File size: 34,700 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 |
"""
The Node, Roots class and related core functions for Sampled EfficientZero.
"""
import math
import random
from typing import List, Any, Tuple, Union
import numpy as np
import torch
from torch.distributions import Normal, Independent
from .minimax import MinMaxStats
class Node:
"""
Overview:
the node base class for Sampled EfficientZero.
"""
def __init__(
self,
prior: Union[list, float],
legal_actions: List = None,
action_space_size: int = 9,
num_of_sampled_actions: int = 20,
continuous_action_space: bool = False,
) -> None:
self.prior = prior
self.mu = None
self.sigma = None
self.legal_actions = legal_actions
self.action_space_size = action_space_size
self.num_of_sampled_actions = num_of_sampled_actions
self.continuous_action_space = continuous_action_space
self.is_reset = 0
self.visit_count = 0
self.value_sum = 0
self.best_action = -1
self.to_play = -1 # default -1 means play_with_bot_mode
self.value_prefix = 0.0
self.children = {}
self.children_index = []
self.simulation_index = 0
self.batch_index = 0
def expand(
self, to_play: int, simulation_index: int, batch_index: int, value_prefix: float, policy_logits: List[float]
) -> None:
"""
Overview:
Expand the child nodes of the current node.
Arguments:
- to_play (:obj:`Class int`): which player to play the game in the current node.
- simulation_index (:obj:`Class int`): the x/first index of hidden state vector of the current node, i.e. the search depth.
- batch_index (:obj:`Class int`): the y/second index of hidden state vector of the current node, i.e. the index of batch root node, its maximum is ``batch_size``/``env_num``.
- value_prefix: (:obj:`Class float`): the value prefix of the current node.
- policy_logits: (:obj:`Class List`): the policy logit of the child nodes.
"""
"""
to varify ctree_efficientzero:
import numpy as np
import torch
from torch.distributions import Normal, Independent
mu= torch.tensor([0.1,0.1])
sigma= torch.tensor([0.1,0.1])
dist = Independent(Normal(mu, sigma), 1)
sampled_actions=torch.tensor([0.282769,0.376611])
dist.log_prob(sampled_actions)
"""
self.to_play = to_play
self.simulation_index = simulation_index
self.batch_index = batch_index
self.value_prefix = value_prefix
# ==============================================================
# TODO(pu): legal actions
# ==============================================================
# policy_values = torch.softmax(torch.tensor([policy_logits[a] for a in self.legal_actions]), dim=0).tolist()
# policy = {a: policy_values[i] for i, a in enumerate(self.legal_actions)}
# for action, p in policy.items():
# self.children[action] = Node(p)
# ==============================================================
# sampled related core code
# ==============================================================
if self.continuous_action_space:
(mu, sigma) = torch.tensor(policy_logits[:self.action_space_size]
), torch.tensor(policy_logits[-self.action_space_size:])
self.mu = mu
self.sigma = sigma
dist = Independent(Normal(mu, sigma), 1)
# print(dist.batch_shape, dist.event_shape)
sampled_actions_before_tanh = dist.sample(torch.tensor([self.num_of_sampled_actions]))
sampled_actions = torch.tanh(sampled_actions_before_tanh)
y = 1 - sampled_actions.pow(2) + 1e-6
# keep dimension for loss computation (usually for action space is 1 env. e.g. pendulum)
log_prob = dist.log_prob(sampled_actions_before_tanh).unsqueeze(-1)
log_prob = log_prob - torch.log(y).sum(-1, keepdim=True)
self.legal_actions = []
for action_index in range(self.num_of_sampled_actions):
self.children[Action(sampled_actions[action_index].detach().cpu().numpy())] = Node(
log_prob[action_index],
action_space_size=self.action_space_size,
num_of_sampled_actions=self.num_of_sampled_actions,
