File size: 24,132 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
// C++11
#include <iostream>
#include "cnode.h"
#include <algorithm>
#include <map>
#include <cassert>
#ifdef _WIN32
#include "..\..\common_lib\utils.cpp"
#else
#include "../../common_lib/utils.cpp"
#endif
namespace tree
{
CSearchResults::CSearchResults()
{
/*
Overview:
Initialization of CSearchResults, the default result number is set to 0.
*/
this->num = 0;
}
CSearchResults::CSearchResults(int num)
{
/*
Overview:
Initialization of CSearchResults with result number.
*/
this->num = num;
for (int i = 0; i < num; ++i)
{
this->search_paths.push_back(std::vector<CNode *>());
}
}
CSearchResults::~CSearchResults() {}
//*********************************************************
CNode::CNode()
{
/*
Overview:
Initialization of CNode.
*/
this->prior = 0;
this->legal_actions = legal_actions;
this->visit_count = 0;
this->value_sum = 0;
this->best_action = -1;
this->to_play = 0;
this->reward = 0.0;
}
CNode::CNode(float prior, std::vector<int> &legal_actions)
{
/*
Overview:
Initialization of CNode with prior value and legal actions.
Arguments:
- prior: the prior value of this node.
- legal_actions: a vector of legal actions of this node.
*/
this->prior = prior;
this->legal_actions = legal_actions;
this->visit_count = 0;
this->value_sum = 0;
this->best_action = -1;
this->to_play = 0;
this->current_latent_state_index = -1;
this->batch_index = -1;
}
CNode::~CNode() {}
void CNode::expand(int to_play, int current_latent_state_index, int batch_index, float reward, const std::vector<float> &policy_logits)
{
/*
Overview:
Expand the child nodes of the current node.
Arguments:
- to_play: which player to play the game in the current node.
- current_latent_state_index: The index of latent state of the leaf node in the search path of the current node.
- batch_index: The index of latent state of the leaf node in the search path of the current node.
- reward: the reward of the current node.
- policy_logits: the logit of the child nodes.
*/
this->to_play = to_play;
this->current_latent_state_index = current_latent_state_index;
this->batch_index = batch_index;
this->reward = reward;
int action_num = policy_logits.size();
if (this->legal_actions.size() == 0)
{
for (int i = 0; i < action_num; ++i)
{
this->legal_actions.push_back(i);
}
}
float temp_policy;
float policy_sum = 0.0;
#ifdef _WIN32
// 创建动态数组
float* policy = new float[action_num];
#else
float policy[action_num];
#endif
float policy_max = FLOAT_MIN;
for (auto a : this->legal_actions)
{
if (policy_max < policy_logits[a])
{
policy_max = policy_logits[a];
}
}
for (auto a : this->legal_actions)
{
temp_policy = exp(policy_logits[a] - policy_max);
policy_sum += temp_policy;
policy[a] = temp_policy;
}
float prior;
for (auto a : this->legal_actions)
{
prior = policy[a] / policy_sum;
std::vector<int> tmp_empty;
this->children[a] = CNode(prior, tmp_empty); // only for muzero/efficient zero, not support alphazero
}
#ifdef _WIN32
// 释放数组内存
delete[] policy;
#else
#endif
}
void CNode::add_exploration_noise(float exploration_fraction, const std::vector<float> &noises)
{
/*
Overview:
Add a noise to the prior of the child nodes.
Arguments:
- exploration_fraction: the fraction to add noise.
- noises: the vector of noises added to each child node.
*/
float noise, prior;
for (int i = 0; i < this->legal_actions.size(); ++i)
{
noise = noises[i];
CNode *child = this->get_child(this->legal_actions[i]);
prior = child->prior;
child->prior = prior * (1 - exploration_fraction) + noise * exploration_fraction;
}
}
float CNode::compute_mean_q(int isRoot, float parent_q, float discount_factor)
{
/*
Overview:
Compute the mean q value of the current node.
Arguments:
- isRoot: whether the current node is a root node.
- parent_q: the q value of the parent node.
- discount_factor: the discount_factor of reward.
*/
float total_unsigned_q = 0.0;
int total_visits = 0;
for (auto a : this->legal_actions)
{
CNode *child = this->get_child(a);
if (child->visit_count > 0)
{
float true_reward = child->reward;
float qsa = true_reward + discount_factor * child->value();
total_unsigned_q += qsa;
total_visits += 1;
}
}
float mean_q = 0.0;
if (isRoot && total_visits > 0)
{
mean_q = (total_unsigned_q) / (total_visits);
}
else
{
mean_q = (parent_q + total_unsigned_q) / (total_visits + 1);
}
return mean_q;
}
void CNode::print_out()
{
return;
}
int CNode::expanded()
{
/*
Overview:
Return whether the current node is expanded.
