File size: 26,627 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import copy
from typing import TYPE_CHECKING, List, Any, Union

import numpy as np
import torch
from easydict import EasyDict

from lzero.mcts.ctree.ctree_efficientzero import ez_tree as tree_efficientzero
from lzero.mcts.ctree.ctree_muzero import mz_tree as tree_muzero
from lzero.mcts.ctree.ctree_gumbel_muzero import gmz_tree as tree_gumbel_muzero
from lzero.policy import InverseScalarTransform, to_detach_cpu_numpy

if TYPE_CHECKING:
    from lzero.mcts.ctree.ctree_efficientzero import ez_tree as ez_ctree
    from lzero.mcts.ctree.ctree_muzero import mz_tree as mz_ctree
    from lzero.mcts.ctree.ctree_gumbel_muzero import gmz_tree as gmz_ctree

# ==============================================================
# EfficientZero
# ==============================================================


class EfficientZeroMCTSCtree(object):
    """
    Overview:
        MCTSCtree for EfficientZero. The core ``batch_traverse`` and ``batch_backpropagate`` function is implemented in C++.
    Interfaces:
        __init__, roots, search
        
    """

    config = dict(
        # (float) The alpha value used in the Dirichlet distribution for exploration at the root node of the search tree.
        root_dirichlet_alpha=0.3,
        # (float) The noise weight at the root node of the search tree.
        root_noise_weight=0.25,
        # (int) The base constant used in the PUCT formula for balancing exploration and exploitation during tree search.
        pb_c_base=19652,
        # (float) The initialization constant used in the PUCT formula for balancing exploration and exploitation during tree search.
        pb_c_init=1.25,
        # (float) The maximum change in value allowed during the backup step of the search tree update.
        value_delta_max=0.01,
    )

    @classmethod
    def default_config(cls: type) -> EasyDict:
        cfg = EasyDict(copy.deepcopy(cls.config))
        cfg.cfg_type = cls.__name__ + 'Dict'
        return cfg

    def __init__(self, cfg: EasyDict = None) -> None:
        """
        Overview:
            Use the default configuration mechanism. If a user passes in a cfg with a key that matches an existing key
            in the default configuration, the user-provided value will override the default configuration. Otherwise,
            the default configuration will be used.
        """
        default_config = self.default_config()
        default_config.update(cfg)
        self._cfg = default_config
        self.inverse_scalar_transform_handle = InverseScalarTransform(
            self._cfg.model.support_scale, self._cfg.device, self._cfg.model.categorical_distribution
        )

    @classmethod
    def roots(cls: int, active_collect_env_num: int, legal_actions: List[Any]) -> "ez_ctree.Roots":
        """
        Overview:
            The initialization of CRoots with root num and legal action lists.
        Arguments:
            - root_num (:obj:'int'): the number of the current root.
            - legal_action_list (:obj:'List'): the vector of the legal action of this root.
        """
        from lzero.mcts.ctree.ctree_efficientzero import ez_tree as ctree
        return ctree.Roots(active_collect_env_num, legal_actions)

    def search(
            self, roots: Any, model: torch.nn.Module, latent_state_roots: List[Any],
            reward_hidden_state_roots: List[Any], to_play_batch: Union[int, List[Any]]
    ) -> None:
        """
        Overview:
            Do MCTS for the roots (a batch of root nodes in parallel). Parallel in model inference.
            Use the cpp ctree.
        Arguments:
            - roots (:obj:`Any`): a batch of expanded root nodes
            - latent_state_roots (:obj:`list`): the hidden states of the roots
            - reward_hidden_state_roots (:obj:`list`): the value prefix hidden states in LSTM of the roots
            - to_play_batch (:obj:`list`): the to_play_batch list used in self-play-mode board games
        """
        with torch.no_grad():
            model.eval()

            # preparation some constant
            batch_size = roots.num
            pb_c_base, pb_c_init, discount_factor = self._cfg.pb_c_base, self._cfg.pb_c_init, self._cfg.discount_factor

            # the data storage of latent states: storing the latent state of all the nodes in one search.
            latent_state_batch_in_search_path = [latent_state_roots]
            # the data storage of value prefix hidden states in LSTM
            reward_hidden_state_c_batch = [reward_hidden_state_roots[0]]
            reward_hidden_state_h_batch = [reward_hidden_state_roots[1]]

            # minimax value storage
            min_max_stats_lst = tree_efficientzero.MinMaxStatsList(batch_size)
            min_max_stats_lst.set_delta(self._cfg.value_delta_max)

            for simulation_index in range(self._cfg.num_simulations):
                # In each simulation, we expanded a new node, so in one search, we have ``num_simulations`` num of nodes at most.

