File size: 36,999 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
import math
from typing import Optional, Tuple

import torch
import torch.nn as nn
from ding.model.common import ReparameterizationHead
from ding.torch_utils import MLP, ResBlock
from ding.utils import MODEL_REGISTRY, SequenceType

from .common import EZNetworkOutput, RepresentationNetwork
from .efficientzero_model import DynamicsNetwork
from .utils import renormalize, get_params_mean


# use ModelRegistry to register the model, for more details about ModelRegistry, please refer to DI-engine's document.
@MODEL_REGISTRY.register('SampledEfficientZeroModel')
class SampledEfficientZeroModel(nn.Module):

    def __init__(
            self,
            observation_shape: SequenceType = (12, 96, 96),
            action_space_size: int = 6,
            num_res_blocks: int = 1,
            num_channels: int = 64,
            lstm_hidden_size: int = 512,
            reward_head_channels: int = 16,
            value_head_channels: int = 16,
            policy_head_channels: int = 16,
            fc_reward_layers: SequenceType = [32],
            fc_value_layers: SequenceType = [32],
            fc_policy_layers: SequenceType = [32],
            reward_support_size: int = 601,
            value_support_size: int = 601,
            proj_hid: int = 1024,
            proj_out: int = 1024,
            pred_hid: int = 512,
            pred_out: int = 1024,
            self_supervised_learning_loss: bool = True,
            categorical_distribution: bool = True,
            activation: Optional[nn.Module] = nn.ReLU(inplace=True),
            last_linear_layer_init_zero: bool = True,
            state_norm: bool = False,
            downsample: bool = False,
            # ==============================================================
            # specific sampled related config
            # ==============================================================
            continuous_action_space: bool = False,
            num_of_sampled_actions: int = 6,
            sigma_type='conditioned',
            fixed_sigma_value: float = 0.3,
            bound_type: str = None,
            norm_type: str = 'BN',
            discrete_action_encoding_type: str = 'one_hot',
            *args,
            **kwargs,
    ):
        """
        Overview:
            The definition of the network model of Sampled EfficientZero, which is a generalization version for 2D image obs.
            The networks are mainly built on convolution residual blocks and fully connected layers.
            Sampled EfficientZero model consists of a representation network, a dynamics network and a prediction network.
            The representation network is an MLP network which maps the raw observation to a latent state.
            The dynamics network is an MLP+LSTM network which predicts the next latent state, reward_hidden_state and value_prefix given the current latent state and action.
            The prediction network is an MLP network which predicts the value and policy given the current latent state.
        Arguments:
            - observation_shape (:obj:`SequenceType`): Observation space shape, e.g. [C, W, H]=[12, 96, 96] for Atari.
            - action_space_size: (:obj:`int`): Action space size, which is an integer number. For discrete action space, it is the num of discrete actions, \
                e.g. 4 for Lunarlander. For continuous action space, it is the dimension of the continuous action, e.g. 4 for bipedalwalker.
            - num_res_blocks (:obj:`int`): The number of res blocks in Sampled EfficientZero model.
            - num_channels (:obj:`int`): The channels of hidden states.
            - lstm_hidden_size (:obj:`int`): dim of lstm hidden state in dynamics network.
            - reward_head_channels (:obj:`int`): The channels of reward head.
            - value_head_channels (:obj:`int`): The channels of value head.
            - policy_head_channels (:obj:`int`): The channels of policy head.
            - fc_reward_layers (:obj:`SequenceType`): The number of hidden layers of the reward head (MLP head).
            - fc_value_layers (:obj:`SequenceType`): The number of hidden layers used in value head (MLP head).
            - fc_policy_layers (:obj:`SequenceType`): The number of hidden layers used in policy head (MLP head).
            - reward_support_size (:obj:`int`): The size of categorical reward output
            - value_support_size (:obj:`int`): The size of categorical value output.
            - proj_hid (:obj:`int`): The size of projection hidden layer.
            - proj_out (:obj:`int`): The size of projection output layer.
            - pred_hid (:obj:`int`): The size of prediction hidden layer.
            - pred_out (:obj:`int`): The size of prediction output layer.
            - self_supervised_learning_loss (:obj:`bool`): Whether to use self_supervised_learning related networks in model, default set it to False.
            - categorical_distribution (:obj:`bool`): Whether to use discrete support to represent categorical distribution \
                for value, reward/value_prefix.
            - activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \
                operation to speedup, e.g. ReLU(inplace=True).
            - last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializations for the last layer of \
                value/policy mlp, default sets it to True.
            - state_norm (:obj:`bool`): Whether to use normalization for hidden states, default sets it to True.
            - downsample (:obj:`bool`): Whether to do downsampling for observations in ``representation_network``, \
                defaults to True. This option is often used in video games like Atari. In board games like go, \
                we don't need this module.
            # ==============================================================
            # specific sampled related config
            # ==============================================================
            - continuous_action_space (:obj:`bool`): The type of action space. default set it to False.
            - num_of_sampled_actions (:obj:`int`): the number of sampled actions, i.e. the K in original Sampled MuZero paper.
            # Please see ``ReparameterizationHead`` in ``ding.model.common.head`` for more details about the following arguments.
            - sigma_type (:obj:`str`): the type of sigma in policy head of prediction network, options={'conditioned', 'fixed'}.
            - fixed_sigma_value (:obj:`float`): the fixed sigma value in policy head of prediction network,
            - bound_type (:obj:`str`): The type of bound in networks, default set it to None.
            - norm_type (:obj:`str`): The type of normalization in networks, default sets it to 'BN'.
            - discrete_action_encoding_type (:obj:`str`): The type of encoding for discrete action. default sets it to 'one_hot'. options = {'one_hot', 'not_one_hot'}
        """
        super(SampledEfficientZeroModel, self).__init__()
        if isinstance(observation_shape, int) or len(observation_shape) == 1:
            # for vector obs input, e.g. classical control and box2d environments
            # to be compatible with LightZero model/policy, transform to shape: [C, W, H]
            observation_shape = [1, observation_shape, 1]
        if not categorical_distribution:
            self.reward_support_size = 1
            self.value_support_size = 1
        else:
            self.reward_support_size = reward_support_size
            self.value_support_size = value_support_size