*/
return this->children.size() > 0;
}
float CNode::value()
{
/*
Overview:
Return the real value of the current tree.
*/
float true_value = 0.0;
if (this->visit_count == 0)
{
return true_value;
}
else
{
true_value = this->value_sum / this->visit_count;
return true_value;
}
}
std::vector<int> CNode::get_trajectory()
{
/*
Overview:
Find the current best trajectory starts from the current node.
Outputs:
- traj: a vector of node index, which is the current best trajectory from this node.
*/
std::vector<int> traj;
CNode *node = this;
int best_action = node->best_action;
while (best_action >= 0)
{
traj.push_back(best_action);
node = node->get_child(best_action);
best_action = node->best_action;
}
return traj;
}
std::vector<int> CNode::get_children_distribution()
{
/*
Overview:
Get the distribution of child nodes in the format of visit_count.
Outputs:
- distribution: a vector of distribution of child nodes in the format of visit count (i.e. [1,3,0,2,5]).
*/
std::vector<int> distribution;
if (this->expanded())
{
for (auto a : this->legal_actions)
{
CNode *child = this->get_child(a);
distribution.push_back(child->visit_count);
}
}
return distribution;
}
CNode *CNode::get_child(int action)
{
/*
Overview:
Get the child node corresponding to the input action.
Arguments:
- action: the action to get child.
*/
return &(this->children[action]);
}
//*********************************************************
CRoots::CRoots()
{
/*
Overview:
The initialization of CRoots.
*/
this->root_num = 0;
}
CRoots::CRoots(int root_num, std::vector<std::vector<int> > &legal_actions_list)
{
/*
Overview:
The initialization of CRoots with root num and legal action lists.
Arguments:
- root_num: the number of the current root.
- legal_action_list: the vector of the legal action of this root.
*/
this->root_num = root_num;
this->legal_actions_list = legal_actions_list;
for (int i = 0; i < root_num; ++i)
{
this->roots.push_back(CNode(0, this->legal_actions_list[i]));
}
}
CRoots::~CRoots() {}
void CRoots::prepare(float root_noise_weight, const std::vector<std::vector<float> > &noises, const std::vector<float> &rewards, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch)
{
/*
Overview:
Expand the roots and add noises.
Arguments:
- root_noise_weight: the exploration fraction of roots
- noises: the vector of noise add to the roots.
- rewards: the vector of rewards of each root.
- policies: the vector of policy logits of each root.
- to_play_batch: the vector of the player side of each root.
*/
for (int i = 0; i < this->root_num; ++i)
{
this->roots[i].expand(to_play_batch[i], 0, i, rewards[i], policies[i]);
this->roots[i].add_exploration_noise(root_noise_weight, noises[i]);
this->roots[i].visit_count += 1;
}
}
void CRoots::prepare_no_noise(const std::vector<float> &rewards, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch)
{
/*
Overview:
Expand the roots without noise.
Arguments:
- rewards: the vector of rewards of each root.
- policies: the vector of policy logits of each root.
- to_play_batch: the vector of the player side of each root.
*/
for (int i = 0; i < this->root_num; ++i)
{
this->roots[i].expand(to_play_batch[i], 0, i, rewards[i], policies[i]);
this->roots[i].visit_count += 1;
}
}
void CRoots::clear()
{
/*
Overview:
Clear the roots vector.
*/
this->roots.clear();
}
std::vector<std::vector<int> > CRoots::get_trajectories()
{
/*
Overview:
Find the current best trajectory starts from each root.
Outputs:
- traj: a vector of node index, which is the current best trajectory from each root.
*/
std::vector<std::vector<int> > trajs;
trajs.reserve(this->root_num);
for (int i = 0; i < this->root_num; ++i)
{
trajs.push_back(this->roots[i].get_trajectory());
}
return trajs;
}
std::vector<std::vector<int> > CRoots::get_distributions()
{
/*
Overview:
Get the children distribution of each root.
Outputs:
- distribution: a vector of distribution of child nodes in the format of visit count (i.e. [1,3,0,2,5]).
*/
std::vector<std::vector<int> > distributions;
distributions.reserve(this->root_num);
for (int i = 0; i < this->root_num; ++i)
{
distributions.push_back(this->roots[i].get_children_distribution());
}
return distributions;
}
std::vector<float> CRoots::get_values()
{
/*
Overview:
Return the real value of each root.
