File size: 25,032 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
"""
The Node, Roots class and related core functions for Stochastic MuZero.
"""
import math
import random
from typing import List, Dict, Any, Tuple, Union

import numpy as np
import torch

from .minimax import MinMaxStats


class Node:
    """
     Overview:
         the node base class for Stochastic MuZero.
     Arguments:
     """

    def __init__(self, prior: float, legal_actions: List = None, action_space_size: int = 9, is_chance: bool = False, chance_space_size: int = 2) -> None:
        self.prior = prior
        self.legal_actions = legal_actions
        self.action_space_size = action_space_size

        self.visit_count = 0
        self.value_sum = 0
        self.best_action = -1
        self.to_play = 0  # default 0 means play_with_bot_mode
        self.reward = 0
        self.value_prefix = 0.0
        self.children = {}
        self.children_index = []
        self.latent_state_index_in_search_path = 0
        self.latent_state_index_in_batch = 0
        self.parent_value_prefix = 0  # only used in update_tree_q method

        self.is_chance = is_chance
        self.chance_space_size = chance_space_size

    def expand(
            self, to_play: int, latent_state_index_in_search_path: int, latent_state_index_in_batch: int, reward: float,
            policy_logits: List[float], child_is_chance: bool = True
    ) -> None:
        """
        Overview:
            Expand the child nodes of the current node.
        Arguments:
            - to_play (:obj:`Class int`): which player to play the game in the current node.
            - latent_state_index_in_search_path (:obj:`Class int`): the x/first index of latent state vector of the current node, i.e. the search depth.
            - latent_state_index_in_batch (:obj:`Class int`): the y/second index of latent state vector of the current node, i.e. the index of batch root node, its maximum is ``batch_size``/``env_num``.
            - value_prefix: (:obj:`Class float`): the value prefix of the current node.
            - policy_logits: (:obj:`Class List`): the policy logit of the child nodes.
        """
        self.to_play = to_play
        self.reward = reward

        if self.is_chance is True:
            child_is_chance = False
            self.reward = 0.0

            if self.legal_actions is None:
                self.legal_actions = np.arange(self.chance_space_size)
            self.latent_state_index_in_search_path = latent_state_index_in_search_path
            self.latent_state_index_in_batch = latent_state_index_in_batch
            policy_values = torch.softmax(torch.tensor([policy_logits[a] for a in self.legal_actions]), dim=0).tolist()
            policy = {legal_action: policy_values[index] for index, legal_action in enumerate(self.legal_actions)}
            for action, prior in policy.items():
                self.children[action] = Node(prior, is_chance=child_is_chance)
        else:
            child_is_chance = True
            self.legal_actions = np.arange(len(policy_logits))
            self.latent_state_index_in_search_path = latent_state_index_in_search_path
            self.latent_state_index_in_batch = latent_state_index_in_batch
            policy_values = torch.softmax(torch.tensor([policy_logits[a] for a in self.legal_actions]), dim=0).tolist()
            policy = {legal_action: policy_values[index] for index, legal_action in enumerate(self.legal_actions)}
            for action, prior in policy.items():
                self.children[action] = Node(prior, is_chance=child_is_chance)

    def add_exploration_noise(self, exploration_fraction: float, noises: List[float]) -> None:
        """
        Overview:
            add exploration noise to priors
        Arguments:
            - noises (:obj: list): length is len(self.legal_actions)
        """
        for i, a in enumerate(self.legal_actions):
            """
            i in index, a is action, e.g. self.legal_actions = [0,1,2,4,6,8], i=[0,1,2,3,4,5], a=[0,1,2,4,6,8]
            """
            try:
                noise = noises[i]
            except Exception as error:
                print(error)
            child = self.get_child(a)
            prior = child.prior
            child.prior = prior * (1 - exploration_fraction) + noise * exploration_fraction

    def compute_mean_q(self, is_root: int, parent_q: float, discount_factor: float) -> float:
        """
        Overview:
            Compute the mean q value of the current node.
        Arguments:
            - is_root (:obj:`int`): whether the current node is a root node.
            - parent_q (:obj:`float`): the q value of the parent node.
            - discount_factor (:obj:`float`): the discount_factor of reward.
        """
        total_unsigned_q = 0.0
        total_visits = 0
        for a in self.legal_actions:
            child = self.get_child(a)
            if child.visit_count > 0:
                true_reward = child.reward
                # TODO(pu): only one step bootstrap?
                q_of_s_a = true_reward + discount_factor * child.value
                total_unsigned_q += q_of_s_a
                total_visits += 1
        if is_root and total_visits > 0:
            mean_q = total_unsigned_q / total_visits
        else:
            # if is not root node,
            # TODO(pu): why parent_q?
            mean_q = (parent_q + total_unsigned_q) / (total_visits + 1)
        return mean_q