                latent_states = []
                hidden_states_c_reward = []
                hidden_states_h_reward = []

                # prepare a result wrapper to transport results between python and c++ parts
                results = tree_efficientzero.ResultsWrapper(num=batch_size)

                # latent_state_index_in_search_path: the first index of leaf node states in latent_state_batch_in_search_path, i.e. is current_latent_state_index in one the search.
                # latent_state_index_in_batch: the second index of leaf node states in latent_state_batch_in_search_path, i.e. the index in the batch, whose maximum is ``batch_size``.
                # e.g. the latent state of the leaf node in (x, y) is latent_state_batch_in_search_path[x, y], where x is current_latent_state_index, y is batch_index.
                # The index of value prefix hidden state of the leaf node is in the same manner.
                """
                MCTS stage 1: Selection
                    Each simulation starts from the internal root state s0, and finishes when the simulation reaches a leaf node s_l.
                """
                latent_state_index_in_search_path, latent_state_index_in_batch, last_actions, virtual_to_play_batch = tree_efficientzero.batch_traverse(
                    roots, pb_c_base, pb_c_init, discount_factor, min_max_stats_lst, results,
                    copy.deepcopy(to_play_batch)
                )
                # obtain the search horizon for leaf nodes
                search_lens = results.get_search_len()

                # obtain the latent state for leaf node
                for ix, iy in zip(latent_state_index_in_search_path, latent_state_index_in_batch):
                    latent_states.append(latent_state_batch_in_search_path[ix][iy])
                    hidden_states_c_reward.append(reward_hidden_state_c_batch[ix][0][iy])
                    hidden_states_h_reward.append(reward_hidden_state_h_batch[ix][0][iy])

                latent_states = torch.from_numpy(np.asarray(latent_states)).to(self._cfg.device).float()
                hidden_states_c_reward = torch.from_numpy(np.asarray(hidden_states_c_reward)).to(self._cfg.device
                                                                                                 ).unsqueeze(0)
                hidden_states_h_reward = torch.from_numpy(np.asarray(hidden_states_h_reward)).to(self._cfg.device
                                                                                                 ).unsqueeze(0)
                # .long() is only for discrete action
                last_actions = torch.from_numpy(np.asarray(last_actions)).to(self._cfg.device).long()
                """
                MCTS stage 2: Expansion
                    At the final time-step l of the simulation, the next_latent_state and reward/value_prefix are computed by the dynamics function.
                    Then we calculate the policy_logits and value for the leaf node (next_latent_state) by the prediction function. (aka. evaluation)
                MCTS stage 3: Backup
                    At the end of the simulation, the statistics along the trajectory are updated.
                """
                network_output = model.recurrent_inference(
                    latent_states, (hidden_states_c_reward, hidden_states_h_reward), last_actions
                )

                network_output.latent_state = to_detach_cpu_numpy(network_output.latent_state)
                network_output.policy_logits = to_detach_cpu_numpy(network_output.policy_logits)
                network_output.value = to_detach_cpu_numpy(self.inverse_scalar_transform_handle(network_output.value))
                network_output.value_prefix = to_detach_cpu_numpy(self.inverse_scalar_transform_handle(network_output.value_prefix))

                network_output.reward_hidden_state = (
                    network_output.reward_hidden_state[0].detach().cpu().numpy(),
                    network_output.reward_hidden_state[1].detach().cpu().numpy()
                )

                latent_state_batch_in_search_path.append(network_output.latent_state)
                # tolist() is to be compatible with cpp datatype.
                value_prefix_batch = network_output.value_prefix.reshape(-1).tolist()
                value_batch = network_output.value.reshape(-1).tolist()
                policy_logits_batch = network_output.policy_logits.tolist()

                reward_latent_state_batch = network_output.reward_hidden_state
                # reset the hidden states in LSTM every ``lstm_horizon_len`` steps in one search.
                # which enable the model only need to predict the value prefix in a range (e.g.: [s0,...,s5])
                assert self._cfg.lstm_horizon_len > 0
                reset_idx = (np.array(search_lens) % self._cfg.lstm_horizon_len == 0)
                assert len(reset_idx) == batch_size
                reward_latent_state_batch[0][:, reset_idx, :] = 0
                reward_latent_state_batch[1][:, reset_idx, :] = 0
                is_reset_list = reset_idx.astype(np.int32).tolist()
                reward_hidden_state_c_batch.append(reward_latent_state_batch[0])
                reward_hidden_state_h_batch.append(reward_latent_state_batch[1])

                # In ``batch_backpropagate()``, we first expand the leaf node using ``the policy_logits`` and
                # ``reward`` predicted by the model, then perform backpropagation along the search path to update the
                # statistics.