continuous_action_space=self.continuous_action_space
)
self.legal_actions.append(Action(sampled_actions[action_index].detach().cpu().numpy()))
else:
if self.legal_actions is not None:
# first use the self.legal_actions to exclude the illegal actions
policy_tmp = [0. for _ in range(self.action_space_size)]
for index, legal_action in enumerate(self.legal_actions):
policy_tmp[legal_action] = policy_logits[index]
policy_logits = policy_tmp
# then empty the self.legal_actions
self.legal_actions = []
prob = torch.softmax(torch.tensor(policy_logits), dim=-1)
sampled_actions = torch.multinomial(prob, self.num_of_sampled_actions, replacement=False)
for action_index in range(self.num_of_sampled_actions):
self.children[Action(sampled_actions[action_index].detach().cpu().numpy())] = Node(
prob[sampled_actions[action_index]], #
action_space_size=self.action_space_size,
num_of_sampled_actions=self.num_of_sampled_actions,
continuous_action_space=self.continuous_action_space
)
self.legal_actions.append(Action(sampled_actions[action_index].detach().cpu().numpy()))
def add_exploration_noise_to_sample_distribution(
self, exploration_fraction: float, noises: List[float], policy_logits: List[float]
) -> None:
"""
Overview:
add exploration noise to priors.
Arguments:
- noises (:obj: list): length is len(self.legal_actions)
"""
# ==============================================================
# sampled related core code
# ==============================================================
# TODO(pu): add noise to sample distribution \beta logits
for i in range(len(policy_logits)):
if self.continuous_action_space:
# probs is log_prob
pass
else:
# probs is prob
policy_logits[i] = policy_logits[i] * (1 - exploration_fraction) + noises[i] * exploration_fraction
def add_exploration_noise(self, exploration_fraction: float, noises: List[float]) -> None:
"""
Overview:
Add a noise to the prior of the child nodes.
Arguments:
- exploration_fraction: the fraction to add noise.
- noises (:obj: list): the vector of noises added to each child node. length is len(self.legal_actions)
"""
# ==============================================================
# sampled related core code
# ==============================================================
actions = list(self.children.keys())
for a, n in zip(actions, noises):
if self.continuous_action_space:
# prior is log_prob
self.children[a].prior = np.log(
np.exp(self.children[a].prior) * (1 - exploration_fraction) + n * exploration_fraction
)
else:
# prior is prob
self.children[a].prior = self.children[a].prior * (1 - exploration_fraction) + n * exploration_fraction
def compute_mean_q(self, is_root: int, parent_q: float, discount_factor: float) -> float:
"""
Overview:
Compute the mean q value of the current node.
Arguments:
- is_root (:obj:`int`): whether the current node is a root node.
- parent_q (:obj:`float`): the q value of the parent node.
- discount_factor (:obj:`float`): the discount_factor of reward.
"""
total_unsigned_q = 0.0
total_visits = 0
parent_value_prefix = self.value_prefix
for a in self.legal_actions:
child = self.get_child(a)
if child.visit_count > 0:
true_reward = child.value_prefix - parent_value_prefix
if self.is_reset == 1:
true_reward = child.value_prefix
# TODO(pu): only one step bootstrap?
q_of_s_a = true_reward + discount_factor * child.value
total_unsigned_q += q_of_s_a
total_visits += 1
if is_root and total_visits > 0:
mean_q = total_unsigned_q / total_visits
else:
# if is not root node,
# TODO(pu): why parent_q?
mean_q = (parent_q + total_unsigned_q) / (total_visits + 1)
return mean_q
def print_out(self) -> None:
pass
def get_trajectory(self) -> List[Union[int, float]]:
"""
Overview:
Find the current best trajectory starts from the current node.
Outputs:
- traj: a vector of node index, which is the current best trajectory from this node.