    def get_trajectory(self) -> List[Union[int, float]]:
        """
        Overview:
            Find the current best trajectory starts from the current node.
        Outputs:
            - traj: a vector of node index, which is the current best trajectory from this node.
        """
        # TODO(pu): best action
        traj = []
        node = self
        best_action = node.best_action
        while best_action >= 0:
            traj.append(best_action)

            node = node.get_child(best_action)
            best_action = node.best_action
        return traj

    def get_children_distribution(self) -> List[Union[int, float]]:
        if self.legal_actions == []:
            return None
        distribution = {a: 0 for a in self.legal_actions}
        if self.expanded:
            for a in self.legal_actions:
                child = self.get_child(a)
                distribution[a] = child.visit_count
            # only take the visit counts
            distribution = [v for k, v in distribution.items()]
        return distribution

    def get_child(self, action: Union[int, float]) -> "Node":
        """
        Overview:
            get children node according to the input action.
        """
        if not isinstance(action, np.int64):
            action = int(action)
        return self.children[action]

    @property
    def expanded(self) -> bool:
        return len(self.children) > 0

    @property
    def value(self) -> float:
        """
        Overview:
            Return the estimated value of the current root node.
        """
        if self.visit_count == 0:
            return 0
        else:
            return self.value_sum / self.visit_count


class Roots:

    def __init__(self, root_num: int, legal_actions_list: List) -> None:
        self.num = root_num
        self.root_num = root_num
        self.legal_actions_list = legal_actions_list  # list of list

        self.roots = []
        for i in range(self.root_num):
            if isinstance(legal_actions_list, list):
                self.roots.append(Node(0, legal_actions_list[i]))
            else:
                # if legal_actions_list is int
                self.roots.append(Node(0, np.arange(legal_actions_list)))

    def prepare(
            self,
            root_noise_weight: float,
            noises: List[float],
            rewards: List[float],
            policies: List[List[float]],
            to_play: int = -1
    ) -> None:
        """
        Overview:
            Expand the roots and add noises.
        Arguments:
            - root_noise_weight: the exploration fraction of roots
            - noises: the vector of noise add to the roots.
            - rewards: the vector of rewards of each root.
            - policies: the vector of policy logits of each root.
            - to_play_batch: the vector of the player side of each root.
        """
        for i in range(self.root_num):
            #  to_play: int, latent_state_index_in_search_path: int, latent_state_index_in_batch: int,
            if to_play is None:
                # TODO(pu): why latent_state_index_in_search_path=0, latent_state_index_in_batch=i?
                self.roots[i].expand(-1, 0, i, rewards[i], policies[i])
            else:
                self.roots[i].expand(to_play[i], 0, i, rewards[i], policies[i])

            self.roots[i].add_exploration_noise(root_noise_weight, noises[i])
            self.roots[i].visit_count += 1

    def prepare_no_noise(self, rewards: List[float], policies: List[List[float]], to_play: int = -1) -> None:
        """
        Overview:
            Expand the roots without noise.
        Arguments:
            - rewards: the vector of rewards of each root.
            - policies: the vector of policy logits of each root.
            - to_play_batch: the vector of the player side of each root.
        """
        for i in range(self.root_num):
            if to_play is None:
                self.roots[i].expand(-1, 0, i, rewards[i], policies[i])
            else:
                self.roots[i].expand(to_play[i], 0, i, rewards[i], policies[i])

            self.roots[i].visit_count += 1

    def clear(self) -> None:
        self.roots.clear()

    def get_trajectories(self) -> List[List[Union[int, float]]]:
        """
        Overview:
            Find the current best trajectory starts from each root.
        Outputs:
            - traj: a vector of node index, which is the current best trajectory from each root.
        """
        trajs = []
        for i in range(self.root_num):
            trajs.append(self.roots[i].get_trajectory())
        return trajs

