File size: 31,081 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
from typing import Any, List, Tuple
import numpy as np
import torch
from ding.utils import BUFFER_REGISTRY
from lzero.mcts.tree_search.mcts_ctree_sampled import SampledEfficientZeroMCTSCtree as MCTSCtree
from lzero.mcts.tree_search.mcts_ptree_sampled import SampledEfficientZeroMCTSPtree as MCTSPtree
from lzero.mcts.utils import prepare_observation, generate_random_actions_discrete
from lzero.policy import to_detach_cpu_numpy, concat_output, concat_output_value, inverse_scalar_transform
from .game_buffer_efficientzero import EfficientZeroGameBuffer
@BUFFER_REGISTRY.register('game_buffer_sampled_efficientzero')
class SampledEfficientZeroGameBuffer(EfficientZeroGameBuffer):
"""
Overview:
The specific game buffer for Sampled EfficientZero policy.
"""
def __init__(self, cfg: dict):
super().__init__(cfg)
"""
Overview:
Use the default configuration mechanism. If a user passes in a cfg with a key that matches an existing key
in the default configuration, the user-provided value will override the default configuration. Otherwise,
the default configuration will be used.
"""
default_config = self.default_config()
default_config.update(cfg)
self._cfg = default_config
assert self._cfg.env_type in ['not_board_games', 'board_games']
assert self._cfg.action_type in ['fixed_action_space', 'varied_action_space']
self.replay_buffer_size = self._cfg.replay_buffer_size
self.batch_size = self._cfg.batch_size
self._alpha = self._cfg.priority_prob_alpha
self._beta = self._cfg.priority_prob_beta
self.game_segment_buffer = []
self.game_pos_priorities = []
self.game_segment_game_pos_look_up = []
self.keep_ratio = 1
self.num_of_collected_episodes = 0
self.base_idx = 0
self.clear_time = 0
def sample(self, batch_size: int, policy: Any) -> List[Any]:
"""
Overview:
sample data from ``GameBuffer`` and prepare the current and target batch for training
Arguments:
- batch_size (:obj:`int`): batch size
- policy (:obj:`torch.tensor`): model of policy
Returns:
- train_data (:obj:`List`): List of train data
"""
policy._target_model.to(self._cfg.device)
policy._target_model.eval()
reward_value_context, policy_re_context, policy_non_re_context, current_batch = self._make_batch(
batch_size, self._cfg.reanalyze_ratio
)
# target reward, target value
batch_value_prefixs, batch_target_values = self._compute_target_reward_value(
reward_value_context, policy._target_model
)
batch_target_policies_non_re = self._compute_target_policy_non_reanalyzed(
policy_non_re_context, self._cfg.model.num_of_sampled_actions
)
if self._cfg.reanalyze_ratio > 0:
# target policy
batch_target_policies_re, root_sampled_actions = self._compute_target_policy_reanalyzed(
policy_re_context, policy._target_model
)
# ==============================================================
# fix reanalyze in sez:
# use the latest root_sampled_actions after the reanalyze process,
# because the batch_target_policies_re is corresponding to the latest root_sampled_actions
# ==============================================================
assert (self._cfg.reanalyze_ratio > 0 and self._cfg.reanalyze_outdated is True), \
"in sampled effiicientzero, if self._cfg.reanalyze_ratio>0, you must set self._cfg.reanalyze_outdated=True"
# current_batch = [obs_list, action_list, root_sampled_actions_list, mask_list, batch_index_list, weights_list, make_time_list]
if self._cfg.model.continuous_action_space:
current_batch[2][:int(batch_size * self._cfg.reanalyze_ratio)] = root_sampled_actions.reshape(
int(batch_size * self._cfg.reanalyze_ratio), self._cfg.num_unroll_steps + 1,
self._cfg.model.num_of_sampled_actions, self._cfg.model.action_space_size
)
else:
current_batch[2][:int(batch_size * self._cfg.reanalyze_ratio)] = root_sampled_actions.reshape(
int(batch_size * self._cfg.reanalyze_ratio), self._cfg.num_unroll_steps + 1,
self._cfg.model.num_of_sampled_actions, 1
)
if 0 < self._cfg.reanalyze_ratio < 1:
try:
batch_target_policies = np.concatenate([batch_target_policies_re, batch_target_policies_non_re])
except Exception as error:
print(error)
elif self._cfg.reanalyze_ratio == 1:
batch_target_policies = batch_target_policies_re
elif self._cfg.reanalyze_ratio == 0:
batch_target_policies = batch_target_policies_non_re
target_batch = [batch_value_prefixs, batch_target_values, batch_target_policies]
# a batch contains the current_batch and the target_batch
train_data = [current_batch, target_batch]
return train_data
def _make_batch(self, batch_size: int, reanalyze_ratio: float) -> Tuple[Any]:
"""
Overview:
first sample orig_data through ``_sample_orig_data()``,
then prepare the context of a batch:
reward_value_context: the context of reanalyzed value targets
policy_re_context: the context of reanalyzed policy targets
policy_non_re_context: the context of non-reanalyzed policy targets
current_batch: the inputs of batch
Arguments:
- batch_size (:obj:`int`): the batch size of orig_data from replay buffer.