        self.continuous_action_space = continuous_action_space
        self.action_space_size = action_space_size
        # The dim of action space. For discrete action space, it's 1.
        # For continuous action space, it is the dim of action.
        self.action_space_dim = action_space_size if self.continuous_action_space else 1
        assert discrete_action_encoding_type in ['one_hot', 'not_one_hot'], discrete_action_encoding_type
        self.discrete_action_encoding_type = discrete_action_encoding_type
        if self.continuous_action_space:
            self.action_encoding_dim = action_space_size
        else:
            if self.discrete_action_encoding_type == 'one_hot':
                self.action_encoding_dim = action_space_size
            elif self.discrete_action_encoding_type == 'not_one_hot':
                self.action_encoding_dim = 1

        self.lstm_hidden_size = lstm_hidden_size
        self.proj_hid = proj_hid
        self.proj_out = proj_out
        self.pred_hid = pred_hid
        self.pred_out = pred_out

        self.last_linear_layer_init_zero = last_linear_layer_init_zero
        self.state_norm = state_norm
        self.downsample = downsample
        self.self_supervised_learning_loss = self_supervised_learning_loss

        self.sigma_type = sigma_type
        self.fixed_sigma_value = fixed_sigma_value
        self.bound_type = bound_type
        self.norm_type = norm_type
        self.num_of_sampled_actions = num_of_sampled_actions

        flatten_output_size_for_reward_head = (
            (reward_head_channels * math.ceil(observation_shape[1] / 16) *
             math.ceil(observation_shape[2] / 16)) if downsample else
            (reward_head_channels * observation_shape[1] * observation_shape[2])
        )
        flatten_output_size_for_value_head = (
            (value_head_channels * math.ceil(observation_shape[1] / 16) *
             math.ceil(observation_shape[2] / 16)) if downsample else
            (value_head_channels * observation_shape[1] * observation_shape[2])
        )
        flatten_output_size_for_policy_head = (
            (policy_head_channels * math.ceil(observation_shape[1] / 16) *
             math.ceil(observation_shape[2] / 16)) if downsample else
            (policy_head_channels * observation_shape[1] * observation_shape[2])
        )