"""
traj = []
node = self
best_action = node.best_action
while best_action >= 0:
traj.append(best_action)
node = node.get_child(best_action)
best_action = node.best_action
return traj
def get_children_distribution(self) -> List[Union[int, float]]:
if self.legal_actions == []:
return None
# distribution = {a: 0 for a in self.legal_actions}
distribution = {}
if self.expanded:
for a in self.legal_actions:
child = self.get_child(a)
distribution[a] = child.visit_count
# only take the visit counts
distribution = [v for k, v in distribution.items()]
return distribution
def get_child(self, action: Union[int, float]) -> "Node":
"""
Overview:
get children node according to the input action.
"""
if isinstance(action, Action):
return self.children[action]
if not isinstance(action, np.int64):
action = int(action)
return self.children[action]
@property
def expanded(self) -> bool:
return len(self.children) > 0
@property
def value(self) -> float:
"""
Overview:
Return the estimated value of the current root node.
"""
if self.visit_count == 0:
return 0
else:
return self.value_sum / self.visit_count
class Roots:
def __init__(
self,
root_num: int,
legal_actions_list: List,
action_space_size: int = 9,
num_of_sampled_actions: int = 20,
continuous_action_space: bool = False,
) -> None:
self.num = root_num
self.root_num = root_num
self.legal_actions_list = legal_actions_list # list of list
self.num_of_sampled_actions = num_of_sampled_actions
self.continuous_action_space = continuous_action_space
self.roots = []
# ==============================================================
# sampled related core code
# ==============================================================
for i in range(self.root_num):
if isinstance(legal_actions_list, list):
# TODO(pu): sampled in board_games
self.roots.append(
Node(
0,
legal_actions_list[i],
action_space_size=action_space_size,
num_of_sampled_actions=self.num_of_sampled_actions,
continuous_action_space=self.continuous_action_space
)
)
elif isinstance(legal_actions_list, int):
# if legal_actions_list is int
self.roots.append(
Node(
0,
None,
action_space_size=action_space_size,
num_of_sampled_actions=self.num_of_sampled_actions,
continuous_action_space=self.continuous_action_space
)
)
elif legal_actions_list is None:
# continuous action space
self.roots.append(
Node(
0,
None,
action_space_size=action_space_size,
num_of_sampled_actions=self.num_of_sampled_actions,
continuous_action_space=self.continuous_action_space
)
)
def prepare(
self,
root_noise_weight: float,
noises: List[float],
value_prefixs: List[float],
policies: List[List[float]],
to_play: int = -1
) -> None:
"""
Overview:
Expand the roots and add noises.
Arguments:
- root_noise_weight: the exploration fraction of roots
- noises: the vector of noise add to the roots.
- value_prefixs: the vector of value prefixs of each root.
- policies: the vector of policy logits of each root.
- to_play_batch: the vector of the player side of each root.
"""
for i in range(self.root_num):
if to_play is None:
self.roots[i].expand(-1, 0, i, value_prefixs[i], policies[i])
else:
self.roots[i].expand(to_play[i], 0, i, value_prefixs[i], policies[i])
self.roots[i].add_exploration_noise(root_noise_weight, noises[i])
self.roots[i].visit_count += 1
def prepare_no_noise(self, value_prefixs: List[float], policies: List[List[float]], to_play: int = -1) -> None:
"""
Overview:
Expand the roots without noise.
Arguments:
- value_prefixs: the vector of value prefixs of each root.
- policies: the vector of policy logits of each root.
- to_play_batch: the vector of the player side of each root.
"""
for i in range(self.root_num):
if to_play is None:
self.roots[i].expand(-1, 0, i, value_prefixs[i], policies[i])
else:
self.roots[i].expand(to_play[i], 0, i, value_prefixs[i], policies[i])
self.roots[i].visit_count += 1
def clear(self) -> None:
self.roots.clear()
def get_trajectories(self) -> List[List[Union[int, float]]]:
"""
Overview:
Find the current best trajectory starts from each root.
Outputs:
- traj: a vector of node index, which is the current best trajectory from each root.
