collect`` times in one iteration.
            if replay_buffer.get_num_of_transitions() > batch_size:
                train_data = replay_buffer.sample(batch_size, policy)
            else:
                logging.warning(
                    f'The data in replay_buffer is not sufficient to sample a mini-batch: '
                    f'batch_size: {batch_size}, '
                    f'{replay_buffer} '
                    f'continue to collect now ....'
                )
                break

            # The core train steps for MCTS+RL algorithms.
            log_vars = learner.train(train_data, collector.envstep)

            if cfg.policy.use_priority:
                replay_buffer.update_priority(train_data, log_vars[0]['value_priority_orig'])

        if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter:
            break

    # Learner's after_run hook.
    learner.call_hook('after_run')
    return policy