*/
std::vector<float> values;
for (int i = 0; i < this->root_num; ++i)
{
values.push_back(this->roots[i].value());
}
return values;
}
//*********************************************************
//
void update_tree_q(CNode *root, tools::CMinMaxStats &min_max_stats, float discount_factor, int players)
{
/*
Overview:
Update the q value of the root and its child nodes.
Arguments:
- root: the root that update q value from.
- min_max_stats: a tool used to min-max normalize the q value.
- discount_factor: the discount factor of reward.
- players: the number of players.
*/
std::stack<CNode *> node_stack;
node_stack.push(root);
while (node_stack.size() > 0)
{
CNode *node = node_stack.top();
node_stack.pop();
if (node != root)
{
// # NOTE: in self-play-mode, value_prefix is not calculated according to the perspective of current player of node,
// # but treated as 1 player, just for obtaining the true reward in the perspective of current player of node.
// # true_reward = node.value_prefix - (- parent_value_prefix)
// float true_reward = node->value_prefix - node->parent_value_prefix;
float true_reward = node->reward;
float qsa;
if (players == 1)
qsa = true_reward + discount_factor * node->value();
else if (players == 2)
// TODO(pu):
qsa = true_reward + discount_factor * (-1) * node->value();
min_max_stats.update(qsa);
}
for (auto a : node->legal_actions)
{
CNode *child = node->get_child(a);
if (child->expanded())
{
node_stack.push(child);
}
}
}
}
void cbackpropagate(std::vector<CNode *> &search_path, tools::CMinMaxStats &min_max_stats, int to_play, float value, float discount_factor)
{
/*
Overview:
Update the value sum and visit count of nodes along the search path.
Arguments:
- search_path: a vector of nodes on the search path.
- min_max_stats: a tool used to min-max normalize the q value.
- to_play: which player to play the game in the current node.
- value: the value to propagate along the search path.
- discount_factor: the discount factor of reward.
*/
assert(to_play == -1 || to_play == 1 || to_play == 2);
if (to_play == -1)
{
// for play-with-bot-mode
float bootstrap_value = value;
int path_len = search_path.size();
for (int i = path_len - 1; i >= 0; --i)
{
CNode *node = search_path[i];
node->value_sum += bootstrap_value;
node->visit_count += 1;
float true_reward = node->reward;
min_max_stats.update(true_reward + discount_factor * node->value());
bootstrap_value = true_reward + discount_factor * bootstrap_value;
}
}
else
{
// for self-play-mode
float bootstrap_value = value;
int path_len = search_path.size();
for (int i = path_len - 1; i >= 0; --i)
{
CNode *node = search_path[i];
if (node->to_play == to_play)
node->value_sum += bootstrap_value;
else
node->value_sum += -bootstrap_value;
node->visit_count += 1;
// NOTE: in self-play-mode, value_prefix is not calculated according to the perspective of current player of node,
// but treated as 1 player, just for obtaining the true reward in the perspective of current player of node.
// float true_reward = node->value_prefix - parent_value_prefix;
float true_reward = node->reward;
// TODO(pu): why in muzero-general is - node.value
min_max_stats.update(true_reward + discount_factor * -node->value());
if (node->to_play == to_play)
bootstrap_value = -true_reward + discount_factor * bootstrap_value;
else
bootstrap_value = true_reward + discount_factor * bootstrap_value;
}
}
}
void cbatch_backpropagate(int current_latent_state_index, float discount_factor, const std::vector<float> &value_prefixs, const std::vector<float> &values, const std::vector<std::vector<float> > &policies, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> &to_play_batch)
{
/*
Overview:
Expand the nodes along the search path and update the infos.
Arguments:
- current_latent_state_index: The index of latent state of the leaf node in the search path.
- discount_factor: the discount factor of reward.
- value_prefixs: the value prefixs of nodes along the search path.
- values: the values to propagate along the search path.
- policies: the policy logits of nodes along the search path.
- min_max_stats: a tool used to min-max normalize the q value.
- results: the search results.
- to_play_batch: the batch of which player is playing on this node.
*/
for (int i = 0; i < results.num; ++i)
{
results.nodes[i]->expand(to_play_batch[i], current_latent_state_index, i, value_prefixs[i], policies[i]);
cbackpropagate(results.search_paths[i], min_max_stats_lst->stats_lst[i], to_play_batch[i], values[i], discount_factor);
}
}
int cselect_child(CNode *root, tools::CMinMaxStats &min_max_stats, int pb_c_base, float pb_c_init, float discount_factor, float mean_q, int players)
{
/*
Overview:
Select the child node of the roots according to ucb scores.
Arguments:
- root: the roots to select the child node.
- min_max_stats: a tool used to min-max normalize the score.
- pb_c_base: constants c2 in muzero.