        self.representation_network = RepresentationNetwork(
            observation_shape,
            num_res_blocks,
            num_channels,
            downsample,
            norm_type=self.norm_type,
        )

        self.dynamics_network = DynamicsNetwork(
            observation_shape,
            self.action_encoding_dim,
            num_res_blocks,
            num_channels + self.action_encoding_dim,
            reward_head_channels,
            fc_reward_layers,
            self.reward_support_size,
            flatten_output_size_for_reward_head,
            downsample,
            lstm_hidden_size=self.lstm_hidden_size,
            last_linear_layer_init_zero=self.last_linear_layer_init_zero,
            activation=activation,
            norm_type=norm_type
        )

        self.prediction_network = PredictionNetwork(
            observation_shape,
            self.continuous_action_space,
            action_space_size,
            num_res_blocks,
            num_channels,
            value_head_channels,
            policy_head_channels,
            fc_value_layers,
            fc_policy_layers,
            self.value_support_size,
            flatten_output_size_for_value_head,
            flatten_output_size_for_policy_head,
            downsample,
            last_linear_layer_init_zero=self.last_linear_layer_init_zero,
            sigma_type=self.sigma_type,
            fixed_sigma_value=self.fixed_sigma_value,
            bound_type=self.bound_type,
            norm_type=self.norm_type,
        )

        if self.self_supervised_learning_loss:
            # self_supervised_learning_loss related network proposed in EfficientZero
            if self.downsample:
                # In Atari, if the observation_shape is set to (12, 96, 96), which indicates the original shape of
                # (3,96,96), and frame_stack_num is 4. Due to downsample, the encoding of observation (latent_state) is
                # (64, 96/16, 96/16), where 64 is the number of channels, 96/16 is the size of the latent state. Thus,
                # self.projection_input_dim = 64 * 96/16 * 96/16 = 64*6*6 = 2304
                self.projection_input_dim = num_channels * math.ceil(observation_shape[1] / 16
                                                                     ) * math.ceil(observation_shape[2] / 16)
            else:
                self.projection_input_dim = num_channels * observation_shape[1] * observation_shape[2]

            self.projection = nn.Sequential(
                nn.Linear(self.projection_input_dim, self.proj_hid), nn.BatchNorm1d(self.proj_hid), activation,
                nn.Linear(self.proj_hid, self.proj_hid), nn.BatchNorm1d(self.proj_hid), activation,
                nn.Linear(self.proj_hid, self.proj_out), nn.BatchNorm1d(self.proj_out)
            )
            self.prediction_head = nn.Sequential(
                nn.Linear(self.proj_out, self.pred_hid),
                nn.BatchNorm1d(self.pred_hid),
                activation,
                nn.Linear(self.pred_hid, self.pred_out),
            )

    def initial_inference(self, obs: torch.Tensor) -> EZNetworkOutput:
        """
         Overview:
            Initial inference of SampledEfficientZero model, which is the first step of the SampledEfficientZero model.
             To perform the initial inference, we first use the representation network to obtain the "latent_state" of the observation.
             Then we use the prediction network to predict the "value" and "policy_logits" of the "latent_state", and
            also prepare the zeros-like ``reward_hidden_state`` for the next step of the SampledEfficientZero model.
        Arguments:
            - obs (:obj:`torch.Tensor`): The 2D image observation data.
        Returns (EZNetworkOutput):
            - value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation.
            - value_prefix (:obj:`torch.Tensor`): The predicted prefix sum of value for input state. \
                In initial inference, we set it to zero vector.
            - policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action.
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
            - reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The hidden state of LSTM about reward. In initial inference, \
                we set it to the zeros-like hidden state (H and C).
        Shapes:
            - obs (:obj:`torch.Tensor`): :math:`(B, num_channel, obs_shape[1], obs_shape[2])`, where B is batch_size.
            - value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size.
            - value_prefix (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size.
            - policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size.
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
                latent state, W_ is the width of latent state.
            - reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The shape of each element is :math:`(1, B, lstm_hidden_size)`, where B is batch_size.
        """
        batch_size = obs.size(0)
        latent_state = self._representation(obs)
        policy_logits, value = self._prediction(latent_state)
        # zero initialization for reward hidden states
        # (hn, cn), each element shape is (layer_num=1, batch_size, lstm_hidden_size)
        reward_hidden_state = (
            torch.zeros(1, batch_size,
                        self.lstm_hidden_size).to(obs.device), torch.zeros(1, batch_size,
                                                                           self.lstm_hidden_size).to(obs.device)
        )
        return EZNetworkOutput(value, [0. for _ in range(batch_size)], policy_logits, latent_state, reward_hidden_state)