- reanalyze_ratio (:obj:`float`): ratio of reanalyzed policy (value is 100% reanalyzed)
Returns:
- context (:obj:`Tuple`): reward_value_context, policy_re_context, policy_non_re_context, current_batch
"""
# obtain the batch context from replay buffer
orig_data = self._sample_orig_data(batch_size)
game_lst, pos_in_game_segment_list, batch_index_list, weights_list, make_time_list = orig_data
batch_size = len(batch_index_list)
obs_list, action_list, mask_list = [], [], []
root_sampled_actions_list = []
# prepare the inputs of a batch
for i in range(batch_size):
game = game_lst[i]
pos_in_game_segment = pos_in_game_segment_list[i]
# ==============================================================
# sampled related core code
# ==============================================================
actions_tmp = game.action_segment[pos_in_game_segment:pos_in_game_segment +
self._cfg.num_unroll_steps].tolist()
# NOTE: self._cfg.num_unroll_steps + 1
root_sampled_actions_tmp = game.root_sampled_actions[pos_in_game_segment:pos_in_game_segment +
self._cfg.num_unroll_steps + 1]
# add mask for invalid actions (out of trajectory), 1 for valid, 0 for invalid
mask_tmp = [1. for i in range(len(root_sampled_actions_tmp))]
mask_tmp += [0. for _ in range(self._cfg.num_unroll_steps + 1 - len(mask_tmp))]
# pad random action
if self._cfg.model.continuous_action_space:
actions_tmp += [
np.random.randn(self._cfg.model.action_space_size)
for _ in range(self._cfg.num_unroll_steps - len(actions_tmp))
]
root_sampled_actions_tmp += [
np.random.rand(self._cfg.model.num_of_sampled_actions, self._cfg.model.action_space_size)
for _ in range(self._cfg.num_unroll_steps + 1 - len(root_sampled_actions_tmp))
]
else:
# generate random `padded actions_tmp`
actions_tmp += generate_random_actions_discrete(
self._cfg.num_unroll_steps - len(actions_tmp),
self._cfg.model.action_space_size,
1 # Number of sampled actions for actions_tmp is 1
)
# generate random padded `root_sampled_actions_tmp`
# root_sampled_action have different shape in mcts_ctree and mcts_ptree, thus we need to pad differently
reshape = True if self._cfg.mcts_ctree else False
root_sampled_actions_tmp += generate_random_actions_discrete(
self._cfg.num_unroll_steps + 1 - len(root_sampled_actions_tmp),
self._cfg.model.action_space_size,
self._cfg.model.num_of_sampled_actions,
reshape=reshape
)
# obtain the input observations
# stack+num_unroll_steps = 4+5
# pad if length of obs in game_segment is less than stack+num_unroll_steps
obs_list.append(
game_lst[i].get_unroll_obs(
pos_in_game_segment_list[i], num_unroll_steps=self._cfg.num_unroll_steps, padding=True
)
)
action_list.append(actions_tmp)
root_sampled_actions_list.append(root_sampled_actions_tmp)
mask_list.append(mask_tmp)