                # NOTE: simulation_index + 1 is very important, which is the depth of the current leaf node.
                current_latent_state_index = simulation_index + 1
                tree_efficientzero.batch_backpropagate(
                    current_latent_state_index, discount_factor, value_prefix_batch, value_batch, policy_logits_batch,
                    min_max_stats_lst, results, is_reset_list, virtual_to_play_batch
                )


# ==============================================================
# MuZero
# ==============================================================


class MuZeroMCTSCtree(object):
    """
    Overview:
        MCTSCtree for MuZero. The core ``batch_traverse`` and ``batch_backpropagate`` function is implemented in C++.

    Interfaces:
        __init__, roots, search
    """

    config = dict(
        # (float) The alpha value used in the Dirichlet distribution for exploration at the root node of the search tree.
        root_dirichlet_alpha=0.3,
        # (float) The noise weight at the root node of the search tree.
        root_noise_weight=0.25,
        # (int) The base constant used in the PUCT formula for balancing exploration and exploitation during tree search.
        pb_c_base=19652,
        # (float) The initialization constant used in the PUCT formula for balancing exploration and exploitation during tree search.
        pb_c_init=1.25,
        # (float) The maximum change in value allowed during the backup step of the search tree update.
        value_delta_max=0.01,
    )

    @classmethod
    def default_config(cls: type) -> EasyDict:
        cfg = EasyDict(copy.deepcopy(cls.config))
        cfg.cfg_type = cls.__name__ + 'Dict'
        return cfg

    def __init__(self, cfg: EasyDict = None) -> None:
        """
        Overview:
            Use the default configuration mechanism. If a user passes in a cfg with a key that matches an existing key
            in the default configuration, the user-provided value will override the default configuration. Otherwise,
            the default configuration will be used.
        """
        default_config = self.default_config()
        default_config.update(cfg)
        self._cfg = default_config
        self.inverse_scalar_transform_handle = InverseScalarTransform(
            self._cfg.model.support_scale, self._cfg.device, self._cfg.model.categorical_distribution
        )

    @classmethod
    def roots(cls: int, active_collect_env_num: int, legal_actions: List[Any]) -> "mz_ctree":
        """
        Overview:
            The initialization of CRoots with root num and legal action lists.
        Arguments:
            - root_num (:obj:`int`): the number of the current root.
            - legal_action_list (:obj:`list`): the vector of the legal action of this root.
        """
        from lzero.mcts.ctree.ctree_muzero import mz_tree as ctree
        return ctree.Roots(active_collect_env_num, legal_actions)

    def search(
            self, roots: Any, model: torch.nn.Module, latent_state_roots: List[Any], to_play_batch: Union[int,
                                                                                                          List[Any]]
    ) -> None:
        """
        Overview:
            Do MCTS for the roots (a batch of root nodes in parallel). Parallel in model inference.
            Use the cpp ctree.
        Arguments:
            - roots (:obj:`Any`): a batch of expanded root nodes
            - latent_state_roots (:obj:`list`): the hidden states of the roots
            - to_play_batch (:obj:`list`): the to_play_batch list used in in self-play-mode board games
        """
        with torch.no_grad():
            model.eval()

            # preparation some constant
            batch_size = roots.num
            pb_c_base, pb_c_init, discount_factor = self._cfg.pb_c_base, self._cfg.pb_c_init, self._cfg.discount_factor
            # the data storage of latent states: storing the latent state of all the nodes in the search.
            latent_state_batch_in_search_path = [latent_state_roots]

            # minimax value storage
            min_max_stats_lst = tree_muzero.MinMaxStatsList(batch_size)
            min_max_stats_lst.set_delta(self._cfg.value_delta_max)

            for simulation_index in range(self._cfg.num_simulations):
                # In each simulation, we expanded a new node, so in one search, we have ``num_simulations`` num of nodes at most.

                latent_states = []

                # prepare a result wrapper to transport results between python and c++ parts
                results = tree_muzero.ResultsWrapper(num=batch_size)