"""
trajs = []
for i in range(self.root_num):
trajs.append(self.roots[i].get_trajectory())
return trajs
def get_distributions(self) -> List[List[Union[int, float]]]:
"""
Overview:
Get the children distribution of each root.
Outputs:
- distribution: a vector of distribution of child nodes in the format of visit count (i.e. [1,3,0,2,5]).
"""
distributions = []
for i in range(self.root_num):
distributions.append(self.roots[i].get_children_distribution())
return distributions
# ==============================================================
# sampled related core code
# ==============================================================
def get_sampled_actions(self) -> List[List[Union[int, float]]]:
"""
Overview:
Get the sampled_actions of each root.
Outputs:
- python_sampled_actions: a vector of sampled_actions for each root, e.g. the size of original action space is 6, the K=3,
python_sampled_actions = [[1,3,0], [2,4,0], [5,4,1]].
"""
# TODO(pu): root_sampled_actions bug in discere action space?
sampled_actions = []
for i in range(self.root_num):
sampled_actions.append(self.roots[i].legal_actions)
return sampled_actions
def get_values(self) -> float:
"""
Overview:
Return the estimated value of each root.
"""
values = []
for i in range(self.root_num):
values.append(self.roots[i].value)
return values
class SearchResults:
def __init__(self, num: int):
self.num = num
self.nodes = []
self.search_paths = []
self.latent_state_index_in_search_path = []
self.latent_state_index_in_batch = []
self.last_actions = []
self.search_lens = []
def select_child(
root: Node,
min_max_stats: MinMaxStats,
pb_c_base: float,
pb_c_int: float,
discount_factor: float,
mean_q: float,
players: int,
continuous_action_space: bool = False,
) -> Union[int, float]:
"""
Overview:
Select the child node of the roots according to ucb scores.
Arguments:
- root: the roots to select the child node.
- min_max_stats (:obj:`Class MinMaxStats`): a tool used to min-max normalize the score.
- pb_c_base (:obj:`Class Float`): constant c1 used in pUCT rule, typically 1.25.
- pb_c_int (:obj:`Class Float`): constant c2 used in pUCT rule, typically 19652.
- discount_factor (:obj:`Class Float`): The discount factor used in calculating bootstrapped value, if env is board_games, we set discount_factor=1.
- mean_q (:obj:`Class Float`): the mean q value of the parent node.
- players (:obj:`Class Float`): the number of players. one/in self-play-mode board games.
- continuous_action_space: whether the action space is continous in current env.
Returns:
- action (:obj:`Union[int, float]`): Choose the action with the highest ucb score.
"""
# ==============================================================
# sampled related core code
# ==============================================================
# TODO(pu): Progressive widening (See https://hal.archives-ouvertes.fr/hal-00542673v2/document)
max_score = -np.inf
epsilon = 0.000001
max_index_lst = []
for action, child in root.children.items():
# ==============================================================
# sampled related core code
# ==============================================================
# use root as input argument
temp_score = compute_ucb_score(
root, child, min_max_stats, mean_q, root.is_reset, root.visit_count, root.value_prefix, pb_c_base, pb_c_int,
discount_factor, players, continuous_action_space
)
if max_score < temp_score:
max_score = temp_score
max_index_lst.clear()
max_index_lst.append(action)
elif temp_score >= max_score - epsilon:
# TODO(pu): if the difference is less than epsilon = 0.000001, we random choice action from max_index_lst
max_index_lst.append(action)
if len(max_index_lst) > 0:
action = random.choice(max_index_lst)
return action
def compute_ucb_score(
parent: Node,
child: Node,
min_max_stats: MinMaxStats,
parent_mean_q: float,
is_reset: int,
total_children_visit_counts: float,
parent_value_prefix: float,
pb_c_base: float,
pb_c_init: float,
discount_factor: float,
players: int = 1,
continuous_action_space: bool = False,
) -> float:
"""
Overview:
Compute the ucb score of the child.