# formalize the input observations
obs_list = prepare_observation(obs_list, self._cfg.model.model_type)
# ==============================================================
# sampled related core code
# ==============================================================
# formalize the inputs of a batch
current_batch = [
obs_list, action_list, root_sampled_actions_list, mask_list, batch_index_list, weights_list, make_time_list
]
for i in range(len(current_batch)):
current_batch[i] = np.asarray(current_batch[i])
total_transitions = self.get_num_of_transitions()
# obtain the context of value targets
reward_value_context = self._prepare_reward_value_context(
batch_index_list, game_lst, pos_in_game_segment_list, total_transitions
)
"""
only reanalyze recent reanalyze_ratio (e.g. 50%) data
if self._cfg.reanalyze_outdated is True, batch_index_list is sorted according to its generated env_steps
0: reanalyze_num -> reanalyzed policy, reanalyze_num:end -> non reanalyzed policy
"""
reanalyze_num = int(batch_size * reanalyze_ratio)
# reanalyzed policy
if reanalyze_num > 0:
# obtain the context of reanalyzed policy targets
policy_re_context = self._prepare_policy_reanalyzed_context(
batch_index_list[:reanalyze_num], game_lst[:reanalyze_num], pos_in_game_segment_list[:reanalyze_num]
)
else:
policy_re_context = None
# non reanalyzed policy
if reanalyze_num < batch_size:
# obtain the context of non-reanalyzed policy targets
policy_non_re_context = self._prepare_policy_non_reanalyzed_context(
batch_index_list[reanalyze_num:], game_lst[reanalyze_num:], pos_in_game_segment_list[reanalyze_num:]
)
else:
policy_non_re_context = None
context = reward_value_context, policy_re_context, policy_non_re_context, current_batch
return context
def _compute_target_reward_value(self, reward_value_context: List[Any], model: Any) -> List[np.ndarray]:
"""
Overview:
prepare reward and value targets from the context of rewards and values.
Arguments:
- reward_value_context (:obj:'list'): the reward value context
- model (:obj:'torch.tensor'):model of the target model
Returns:
- batch_value_prefixs (:obj:'np.ndarray): batch of value prefix
- batch_target_values (:obj:'np.ndarray): batch of value estimation
"""
value_obs_list, value_mask, pos_in_game_segment_list, rewards_list, game_segment_lens, td_steps_list, action_mask_segment, \
to_play_segment = reward_value_context # noqa
# transition_batch_size = game_segment_batch_size * (num_unroll_steps+1)
transition_batch_size = len(value_obs_list)
game_segment_batch_size = len(pos_in_game_segment_list)
to_play, action_mask = self._preprocess_to_play_and_action_mask(
game_segment_batch_size, to_play_segment, action_mask_segment, pos_in_game_segment_list
)
if self._cfg.model.continuous_action_space is True:
# when the action space of the environment is continuous, action_mask[:] is None.
action_mask = [
list(np.ones(self._cfg.model.action_space_size, dtype=np.int8)) for _ in range(transition_batch_size)
]
# NOTE: in continuous action space env: we set all legal_actions as -1
legal_actions = [
[-1 for _ in range(self._cfg.model.action_space_size)] for _ in range(transition_batch_size)
]
else:
legal_actions = [[i for i, x in enumerate(action_mask[j]) if x == 1] for j in range(transition_batch_size)]
batch_target_values, batch_value_prefixs = [], []
with torch.no_grad():
value_obs_list = prepare_observation(value_obs_list, self._cfg.model.model_type)
# split a full batch into slices of mini_infer_size: to save the GPU memory for more GPU actors
slices = int(np.ceil(transition_batch_size / self._cfg.mini_infer_size))
network_output = []
for i in range(slices):
beg_index = self._cfg.mini_infer_size * i
end_index = self._cfg.mini_infer_size * (i + 1)
m_obs = torch.from_numpy(value_obs_list[beg_index:end_index]).to(self._cfg.device).float()
# calculate the target value
m_output = model.initial_inference(m_obs)
# TODO(pu)
if not model.training:
# if not in training, obtain the scalars of the value/reward
[m_output.latent_state, m_output.value, m_output.policy_logits] = to_detach_cpu_numpy(
[
m_output.latent_state,
inverse_scalar_transform(m_output.value, self._cfg.model.support_scale),
m_output.policy_logits
]
)
m_output.reward_hidden_state = (
m_output.reward_hidden_state[0].detach().cpu().numpy(),
m_output.reward_hidden_state[1].detach().cpu().numpy()
)
network_output.append(m_output)
# concat the output slices after model inference
if self._cfg.use_root_value:
# use the root values from MCTS
# the root values have limited improvement but require much more GPU actors;
_, value_prefix_pool, policy_logits_pool, latent_state_roots, reward_hidden_state_roots = concat_output(
network_output, data_type='efficientzero'
)
value_prefix_pool = value_prefix_pool.squeeze().tolist()
policy_logits_pool = policy_logits_pool.tolist()
# generate the noises for the root nodes
noises = [
np.random.dirichlet([self._cfg.root_dirichlet_alpha] * self._cfg.model.num_of_sampled_actions
).astype(np.float32).tolist() for _ in range(transition_batch_size)
]
if self._cfg.mcts_ctree:
# cpp mcts_tree
# prepare the root nodes for MCTS
roots = MCTSCtree.roots(
transition_batch_size, legal_actions, self._cfg.model.action_space_size,
self._cfg.model.num_of_sampled_actions, self._cfg.model.continuous_action_space
)
roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play)
# do MCTS for a new policy with the recent target model
MCTSCtree(self._cfg).search(roots, model, latent_state_roots, reward_hidden_state_roots, to_play)
else:
# python mcts_tree
roots = MCTSPtree.roots(
transition_batch_size, legal_actions, self._cfg.model.action_space_size,
self._cfg.model.num_of_sampled_actions, self._cfg.model.continuous_action_space
)
roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play)
# do MCTS for a new policy with the recent target model
MCTSPtree.roots(self._cfg
).search(roots, model, latent_state_roots, reward_hidden_state_roots, to_play)
roots_values = roots.get_values()
value_list = np.array(roots_values)
else:
# use the predicted values
value_list = concat_output_value(network_output)
# get last state value
if self._cfg.env_type == 'board_games' and to_play_segment[0][0] in [1, 2]:
# TODO(pu): for board_games, very important, to check
value_list = value_list.reshape(-1) * np.array(
[
self._cfg.discount_factor ** td_steps_list[i] if int(td_steps_list[i]) %
2 == 0 else -self._cfg.discount_factor ** td_steps_list[i]
for i in range(transition_batch_size)
]
)
else:
value_list = value_list.reshape(-1) * (
np.array([self._cfg.discount_factor for _ in range(transition_batch_size)]) ** td_steps_list
)
value_list = value_list * np.array(value_mask)
value_list = value_list.tolist()
horizon_id, value_index = 0, 0
for game_segment_len_non_re, reward_list, state_index, to_play_list in zip(game_segment_lens, rewards_list,
pos_in_game_segment_list,
to_play_segment):
target_values = []
target_value_prefixs = []
value_prefix = 0.0
base_index = state_index
for current_index in range(state_index, state_index + self._cfg.num_unroll_steps + 1):
bootstrap_index = current_index + td_steps_list[value_index]
# for i, reward in enumerate(game.rewards[current_index:bootstrap_index]):
for i, reward in enumerate(reward_list[current_index:bootstrap_index]):
if self._cfg.env_type == 'board_games' and to_play_segment[0][0] in [1, 2]:
# TODO(pu): for board_games, very important, to check
if to_play_list[base_index] == to_play_list[i]:
value_list[value_index] += reward * self._cfg.discount_factor ** i
else:
value_list[value_index] += -reward * self._cfg.discount_factor ** i
else:
value_list[value_index] += reward * self._cfg.discount_factor ** i
# TODO(pu): why value don't use discount_factor factor
# reset every lstm_horizon_len
if horizon_id % self._cfg.lstm_horizon_len == 0:
value_prefix = 0.0
base_index = current_index
horizon_id += 1
if current_index < game_segment_len_non_re:
target_values.append(value_list[value_index])