                # latent_state_index_in_search_path: the first index of leaf node states in latent_state_batch_in_search_path, i.e. is current_latent_state_index in one the search.
                # latent_state_index_in_batch: the second index of leaf node states in latent_state_batch_in_search_path, i.e. the index in the batch, whose maximum is ``batch_size``.
                # e.g. the latent state of the leaf node in (x, y) is latent_state_batch_in_search_path[x, y], where x is current_latent_state_index, y is batch_index.
                # The index of value prefix hidden state of the leaf node are in the same manner.
                """
                MCTS stage 1: Selection
                    Each simulation starts from the internal root state s0, and finishes when the simulation reaches a leaf node s_l.
                """
                latent_state_index_in_search_path, latent_state_index_in_batch, last_actions, virtual_to_play_batch = tree_muzero.batch_traverse(
                    roots, pb_c_base, pb_c_init, discount_factor, min_max_stats_lst, results,
                    copy.deepcopy(to_play_batch)
                )

                # obtain the latent state for leaf node
                for ix, iy in zip(latent_state_index_in_search_path, latent_state_index_in_batch):
                    latent_states.append(latent_state_batch_in_search_path[ix][iy])

                latent_states = torch.from_numpy(np.asarray(latent_states)).to(self._cfg.device).float()
                # .long() is only for discrete action
                last_actions = torch.from_numpy(np.asarray(last_actions)).to(self._cfg.device).long()
                """
                MCTS stage 2: Expansion
                    At the final time-step l of the simulation, the next_latent_state and reward/value_prefix are computed by the dynamics function.
                    Then we calculate the policy_logits and value for the leaf node (next_latent_state) by the prediction function. (aka. evaluation)
                MCTS stage 3: Backup
                    At the end of the simulation, the statistics along the trajectory are updated.
                """
                network_output = model.recurrent_inference(latent_states, last_actions)

                network_output.latent_state = to_detach_cpu_numpy(network_output.latent_state)
                network_output.policy_logits = to_detach_cpu_numpy(network_output.policy_logits)
                network_output.value = to_detach_cpu_numpy(self.inverse_scalar_transform_handle(network_output.value))
                network_output.reward = to_detach_cpu_numpy(self.inverse_scalar_transform_handle(network_output.reward))

                latent_state_batch_in_search_path.append(network_output.latent_state)
                # tolist() is to be compatible with cpp datatype.
                reward_batch = network_output.reward.reshape(-1).tolist()
                value_batch = network_output.value.reshape(-1).tolist()
                policy_logits_batch = network_output.policy_logits.tolist()

                # In ``batch_backpropagate()``, we first expand the leaf node using ``the policy_logits`` and
                # ``reward`` predicted by the model, then perform backpropagation along the search path to update the
                # statistics.

                # NOTE: simulation_index + 1 is very important, which is the depth of the current leaf node.
                current_latent_state_index = simulation_index + 1
                tree_muzero.batch_backpropagate(
                    current_latent_state_index, discount_factor, reward_batch, value_batch, policy_logits_batch,
                    min_max_stats_lst, results, virtual_to_play_batch
                )

class GumbelMuZeroMCTSCtree(object):
    """
    Overview:
        MCTSCtree for Gumbel MuZero. The core ``batch_traverse`` and ``batch_backpropagate`` function is implemented in C++.
    Interfaces:
        __init__, roots, search
        
    """
    config = dict(
        # (int) The max limitation of simluation times during the simulation.
        num_simulations=50,
        # (float) The alpha value used in the Dirichlet distribution for exploration at the root node of the search tree.
        root_dirichlet_alpha=0.3,
        # (float) The noise weight at the root node of the search tree.
        root_noise_weight=0.25,
        # (float) The maximum change in value allowed during the backup step of the search tree update.
        value_delta_max=0.01,
    )

    @classmethod
    def default_config(cls: type) -> EasyDict:
        cfg = EasyDict(copy.deepcopy(cls.config))
        cfg.cfg_type = cls.__name__ + 'Dict'
        return cfg

    def __init__(self, cfg: EasyDict = None) -> None:
        """
        Overview:
            Use the default configuration mechanism. If a user passes in a cfg with a key that matches an existing key
            in the default configuration, the user-provided value will override the default configuration. Otherwise,
            the default configuration will be used.
        """
        default_config = self.default_config()
        default_config.update(cfg)
        self._cfg = default_config
        self.inverse_scalar_transform_handle = InverseScalarTransform(
            self._cfg.model.support_scale, self._cfg.device, self._cfg.model.categorical_distribution
        )
    