Arguments:
- child: the child node to compute ucb score.
- min_max_stats: a tool used to min-max normalize the score.
- parent_mean_q: the mean q value of the parent node.
- is_reset: whether the value prefix needs to be reset.
- total_children_visit_counts: the total visit counts of the child nodes of the parent node.
- parent_value_prefix: the value prefix of parent node.
- pb_c_base: constants c2 in muzero.
- pb_c_init: constants c1 in muzero.
- disount_factor: the discount factor of reward.
- players: the number of players.
- continuous_action_space: whether the action space is continous in current env.
Outputs:
- ucb_value: the ucb score of the child.
"""
assert total_children_visit_counts == parent.visit_count
pb_c = math.log((total_children_visit_counts + pb_c_base + 1) / pb_c_base) + pb_c_init
pb_c *= (math.sqrt(total_children_visit_counts) / (child.visit_count + 1))
# ==============================================================
# sampled related core code
# ==============================================================
# TODO(pu)
node_prior = "density"
# node_prior = "uniform"
if node_prior == "uniform":
# Uniform prior for continuous action space
prior_score = pb_c * (1 / len(parent.children))
elif node_prior == "density":
# TODO(pu): empirical distribution
if continuous_action_space:
# prior is log_prob
prior_score = pb_c * (
torch.exp(child.prior) / (sum([torch.exp(node.prior) for node in parent.children.values()]) + 1e-6)
)
else:
# prior is prob
prior_score = pb_c * (child.prior / (sum([node.prior for node in parent.children.values()]) + 1e-6))
# print('prior_score: ', prior_score)
else:
raise ValueError("{} is unknown prior option, choose uniform or density")
if child.visit_count == 0:
value_score = parent_mean_q
else:
true_reward = child.value_prefix - parent_value_prefix
if is_reset == 1:
true_reward = child.value_prefix
if players == 1:
value_score = true_reward + discount_factor * child.value
elif players == 2:
value_score = true_reward + discount_factor * (-child.value)
value_score = min_max_stats.normalize(value_score)
if value_score < 0:
value_score = 0
if value_score > 1:
value_score = 1
ucb_score = prior_score + value_score
return ucb_score
def batch_traverse(
roots: Any,
pb_c_base: float,
pb_c_init: float,
discount_factor: float,
min_max_stats_lst,
results: SearchResults,
virtual_to_play: List,
continuous_action_space: bool = False,
) -> Tuple[List[int], List[int], List[Union[int, float]], List]:
"""
Overview:
traverse, also called expansion. process a batch roots parallely.
Arguments:
- roots (:obj:`Any`): a batch of root nodes to be expanded.
- pb_c_base (:obj:`float`): constant c1 used in pUCT rule, typically 1.25.
- pb_c_init (:obj:`float`): constant c2 used in pUCT rule, typically 19652.
- discount_factor (:obj:`float`): The discount factor used in calculating bootstrapped value, if env is board_games, we set discount_factor=1.
- virtual_to_play (:obj:`list`): the to_play list used in self_play collecting and training in board games,
`virtual` is to emphasize that actions are performed on an imaginary hidden state.
- continuous_action_space: whether the action space is continous in current env.
Returns:
- latent_state_index_in_search_path (:obj:`list`): the list of x/first index of hidden state vector of the searched node, i.e. the search depth.
- latent_state_index_in_batch (:obj:`list`): the list of y/second index of hidden state vector of the searched node, i.e. the index of batch root node, its maximum is ``batch_size``/``env_num``.
- last_actions (:obj:`list`): the action performed by the previous node.
- virtual_to_play (:obj:`list`): the to_play list used in self_play collecting and trainin gin board games,
`virtual` is to emphasize that actions are performed on an imaginary hidden state.