# Since the horizon is small and the discount_factor is close to 1.
# Compute the reward sum to approximate the value prefix for simplification
value_prefix += reward_list[current_index
] # * config.discount_factor ** (current_index - base_index)
target_value_prefixs.append(value_prefix)
else:
target_values.append(0)
target_value_prefixs.append(value_prefix)
value_index += 1
batch_value_prefixs.append(target_value_prefixs)
batch_target_values.append(target_values)
batch_value_prefixs = np.asarray(batch_value_prefixs, dtype=object)
batch_target_values = np.asarray(batch_target_values, dtype=object)
return batch_value_prefixs, batch_target_values
def _compute_target_policy_reanalyzed(self, policy_re_context: List[Any], model: Any) -> np.ndarray:
"""
Overview:
prepare policy targets from the reanalyzed context of policies
Arguments:
- policy_re_context (:obj:`List`): List of policy context to reanalyzed
Returns:
- batch_target_policies_re
"""
if policy_re_context is None:
return []
batch_target_policies_re = []
policy_obs_list, policy_mask, pos_in_game_segment_list, batch_index_list, child_visits, game_segment_lens, action_mask_segment, \
to_play_segment = policy_re_context # noqa
# transition_batch_size = game_segment_batch_size * (self._cfg.num_unroll_steps + 1)
transition_batch_size = len(policy_obs_list)
game_segment_batch_size = len(pos_in_game_segment_list)
to_play, action_mask = self._preprocess_to_play_and_action_mask(
game_segment_batch_size, to_play_segment, action_mask_segment, pos_in_game_segment_list
)
if self._cfg.model.continuous_action_space is True:
# when the action space of the environment is continuous, action_mask[:] is None.
action_mask = [
list(np.ones(self._cfg.model.action_space_size, dtype=np.int8)) for _ in range(transition_batch_size)
]
# NOTE: in continuous action space env, we set all legal_actions as -1
legal_actions = [
[-1 for _ in range(self._cfg.model.action_space_size)] for _ in range(transition_batch_size)
]
else:
legal_actions = [[i for i, x in enumerate(action_mask[j]) if x == 1] for j in range(transition_batch_size)]
with torch.no_grad():
policy_obs_list = prepare_observation(policy_obs_list, self._cfg.model.model_type)
# split a full batch into slices of mini_infer_size: to save the GPU memory for more GPU actors
self._cfg.mini_infer_size = self._cfg.mini_infer_size
slices = np.ceil(transition_batch_size / self._cfg.mini_infer_size).astype(np.int_)
network_output = []
for i in range(slices):
beg_index = self._cfg.mini_infer_size * i
end_index = self._cfg.mini_infer_size * (i + 1)
m_obs = torch.from_numpy(policy_obs_list[beg_index:end_index]).to(self._cfg.device).float()
m_output = model.initial_inference(m_obs)
if not model.training:
# if not in training, obtain the scalars of the value/reward
[m_output.latent_state, m_output.value, m_output.policy_logits] = to_detach_cpu_numpy(
[
m_output.latent_state,
inverse_scalar_transform(m_output.value, self._cfg.model.support_scale),
m_output.policy_logits
]
)
m_output.reward_hidden_state = (
m_output.reward_hidden_state[0].detach().cpu().numpy(),
m_output.reward_hidden_state[1].detach().cpu().numpy()
)
network_output.append(m_output)
_, value_prefix_pool, policy_logits_pool, latent_state_roots, reward_hidden_state_roots = concat_output(
network_output, data_type='efficientzero'
)
value_prefix_pool = value_prefix_pool.squeeze().tolist()
policy_logits_pool = policy_logits_pool.tolist()
noises = [
np.random.dirichlet([self._cfg.root_dirichlet_alpha] * self._cfg.model.num_of_sampled_actions
).astype(np.float32).tolist() for _ in range(transition_batch_size)
]
if self._cfg.mcts_ctree:
# ==============================================================
# sampled related core code
# ==============================================================
# cpp mcts_tree
roots = MCTSCtree.roots(