- pb_c_init: constants c1 in muzero.
- disount_factor: the discount factor of reward.
- mean_q: the mean q value of the parent node.
- players: the number of players.
Outputs:
- action: the action to select.
*/
float max_score = FLOAT_MIN;
const float epsilon = 0.000001;
std::vector<int> max_index_lst;
for (auto a : root->legal_actions)
{
CNode *child = root->get_child(a);
float temp_score = cucb_score(child, min_max_stats, mean_q, root->visit_count - 1, pb_c_base, pb_c_init, discount_factor, players);
if (max_score < temp_score)
{
max_score = temp_score;
max_index_lst.clear();
max_index_lst.push_back(a);
}
else if (temp_score >= max_score - epsilon)
{
max_index_lst.push_back(a);
}
}
int action = 0;
if (max_index_lst.size() > 0)
{
int rand_index = rand() % max_index_lst.size();
action = max_index_lst[rand_index];
}
return action;
}
float cucb_score(CNode *child, tools::CMinMaxStats &min_max_stats, float parent_mean_q, float total_children_visit_counts, float pb_c_base, float pb_c_init, float discount_factor, int players)
{
/*
Overview:
Compute the ucb score of the child.
Arguments:
- child: the child node to compute ucb score.
- min_max_stats: a tool used to min-max normalize the score.
- mean_q: the mean q value of the parent node.
- total_children_visit_counts: the total visit counts of the child nodes of the parent node.
- pb_c_base: constants c2 in muzero.
- pb_c_init: constants c1 in muzero.
- disount_factor: the discount factor of reward.
- players: the number of players.
Outputs:
- ucb_value: the ucb score of the child.
*/
float pb_c = 0.0, prior_score = 0.0, value_score = 0.0;
pb_c = log((total_children_visit_counts + pb_c_base + 1) / pb_c_base) + pb_c_init;
pb_c *= (sqrt(total_children_visit_counts) / (child->visit_count + 1));
prior_score = pb_c * child->prior;
if (child->visit_count == 0)
{
value_score = parent_mean_q;
}
else
{
float true_reward = child->reward;
if (players == 1)
value_score = true_reward + discount_factor * child->value();
else if (players == 2)
value_score = true_reward + discount_factor * (-child->value());
}
value_score = min_max_stats.normalize(value_score);
if (value_score < 0)
value_score = 0;
if (value_score > 1)
value_score = 1;
float ucb_value = prior_score + value_score;
return ucb_value;
}
void cbatch_traverse(CRoots *roots, int pb_c_base, float pb_c_init, float discount_factor, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> &virtual_to_play_batch)
{
/*
Overview:
Search node path from the roots.
Arguments:
- roots: the roots that search from.
- pb_c_base: constants c2 in muzero.
- pb_c_init: constants c1 in muzero.
- disount_factor: the discount factor of reward.
- min_max_stats: a tool used to min-max normalize the score.
- results: the search results.
- virtual_to_play_batch: the batch of which player is playing on this node.
*/
// set seed
get_time_and_set_rand_seed();
int last_action = -1;
float parent_q = 0.0;
results.search_lens = std::vector<int>();
int players = 0;
int largest_element = *max_element(virtual_to_play_batch.begin(), virtual_to_play_batch.end()); // 0 or 2
if (largest_element == -1)
players = 1;
else
players = 2;
for (int i = 0; i < results.num; ++i)
{
CNode *node = &(roots->roots[i]);
int is_root = 1;
int search_len = 0;
results.search_paths[i].push_back(node);
while (node->expanded())
{
float mean_q = node->compute_mean_q(is_root, parent_q, discount_factor);
is_root = 0;
parent_q = mean_q;
int action = cselect_child(node, min_max_stats_lst->stats_lst[i], pb_c_base, pb_c_init, discount_factor, mean_q, players);
if (players > 1)
{
assert(virtual_to_play_batch[i] == 1 || virtual_to_play_batch[i] == 2);
if (virtual_to_play_batch[i] == 1)
virtual_to_play_batch[i] = 2;
else
virtual_to_play_batch[i] = 1;
}
node->best_action = action;
// next
node = node->get_child(action);
last_action = action;
results.search_paths[i].push_back(node);
search_len += 1;
}
CNode *parent = results.search_paths[i][results.search_paths[i].size() - 2];
results.latent_state_index_in_search_path.push_back(parent->current_latent_state_index);
results.latent_state_index_in_batch.push_back(parent->batch_index);
results.last_actions.push_back(last_action);
results.search_lens.push_back(search_len);
results.nodes.push_back(node);
results.virtual_to_play_batchs.push_back(virtual_to_play_batch[i]);
}
}
} |