    def get_distributions(self) -> List[List[Union[int, float]]]:
        """
        Overview:
            Get the children distribution of each root.
        Outputs:
            - distribution: a vector of distribution of child nodes in the format of visit count (i.e. [1,3,0,2,5]).
        """
        distributions = []
        for i in range(self.root_num):
            distributions.append(self.roots[i].get_children_distribution())

        return distributions

    def get_values(self) -> float:
        """
        Overview:
            Return the estimated value of each root.
        """
        values = []
        for i in range(self.root_num):
            values.append(self.roots[i].value)
        return values


class SearchResults:

    def __init__(self, num: int) -> None:
        self.num = num
        self.nodes = []
        self.search_paths = []
        self.latent_state_index_in_search_path = []
        self.latent_state_index_in_batch = []
        self.last_actions = []
        self.search_lens = []


def update_tree_q(root: Node, min_max_stats: MinMaxStats, discount_factor: float, players: int = 1) -> None:
    """
    Overview:
        Update the value sum and visit count of nodes along the search path.
    Arguments:
        - search_path: a vector of nodes on the search path.
        - min_max_stats: a tool used to min-max normalize the q value.
        - to_play: which player to play the game in the current node.
        - value: the value to propagate along the search path.
        - discount_factor: the discount factor of reward.
    """
    node_stack = []
    node_stack.append(root)
    while len(node_stack) > 0:
        node = node_stack[-1]
        node_stack.pop()

        if node != root:
            true_reward = node.reward
            if players == 1:
                q_of_s_a = true_reward + discount_factor * node.value
            elif players == 2:
                q_of_s_a = true_reward + discount_factor * (-node.value)

            min_max_stats.update(q_of_s_a)

        for a in node.legal_actions:
            child = node.get_child(a)
            if child.expanded:
                node_stack.append(child)


def select_child(
        node: Node, min_max_stats: MinMaxStats, pb_c_base: float, pb_c_int: float, discount_factor: float,
        mean_q: float, players: int
) -> Union[int, float]:
    """
    Overview:
        Select the child node of the roots according to ucb scores.
    Arguments:
        - node: the node to select the child node.
        - min_max_stats (:obj:`Class MinMaxStats`):  a tool used to min-max normalize the score.
        - pb_c_base (:obj:`Class Float`): constant c1 used in pUCT rule, typically 1.25.
        - pb_c_int (:obj:`Class Float`): constant c2 used in pUCT rule, typically 19652.
        - discount_factor (:obj:`Class Float`): discount_factor factor used i calculating bootstrapped value, if env is board_games, we set discount_factor=1.
        - mean_q (:obj:`Class Float`): the mean q value of the parent node.
        - players (:obj:`Class Int`): the number of players. one/two_player mode board games.
    Returns:
        - action (:obj:`Union[int, float]`): Choose the action with the highest ucb score.
    """

    if node.is_chance:
        # print("root->is_chance: True ")

        # If the node is chance node, we sample from the prior outcome distribution.
        outcomes, probs = zip(*[(o, n.prior) for o, n in node.children.items()])
        outcome = np.random.choice(outcomes, p=probs)
        # print(outcome, probs)
        return outcome

    # print("root->is_chance: False ")
    # If the node is decision node, we select the action with the highest ucb score.
    max_score = -np.inf
    epsilon = 0.000001
    max_index_lst = []
    for a in node.legal_actions:
        child = node.get_child(a)
        temp_score = compute_ucb_score(
            child, min_max_stats, mean_q, node.visit_count, pb_c_base, pb_c_int, discount_factor, players
        )
        if max_score < temp_score:
            max_score = temp_score
            max_index_lst.clear()
            max_index_lst.append(a)
        elif temp_score >= max_score - epsilon:
            # TODO(pu): if the difference is less than epsilon = 0.000001, we random choice action from  max_index_lst
            max_index_lst.append(a)

    action = 0
    if len(max_index_lst) > 0:
        action = random.choice(max_index_lst)
    return action