    def recurrent_inference(
            self, latent_state: torch.Tensor, reward_hidden_state: torch.Tensor, action: torch.Tensor
    ) -> EZNetworkOutput:
        """
        Overview:
            Recurrent inference of Sampled EfficientZero model, which is the rollout step of the Sampled EfficientZero model.
            To perform the recurrent inference, we first use the dynamics network to predict ``next_latent_state``,
            ``reward_hidden_state``, ``value_prefix`` by the given current ``latent_state`` and ``action``.
             We then use the prediction network to predict the ``value`` and ``policy_logits``.
        Arguments:
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
            - reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The input hidden state of LSTM about reward.
            - action (:obj:`torch.Tensor`): The predicted action to rollout.
        Returns (EZNetworkOutput):
            - value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation.
            - value_prefix (:obj:`torch.Tensor`): The predicted prefix sum of value for input state.
            - policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action.
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
            - next_latent_state (:obj:`torch.Tensor`): The predicted next latent state.
            - reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The output hidden state of LSTM about reward.
        Shapes:
            - obs (:obj:`torch.Tensor`): :math:`(B, num_channel, obs_shape[1], obs_shape[2])`, where B is batch_size.
            - action (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch_size.
            - value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size.
            - value_prefix (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size.
            - policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size.
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
                latent state, W_ is the width of latent state.
            - next_latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
                latent state, W_ is the width of latent state.
            - reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The shape of each element is :math:`(1, B, lstm_hidden_size)`, where B is batch_size.
         """
        next_latent_state, reward_hidden_state, value_prefix = self._dynamics(latent_state, reward_hidden_state, action)
        policy_logits, value = self._prediction(next_latent_state)
        return EZNetworkOutput(value, value_prefix, policy_logits, next_latent_state, reward_hidden_state)

    def _representation(self, observation: torch.Tensor) -> Tuple[torch.Tensor]:
        """
        Overview:
            Use the representation network to encode the observations into latent state.
        Arguments:
            - obs (:obj:`torch.Tensor`): The 2D image observation data.
        Returns:
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
        Shapes:
            - obs (:obj:`torch.Tensor`): :math:`(B, num_channel, obs_shape[1], obs_shape[2])`, where B is batch_size.
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
                latent state, W_ is the width of latent state.
        """
        latent_state = self.representation_network(observation)
        if self.state_norm:
            latent_state = renormalize(latent_state)
        return latent_state

    def _prediction(self, latent_state: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Overview:
             use the prediction network to predict the "value" and "policy_logits" of the "latent_state".
        Arguments:
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input obs.
        Returns:
            - policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action.
            - value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation.
        Shapes:
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
                latent state, W_ is the width of latent state.
            - policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size.
            - value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size.
        """
        return self.prediction_network(latent_state)

    def _dynamics(self, latent_state: torch.Tensor, reward_hidden_state: Tuple[torch.Tensor],
                  action: torch.Tensor) -> Tuple[torch.Tensor, Tuple[torch.Tensor], torch.Tensor]:
        """
        Overview:
            Concatenate ``latent_state`` and ``action`` and use the dynamics network to predict ``next_latent_state``
            ``value_prefix`` and ``next_reward_hidden_state``.
        Arguments:
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
            - reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The input hidden state of LSTM about reward.
            - action (:obj:`torch.Tensor`): The predicted action to rollout.
        Returns:
            - next_latent_state (:obj:`torch.Tensor`): The predicted latent state of the next timestep.
            - next_reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The output hidden state of LSTM about reward.
            - value_prefix (:obj:`torch.Tensor`): The predicted prefix sum of value for input state.
        Shapes:
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
                latent state, W_ is the width of latent state.
            - action (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch_size.
            - next_latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
                latent state, W_ is the width of latent state.
            - value_prefix (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size.
        """
        # NOTE: the discrete action encoding type is important for some environments