"""
parent_q = 0.0
results.search_lens = [None for _ in range(results.num)]
results.last_actions = [None for _ in range(results.num)]
results.nodes = [None for _ in range(results.num)]
results.latent_state_index_in_search_path = [None for _ in range(results.num)]
results.latent_state_index_in_batch = [None for _ in range(results.num)]
if virtual_to_play in [1, 2] or virtual_to_play[0] in [1, 2]:
players = 2
elif virtual_to_play in [-1, None] or virtual_to_play[0] in [-1, None]:
players = 1
results.search_paths = {i: [] for i in range(results.num)}
for i in range(results.num):
node = roots.roots[i]
is_root = 1
search_len = 0
results.search_paths[i].append(node)
"""
MCTS stage 1: Selection
Each simulation starts from the internal root state s0, and finishes when the simulation reaches a leaf node s_l.
The leaf node is the node that is currently not expanded.
"""
while node.expanded:
mean_q = node.compute_mean_q(is_root, parent_q, discount_factor)
is_root = 0
parent_q = mean_q
# select action according to the pUCT rule
action = select_child(
node, min_max_stats_lst.stats_lst[i], pb_c_base, pb_c_init, discount_factor, mean_q, players,
continuous_action_space
)
if players == 2:
# Players play turn by turn
if virtual_to_play[i] == 1:
virtual_to_play[i] = 2
else:
virtual_to_play[i] = 1
node.best_action = action
# move to child node according to action
node = node.get_child(action)
last_action = action
results.search_paths[i].append(node)
search_len += 1
# note this return the parent node of the current searched node
parent = results.search_paths[i][len(results.search_paths[i]) - 1 - 1]
results.latent_state_index_in_search_path[i] = parent.simulation_index
results.latent_state_index_in_batch[i] = parent.batch_index
# results.last_actions[i] = last_action
results.last_actions[i] = last_action.value
results.search_lens[i] = search_len
# the leaf node
results.nodes[i] = node
# print(f'env {i} one simulation done!')
return results.latent_state_index_in_search_path, results.latent_state_index_in_batch, results.last_actions, virtual_to_play
def backpropagate(
search_path: List[Node], min_max_stats: MinMaxStats, to_play: int, value: float, discount_factor: float
) -> None:
"""
Overview:
Update the value sum and visit count of nodes along the search path.
Arguments:
- search_path: a vector of nodes on the search path.
- min_max_stats: a tool used to min-max normalize the q value.
- to_play: which player to play the game in the current node.
- value: the value to propagate along the search path.
- discount_factor: the discount factor of reward.
"""
assert to_play is None or to_play in [-1, 1, 2], to_play
if to_play is None or to_play == -1:
# for play-with-bot-mode
bootstrap_value = value
path_len = len(search_path)
for i in range(path_len - 1, -1, -1):
node = search_path[i]
node.value_sum += bootstrap_value
node.visit_count += 1
parent_value_prefix = 0.0
is_reset = 0
if i >= 1:
parent = search_path[i - 1]
parent_value_prefix = parent.value_prefix
is_reset = parent.is_reset
true_reward = node.value_prefix - parent_value_prefix
min_max_stats.update(true_reward + discount_factor * node.value)
if is_reset == 1:
true_reward = node.value_prefix
bootstrap_value = true_reward + discount_factor * bootstrap_value
else:
# for self-play-mode
bootstrap_value = value
path_len = len(search_path)
for i in range(path_len - 1, -1, -1):
node = search_path[i]
# to_play related
node.value_sum += bootstrap_value if node.to_play == to_play else -bootstrap_value
node.visit_count += 1
parent_value_prefix = 0.0
is_reset = 0
if i >= 1:
parent = search_path[i - 1]