    @classmethod
    def roots(cls: int, active_collect_env_num: int, legal_actions: List[Any]) -> "gmz_ctree":
        """
        Overview:
            The initialization of CRoots with root num and legal action lists.
        Arguments:
            - root_num (:obj:`int`): the number of the current root.
            - legal_action_list (:obj:`list`): the vector of the legal action of this root.
        """
        from lzero.mcts.ctree.ctree_gumbel_muzero import gmz_tree as ctree
        return ctree.Roots(active_collect_env_num, legal_actions)

    def search(self, roots: Any, model: torch.nn.Module, latent_state_roots: List[Any], to_play_batch: Union[int,
                                                                                                          List[Any]]
    ) -> None:
        """
        Overview:
            Do MCTS for the roots (a batch of root nodes in parallel). Parallel in model inference.
            Use the cpp tree.
        Arguments:
            - roots (:obj:`Any`): a batch of expanded root nodes
            - latent_state_roots (:obj:`list`): the hidden states of the roots
            - to_play_batch (:obj:`list`): the to_play_batch list used in two_player mode board games
        """
        with torch.no_grad():
            model.eval()

            # preparation some constant
            batch_size = roots.num
            device = self._cfg.device
            discount_factor = self._cfg.discount_factor
            # the data storage of hidden states: storing the states of all the tree nodes
            latent_state_batch_in_search_path = [latent_state_roots]

            # minimax value storage
            min_max_stats_lst = tree_gumbel_muzero.MinMaxStatsList(batch_size)
            min_max_stats_lst.set_delta(self._cfg.value_delta_max)

            for simulation_index in range(self._cfg.num_simulations):
                # In each simulation, we expanded a new node, so in one search, we have ``num_simulations`` num of nodes at most.

                latent_states = []

                # prepare a result wrapper to transport results between python and c++ parts
                results = tree_gumbel_muzero.ResultsWrapper(num=batch_size)

                # traverse to select actions for each root
                # hidden_state_index_x_lst: the first index of leaf node states in hidden_state_pool
                # hidden_state_index_y_lst: the second index of leaf node states in hidden_state_pool
                # the hidden state of the leaf node is hidden_state_pool[x, y]; value prefix states are the same
                """
                MCTS stage 1: Selection
                    Each simulation starts from the internal root state s0, and finishes when the simulation reaches a leaf node s_l.
                    In gumbel muzero, the action at the root node is selected using the Sequential Halving algorithm, while the action 
                    at the interier node is selected based on the completion of the action values.
                """
                latent_state_index_in_search_path, latent_state_index_in_batch, last_actions, virtual_to_play_batch = tree_gumbel_muzero.batch_traverse(
                    roots, self._cfg.num_simulations, self._cfg.max_num_considered_actions, discount_factor, results, copy.deepcopy(to_play_batch)
                )

                # obtain the states for leaf nodes
                for ix, iy in zip(latent_state_index_in_search_path, latent_state_index_in_batch):
                    latent_states.append(latent_state_batch_in_search_path[ix][iy])

                latent_states = torch.from_numpy(np.asarray(latent_states)).to(device).float()
                # .long() is only for discrete action
                last_actions = torch.from_numpy(np.asarray(last_actions)).to(device).unsqueeze(1).long()
                """
                MCTS stage 2: Expansion
                    At the final time-step l of the simulation, the next_latent_state and reward/value_prefix are computed by the dynamics function.
                    Then we calculate the policy_logits and value for the leaf node (next_latent_state) by the prediction function. (aka. evaluation)
                MCTS stage 3: Backup
                    At the end of the simulation, the statistics along the trajectory are updated.
                """
                network_output = model.recurrent_inference(latent_states, last_actions)

                network_output.latent_state = to_detach_cpu_numpy(network_output.latent_state)
                network_output.policy_logits = to_detach_cpu_numpy(network_output.policy_logits)
                network_output.value = to_detach_cpu_numpy(self.inverse_scalar_transform_handle(network_output.value))
                network_output.reward = to_detach_cpu_numpy(self.inverse_scalar_transform_handle(network_output.reward))

                latent_state_batch_in_search_path.append(network_output.latent_state)
                # tolist() is to be compatible with cpp datatype.
                reward_batch = network_output.reward.reshape(-1).tolist()
                value_batch = network_output.value.reshape(-1).tolist()
                policy_logits_batch = network_output.policy_logits.tolist()

                # In ``batch_backpropagate()``, we first expand the leaf node using ``the policy_logits`` and
                # ``reward`` predicted by the model, then perform backpropagation along the search path to update the
                # statistics.

                # NOTE: simulation_index + 1 is very important, which is the depth of the current leaf node.
                current_latent_state_index = simulation_index + 1

                # backpropagation along the search path to update the attributes
                tree_gumbel_muzero.batch_back_propagate(
                    current_latent_state_index, discount_factor, reward_batch, value_batch, policy_logits_batch,
                    min_max_stats_lst, results, virtual_to_play_batch
                )