        if not self.continuous_action_space:
            # discrete action space
            if self.discrete_action_encoding_type == 'one_hot':
                # Stack latent_state with the one hot encoded action.
                # The final action_encoding shape is (batch_size, action_space_size, latent_state[2], latent_state[3]), e.g. (8, 2, 4, 1).
                if len(action.shape) == 1:
                    # (batch_size, ) -> (batch_size, 1)
                    # e.g.,  torch.Size([8]) ->  torch.Size([8, 1])
                    action = action.unsqueeze(-1)

                # transform action to one-hot encoding.
                # action_one_hot shape: (batch_size, action_space_size), e.g., (8, 4)
                action_one_hot = torch.zeros(action.shape[0], self.action_space_size, device=action.device)
                # transform action to torch.int64
                action = action.long()
                action_one_hot.scatter_(1, action, 1)

                action_encoding_tmp = action_one_hot.unsqueeze(-1).unsqueeze(-1)
                action_encoding = action_encoding_tmp.expand(
                    latent_state.shape[0], self.action_space_size, latent_state.shape[2], latent_state.shape[3]
                )

            elif self.discrete_action_encoding_type == 'not_one_hot':
                # Stack latent_state with the normalized encoded action.
                # The final action_encoding shape is (batch_size, 1, latent_state[2], latent_state[3]), e.g. (8, 1, 4, 1).
                if len(action.shape) == 2:
                    # (batch_size, action_dim=1) -> (batch_size, 1, 1, 1)
                    # e.g.,  torch.Size([8, 1]) ->  torch.Size([8, 1, 1, 1])
                    action = action.unsqueeze(-1).unsqueeze(-1)
                elif len(action.shape) == 1:
                    # (batch_size,) -> (batch_size, 1, 1, 1)
                    # e.g., torch.Size([8])  -> torch.Size([8, 1, 1, 1])
                    action = action.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)

                action_encoding = action.expand(
                    latent_state.shape[0], 1, latent_state.shape[2], latent_state.shape[3]
                ) / self.action_space_size
        else:
            # continuous action space
            if len(action.shape) == 1:
                # (batch_size,) -> (batch_size, action_dim=1, 1, 1)
                # e.g., torch.Size([8]) -> torch.Size([8, 1, 1, 1])
                action = action.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
            elif len(action.shape) == 2:
                # (batch_size, action_dim) -> (batch_size, action_dim, 1, 1)
                # e.g., torch.Size([8, 2]) ->  torch.Size([8, 2, 1, 1])
                action = action.unsqueeze(-1).unsqueeze(-1)
            elif len(action.shape) == 3:
                # (batch_size, action_dim, 1) -> (batch_size, action_dim)
                # e.g., torch.Size([8, 2, 1]) ->  torch.Size([8, 2, 1, 1])
                action = action.unsqueeze(-1)

            action_encoding_tmp = action
            action_encoding = action_encoding_tmp.expand(
                latent_state.shape[0], self.action_space_size, latent_state.shape[2], latent_state.shape[3]
            )

        action_encoding = action_encoding.to(latent_state.device).float()
        # state_action_encoding shape: (batch_size, latent_state[1] + action_dim, latent_state[2], latent_state[3]) or
        # (batch_size, latent_state[1] + action_space_size, latent_state[2], latent_state[3]) depending on the discrete_action_encoding_type.
        state_action_encoding = torch.cat((latent_state, action_encoding), dim=1)
        next_latent_state, next_reward_hidden_state, value_prefix = self.dynamics_network(
            state_action_encoding, reward_hidden_state
        )
        if not self.state_norm:
            return next_latent_state, next_reward_hidden_state, value_prefix
        else:
            next_latent_state_normalized = renormalize(next_latent_state)
            return next_latent_state_normalized, next_reward_hidden_state, value_prefix

    def project(self, latent_state: torch.Tensor, with_grad=True) -> torch.Tensor:
        """
        Overview:
            Project the latent state to a lower dimension to calculate the self-supervised loss, which is proposed in EfficientZero.
            For more details, please refer to paper ``Exploring Simple Siamese Representation Learning``.
        Arguments:
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
            - with_grad (:obj:`bool`): Whether to calculate gradient for the projection result.
        Returns:
            - proj (:obj:`torch.Tensor`): The result embedding vector of projection operation.
        Shapes:
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
                latent state, W_ is the width of latent state.
            - proj (:obj:`torch.Tensor`): :math:`(B, projection_output_dim)`, where B is batch_size.