parent_value_prefix = parent.value_prefix
is_reset = parent.is_reset
# NOTE: in self-play-mode, value_prefix is not calculated according to the perspective of current player of node.
# TODO: true_reward = node.value_prefix - (- parent_value_prefix)
true_reward = node.value_prefix - parent_value_prefix
if is_reset == 1:
true_reward = node.value_prefix
min_max_stats.update(true_reward + discount_factor * -node.value)
# true_reward is in the perspective of current player of node
bootstrap_value = (
-true_reward if node.to_play == to_play else true_reward
) + discount_factor * bootstrap_value
def batch_backpropagate(
simulation_index: int,
discount_factor: float,
value_prefixs: List,
values: List[float],
policies: List[float],
min_max_stats_lst: List[MinMaxStats],
results: SearchResults,
is_reset_list: List,
to_play: list = None
) -> None:
"""
Overview:
Backpropagation along the search path to update the attributes.
Arguments:
- simulation_index (:obj:`Class Int`): The index of latent state of the leaf node in the search path.
- discount_factor (:obj:`Class Float`): The discount factor used in calculating bootstrapped value, if env is board_games, we set discount_factor=1.
- value_prefixs (:obj:`Class List`): the value prefixs of nodes along the search path.
- values (:obj:`Class List`): the values to propagate along the search path.
- policies (:obj:`Class List`): the policy logits of nodes along the search path.
- min_max_stats_lst (:obj:`Class List[MinMaxStats]`): a tool used to min-max normalize the q value.
- results (:obj:`Class List`): the search results.
- is_reset_list (:obj:`Class List`): the vector of is_reset nodes along the search path, where is_reset represents for whether the parent value prefix needs to be reset.
- to_play (:obj:`Class List`): the batch of which player is playing on this node.
"""
for i in range(results.num):
# ****** expand the leaf node ******
if to_play is None:
# we set to_play=-1, because in self-play-mode of board_games to_play = {1, 2}.
results.nodes[i].expand(-1, simulation_index, i, value_prefixs[i], policies[i])
else:
results.nodes[i].expand(to_play[i], simulation_index, i, value_prefixs[i], policies[i])
# reset
results.nodes[i].is_reset = is_reset_list[i]
# ****** backpropagate ******
if to_play is None:
backpropagate(results.search_paths[i], min_max_stats_lst.stats_lst[i], 0, values[i], discount_factor)
else:
backpropagate(
results.search_paths[i], min_max_stats_lst.stats_lst[i], to_play[i], values[i], discount_factor
)
from typing import Union
import numpy as np
class Action:
"""
Class that represents an action of a game.
Attributes:
value (Union[int, np.ndarray]): The value of the action. Can be either an integer or a numpy array.
"""
def __init__(self, value: Union[int, np.ndarray]) -> None:
"""
Initializes the Action with the given value.
Args:
value (Union[int, np.ndarray]): The value of the action.
"""
self.value = value
def __hash__(self) -> int:
"""
Returns a hash of the Action's value.
If the value is a numpy array, it is flattened to a tuple and then hashed.
If the value is a single integer, it is hashed directly.
Returns:
int: The hash of the Action's value.
"""
if isinstance(self.value, np.ndarray):
if self.value.ndim == 0:
return hash(self.value.item())
else:
return hash(tuple(self.value.flatten()))
else:
return hash(self.value)
def __eq__(self, other: "Action") -> bool:
"""
Determines if this Action is equal to another Action.
If both values are numpy arrays, they are compared element-wise.
Otherwise, they are compared directly.
Args:
other (Action): The Action to compare with.
Returns:
bool: True if the two Actions are equal, False otherwise.
"""
if isinstance(self.value, np.ndarray) and isinstance(other.value, np.ndarray):
return np.array_equal(self.value, other.value)
else:
return self.value == other.value
def __gt__(self, other: "Action") -> bool:
"""
Determines if this Action's value is greater than another Action's value.
Args:
other (Action): The Action to compare with.
Returns:
bool: True if this Action's value is greater, False otherwise.
"""
return self.value > other.value
def __repr__(self) -> str:
"""
Returns a string representation of this Action.
Returns:
str: A string representation of the Action's value.
"""
return str(self.value)
|