transition_batch_size, legal_actions, self._cfg.model.action_space_size,
self._cfg.model.num_of_sampled_actions, self._cfg.model.continuous_action_space
)
roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play)
# do MCTS for a new policy with the recent target model
MCTSCtree(self._cfg).search(roots, model, latent_state_roots, reward_hidden_state_roots, to_play)
else:
# python mcts_tree
roots = MCTSPtree.roots(
transition_batch_size, legal_actions, self._cfg.model.action_space_size,
self._cfg.model.num_of_sampled_actions, self._cfg.model.continuous_action_space
)
roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play)
# do MCTS for a new policy with the recent target model
MCTSPtree.roots(self._cfg).search(roots, model, latent_state_roots, reward_hidden_state_roots, to_play)
roots_legal_actions_list = legal_actions
roots_distributions = roots.get_distributions()
# ==============================================================
# fix reanalyze in sez
# ==============================================================
roots_sampled_actions = roots.get_sampled_actions()
try:
root_sampled_actions = np.array([action.value for action in roots_sampled_actions])
except Exception:
root_sampled_actions = np.array([action for action in roots_sampled_actions])
policy_index = 0
for state_index, game_idx in zip(pos_in_game_segment_list, batch_index_list):
target_policies = []
for current_index in range(state_index, state_index + self._cfg.num_unroll_steps + 1):
distributions = roots_distributions[policy_index]
# ==============================================================
# sampled related core code
# ==============================================================
if policy_mask[policy_index] == 0:
# NOTE: the invalid padding target policy, O is to make sure the correspoding cross_entropy_loss=0
target_policies.append([0 for _ in range(self._cfg.model.num_of_sampled_actions)])
else:
if distributions is None:
# if at some obs, the legal_action is None, then add the fake target_policy
target_policies.append(
list(
np.ones(self._cfg.model.num_of_sampled_actions) /
self._cfg.model.num_of_sampled_actions
)
)
else:
if self._cfg.action_type == 'fixed_action_space':
sum_visits = sum(distributions)
policy = [visit_count / sum_visits for visit_count in distributions]
target_policies.append(policy)
else:
# for two_player board games
policy_tmp = [0 for _ in range(self._cfg.model.num_of_sampled_actions)]
# to make sure target_policies have the same dimension
sum_visits = sum(distributions)
policy = [visit_count / sum_visits for visit_count in distributions]
for index, legal_action in enumerate(roots_legal_actions_list[policy_index]):
policy_tmp[legal_action] = policy[index]
target_policies.append(policy_tmp)
policy_index += 1
batch_target_policies_re.append(target_policies)
batch_target_policies_re = np.array(batch_target_policies_re)
return batch_target_policies_re, root_sampled_actions
def update_priority(self, train_data: List[np.ndarray], batch_priorities: Any) -> None:
"""
Overview:
Update the priority of training data.
Arguments:
- train_data (:obj:`Optional[List[Optional[np.ndarray]]]`): training data to be updated priority.
- batch_priorities (:obj:`batch_priorities`): priorities to update to.
NOTE:
train_data = [current_batch, target_batch]
current_batch = [obs_list, action_list, root_sampled_actions_list, mask_list, batch_index_list, weights_list, make_time_list]
"""
batch_index_list = train_data[0][4]
metas = {'make_time': train_data[0][6], 'batch_priorities': batch_priorities}
# only update the priorities for data still in replay buffer
for i in range(len(batch_index_list)):
if metas['make_time'][i] > self.clear_time:
idx, prio = batch_index_list[i], metas['batch_priorities'][i]
self.game_pos_priorities[idx] = prio
|