def compute_ucb_score(
        child: Node,
        min_max_stats: MinMaxStats,
        parent_mean_q: float,
        total_children_visit_counts: float,
        pb_c_base: float,
        pb_c_init: float,
        discount_factor: float,
        players: int = 1,
) -> float:
    """
    Overview:
        Compute the ucb score of the child.
        Arguments:
            - child: the child node to compute ucb score.
            - min_max_stats: a tool used to min-max normalize the score.
            - parent_mean_q: the mean q value of the parent node.
            - is_reset: whether the value prefix needs to be reset.
            - total_children_visit_counts: the total visit counts of the child nodes of the parent node.
            - parent_value_prefix: the value prefix of parent node.
            - pb_c_base: constants c2 in muzero.
            - pb_c_init: constants c1 in muzero.
            - disount_factor: the discount factor of reward.
            - players: the number of players.
            - continuous_action_space: whether the action space is continous in current env.
        Outputs:
            - ucb_value: the ucb score of the child.
    """
    pb_c = math.log((total_children_visit_counts + pb_c_base + 1) / pb_c_base) + pb_c_init
    pb_c *= (math.sqrt(total_children_visit_counts) / (child.visit_count + 1))

    prior_score = pb_c * child.prior
    if child.visit_count == 0:
        value_score = parent_mean_q
    else:
        true_reward = child.reward
        if players == 1:
            value_score = true_reward + discount_factor * child.value
        elif players == 2:
            value_score = true_reward + discount_factor * (-child.value)

    value_score = min_max_stats.normalize(value_score)
    if value_score < 0:
        value_score = 0
    if value_score > 1:
        value_score = 1
    ucb_score = prior_score + value_score

    return ucb_score


def batch_traverse(
        roots: Any,
        pb_c_base: float,
        pb_c_init: float,
        discount_factor: float,
        min_max_stats_lst: List[MinMaxStats],
        results: SearchResults,
        virtual_to_play: List,
) -> Tuple[Any, Any]:

    """
    Overview:
        traverse, also called selection. process a batch roots parallely.
    Arguments:
        - roots (:obj:`Any`): a batch of root nodes to be expanded.
        - pb_c_base (:obj:`float`): constant c1 used in pUCT rule, typically 1.25.
        - pb_c_init (:obj:`float`): constant c2 used in pUCT rule, typically 19652.
        - discount_factor (:obj:`float`): discount_factor factor used i calculating bootstrapped value, if env is board_games, we set discount_factor=1.
        - virtual_to_play (:obj:`list`): the to_play list used in self_play collecting and training in board games,
            `virtual` is to emphasize that actions are performed on an imaginary hidden state.
        - continuous_action_space: whether the action space is continous in current env.
    Returns:
        - latent_state_index_in_search_path (:obj:`list`): the list of x/first index of latent state vector of the searched node, i.e. the search depth.
        - latent_state_index_in_batch (:obj:`list`): the list of y/second index of latent state vector of the searched node, i.e. the index of batch root node, its maximum is ``batch_size``/``env_num``.
        - last_actions (:obj:`list`): the action performed by the previous node.
        - virtual_to_play (:obj:`list`): the to_play list used in self_play collecting and trainin gin board games,
            `virtual` is to emphasize that actions are performed on an imaginary hidden state.
    """
    parent_q = 0.0
    results.search_lens = [None for i in range(results.num)]
    results.last_actions = [None for i in range(results.num)]

    results.nodes = [None for i in range(results.num)]
    results.latent_state_index_in_search_path = [None for i in range(results.num)]
    results.latent_state_index_in_batch = [None for i in range(results.num)]
    if virtual_to_play in [1, 2] or virtual_to_play[0] in [1, 2]:
        players = 2
    elif virtual_to_play in [-1, None] or virtual_to_play[0] in [-1, None]:
        players = 1

    results.search_paths = {i: [] for i in range(results.num)}
    for i in range(results.num):
        node = roots.roots[i]
        is_root = 1
        search_len = 0
        results.search_paths[i].append(node)

        """
        MCTS stage 1: Selection
            Each simulation starts from the internal root state s0, and finishes when the simulation reaches a leaf node s_l.
        """
        # the leaf node is not expanded
        while node.expanded:
            mean_q = node.compute_mean_q(is_root, parent_q, discount_factor)
            is_root = 0
            parent_q = mean_q

            # select action according to the pUCT rule.
            action = select_child(
                node, min_max_stats_lst.stats_lst[i], pb_c_base, pb_c_init, discount_factor, mean_q, players
            )
            if players == 2:
                # Players play turn by turn
                if virtual_to_play[i] == 1:
                    virtual_to_play[i] = 2
                else:
                    virtual_to_play[i] = 1

            node.best_action = action
            # move to child node according to selected action.
            node = node.get_child(action)

            last_action = action

            results.search_paths[i].append(node)
            search_len += 1

            # note this return the parent node of the current searched node
            parent = results.search_paths[i][len(results.search_paths[i]) - 1 - 1]
            results.latent_state_index_in_search_path[i] = parent.latent_state_index_in_search_path
            results.latent_state_index_in_batch[i] = parent.latent_state_index_in_batch
            results.last_actions[i] = last_action
            results.search_lens[i] = search_len
            # while we break out the while loop, results.nodes[i] save the leaf node.
            results.nodes[i] = node

