File size: 5,537 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
// C++11
#ifndef CNODE_H
#define CNODE_H
#include "./../common_lib/cminimax.h"
#include <math.h>
#include <vector>
#include <stack>
#include <stdlib.h>
#include <time.h>
#include <cmath>
#include <sys/timeb.h>
#include <sys/time.h>
#include <map>
const int DEBUG_MODE = 0;
namespace tree {
class CNode {
public:
int visit_count, to_play, current_latent_state_index, batch_index, best_action;
float reward, prior, value_sum, raw_value, gumbel_scale, gumbel_rng;
std::vector<int> children_index;
std::map<int, CNode> children;
std::vector<int> legal_actions;
std::vector<float> gumbel;
CNode();
CNode(float prior, std::vector<int> &legal_actions);
~CNode();
void expand(int to_play, int current_latent_state_index, int batch_index, float reward, float value, const std::vector<float> &policy_logits);
void add_exploration_noise(float exploration_fraction, const std::vector<float> &noises);
std::vector<float> get_q(float discount);
float compute_mean_q(int isRoot, float parent_q, float discount);
void print_out();
int expanded();
float value();
std::vector<int> get_trajectory();
std::vector<int> get_children_distribution();
std::vector<float> get_children_value(float discount_factor, int action_space_size);
std::vector<float> get_policy(float discount, int action_space_size);
CNode* get_child(int action);
};
class CRoots{
public:
int root_num;
std::vector<CNode> roots;
std::vector<std::vector<int> > legal_actions_list;
CRoots();
CRoots(int root_num, std::vector<std::vector<int> > &legal_actions_list);
~CRoots();
void prepare(float root_noise_weight, const std::vector<std::vector<float> > &noises, const std::vector<float> &rewards, const std::vector<float> &values, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch);
void prepare_no_noise(const std::vector<float> &rewards, const std::vector<float> &values, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch);
void clear();
std::vector<std::vector<int> > get_trajectories();
std::vector<std::vector<int> > get_distributions();
std::vector<std::vector<float> > get_children_values(float discount, int action_space_size);
std::vector<std::vector<float> > get_policies(float discount, int action_space_size);
std::vector<float> get_values();
};
class CSearchResults{
public:
int num;
std::vector<int> latent_state_index_in_search_path, latent_state_index_in_batch, last_actions, search_lens;
std::vector<int> virtual_to_play_batchs;
std::vector<CNode*> nodes;
std::vector<std::vector<CNode*> > search_paths;
CSearchResults();
CSearchResults(int num);
~CSearchResults();
};
//*********************************************************
void update_tree_q(CNode* root, tools::CMinMaxStats &min_max_stats, float discount, int players);
void cback_propagate(std::vector<CNode*> &search_path, tools::CMinMaxStats &min_max_stats, int to_play, float value, float discount);
void cbatch_back_propagate(int current_latent_state_index, float discount, const std::vector<float> &rewards, const std::vector<float> &values, const std::vector<std::vector<float> > &policies, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> &to_play_batch);
int cselect_root_child(CNode* root, float discount, int num_simulations, int max_num_considered_actions);
int cselect_interior_child(CNode* root, float discount);
int cselect_child(CNode* root, tools::CMinMaxStats &min_max_stats, int pb_c_base, float pb_c_init, float discount, float mean_q, int players);
float cucb_score(CNode *child, tools::CMinMaxStats &min_max_stats, float parent_mean_q, float total_children_visit_counts, float pb_c_base, float pb_c_init, float discount, int players);
void cbatch_traverse(CRoots *roots, int num_simulations, int max_num_considered_actions, float discount, CSearchResults &results, std::vector<int> &virtual_to_play_batch);
void csoftmax(std::vector<float> &input, int input_len);
float compute_mixed_value(float raw_value, std::vector<float> q_values, std::vector<int> &child_visit, std::vector<float> &child_prior);
void rescale_qvalues(std::vector<float> &value, float epsilon);
std::vector<float> qtransform_completed_by_mix_value(CNode *root, std::vector<int> & child_visit, \
std::vector<float> & child_prior, float discount= 0.99, float maxvisit_init = 50.0, float value_scale = 0.1, \
bool rescale_values = true, float epsilon = 1e-8);
std::vector<int> get_sequence_of_considered_visits(int max_num_considered_actions, int num_simulations);
std::vector<std::vector<int> > get_table_of_considered_visits(int max_num_considered_actions, int num_simulations);
std::vector<float> score_considered(int considered_visit, std::vector<float> gumbel, std::vector<float> logits, std::vector<float> normalized_qvalues, std::vector<int> visit_counts);
std::vector<float> generate_gumbel(float gumbel_scale, float gumbel_rng, int shape);
}
#endif |