    # print(f'env {i} one simulation done!')
    return results, virtual_to_play


def backpropagate(
        search_path: List[Node], min_max_stats: MinMaxStats, to_play: int, value: float, discount_factor: float
) -> None:
    """
    Overview:
        Update the value sum and visit count of nodes along the search path.
    Arguments:
        - search_path: a vector of nodes on the search path.
        - min_max_stats: a tool used to min-max normalize the q value.
        - to_play: which player to play the game in the current node.
        - value: the value to propagate along the search path.
        - discount_factor: the discount factor of reward.
    """
    assert to_play is None or to_play in [-1, 1, 2]
    if to_play is None or to_play == -1:
        # for play-with-bot mode
        bootstrap_value = value
        path_len = len(search_path)
        for i in range(path_len - 1, -1, -1):
            node = search_path[i]
            node.value_sum += bootstrap_value
            node.visit_count += 1
            true_reward = node.reward
            min_max_stats.update(true_reward + discount_factor * node.value)
            bootstrap_value = true_reward + discount_factor * bootstrap_value
    else:
        # for self-play-mode
        bootstrap_value = value
        path_len = len(search_path)
        for i in range(path_len - 1, -1, -1):
            node = search_path[i]
            # to_play related
            node.value_sum += bootstrap_value if node.to_play == to_play else -bootstrap_value

            node.visit_count += 1

            # NOTE: in self-play-mode,
            # we should calculate the true_reward according to the perspective of current player of node
            # true_reward = node.value_prefix - (- parent_value_prefix)
            true_reward = node.reward

            # min_max_stats.update(true_reward + discount_factor * node.value)
            min_max_stats.update(true_reward + discount_factor * -node.value)

            # TODO(pu): to_play related
            # true_reward is in the perspective of current player of node
            bootstrap_value = (-true_reward if node.to_play == to_play else true_reward) + discount_factor * bootstrap_value


def batch_backpropagate(
        latent_state_index_in_search_path: int,
        discount_factor: float,
        value_prefixs: List[float],
        values: List[float],
        policies: List[float],
        min_max_stats_lst: List[MinMaxStats],
        results: SearchResults,
        to_play: list = None,
        is_chance_list: list = None,
        leaf_idx_list: list = None,
) -> None:
    """
    Overview:
        Backpropagation along the search path to update the attributes.
    Arguments:
        - latent_state_index_in_search_path (:obj:`Class Int`): the index of latent state vector.
        - discount_factor (:obj:`Class Float`): discount_factor factor used i calculating bootstrapped value,
            if env is board_games, we set discount_factor=1.
        - value_prefixs (:obj:`Class List`): the value prefixs of nodes along the search path.
        - values (:obj:`Class List`):  the values to propagate along the search path.
        - policies (:obj:`Class List`): the policy logits of nodes along the search path.
        - min_max_stats_lst (:obj:`Class List[MinMaxStats]`):  a tool used to min-max normalize the q value.
        - results (:obj:`Class List`): the search results.
        - to_play (:obj:`Class List`):  the batch of which player is playing on this node.
    """
    if leaf_idx_list is None:
        leaf_idx_list = list(range(results.num))
    for leaf_order, i in enumerate(leaf_idx_list):
        # ****** expand the leaf node ******
        if to_play is None:
            # set to_play=-1, because two_player mode to_play = {1,2}
            results.nodes[i].expand(-1, latent_state_index_in_search_path, i, value_prefixs[leaf_order], policies[leaf_order], is_chance_list[i])
        else:
            results.nodes[i].expand(to_play[i], latent_state_index_in_search_path, i, value_prefixs[leaf_order], policies[leaf_order], is_chance_list[i])

        # ****** backpropagate ******
        if to_play is None:
            backpropagate(results.search_paths[i], min_max_stats_lst.stats_lst[i], 0, values[leaf_order], discount_factor)
        else:
            backpropagate(
                results.search_paths[i], min_max_stats_lst.stats_lst[i], to_play[i], values[leaf_order], discount_factor
            )