        Examples:
            >>> latent_state = torch.randn(256, 64, 6, 6)
            >>> output = self.project(latent_state)
            >>> output.shape # (256, 1024)

        .. note::
            for Atari:
            observation_shape = (12, 96, 96),  # original shape is (3,96,96), frame_stack_num=4
            if downsample is True, latent_state.shape: (batch_size, num_channel, obs_shape[1] / 16, obs_shape[2] / 16)
            i.e., (256, 64, 96 / 16, 96 / 16) = (256, 64, 6, 6)
            latent_state reshape: (256, 64, 6, 6) -> (256,64*6*6) = (256, 2304)
            # self.projection_input_dim = 64*6*6 = 2304
            # self.projection_output_dim = 1024
        """
        latent_state = latent_state.reshape(latent_state.shape[0], -1)

        proj = self.projection(latent_state)

        if with_grad:
            # with grad, use prediction_head
            return self.prediction_head(proj)
        else:
            return proj.detach()

    def get_params_mean(self):
        return get_params_mean(self)


class PredictionNetwork(nn.Module):

    def __init__(
            self,
            observation_shape: SequenceType,
            continuous_action_space,
            action_space_size,
            num_res_blocks,
            num_channels,
            value_head_channels,
            policy_head_channels,
            fc_value_layers,
            fc_policy_layers,
            output_support_size,
            flatten_output_size_for_value_head,
            flatten_output_size_for_policy_head,
            downsample: bool = False,
            last_linear_layer_init_zero: bool = True,
            activation: Optional[nn.Module] = nn.ReLU(inplace=True),
            # ==============================================================
            # specific sampled related config
            # ==============================================================
            sigma_type='conditioned',
            fixed_sigma_value: float = 0.3,
            bound_type: str = None,
            norm_type: str = 'BN',
    ):
        """
        Overview:
            The definition of policy and value prediction network, which is used to predict value and policy by the
            given latent state.
            The networks are mainly build on res_conv_blocks and fully connected layers.
        Arguments:
            - observation_shape (:obj:`SequenceType`): The shape of observation space, e.g. (C, H, W) for image.
            - continuous_action_space (:obj:`bool`): The type of action space. Default sets it to False.
            - action_space_size: (:obj:`int`): Action space size, usually an integer number. For discrete action \
                space, it is the number of discrete actions. For continuous action space, it is the dimension of \
                continuous action.
            - num_res_blocks (:obj:`int`): number of res blocks in model.
            - num_channels (:obj:`int`): channels of hidden states.
            - value_head_channels (:obj:`int`): channels of value head.
            - policy_head_channels (:obj:`int`): channels of policy head.
            - fc_value_layers (:obj:`SequenceType`): hidden layers of the value prediction head (MLP head).
            - fc_policy_layers (:obj:`SequenceType`): hidden layers of the policy prediction head (MLP head).
            - output_support_size (:obj:`int`): dim of value output.
            - flatten_output_size_for_value_head (:obj:`int`): dim of flatten hidden states.
            - flatten_output_size_for_policy_head (:obj:`int`): dim of flatten hidden states.
            - downsample (:obj:`bool`): Whether to do downsampling for observations in ``representation_network``.
            - last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializationss for the last layer of value/policy mlp, default sets it to True.
            # ==============================================================
            # specific sampled related config
            # ==============================================================
            # see ``ReparameterizationHead`` in ``ding.model.common.head`` for more details about the following arguments.
            - sigma_type (:obj:`str`): the type of sigma in policy head of prediction network, options={'conditioned', 'fixed'}.
            - fixed_sigma_value (:obj:`float`): the fixed sigma value in policy head of prediction network,
            - bound_type (:obj:`str`): The type of bound in networks.  Default sets it to None.
            - norm_type (:obj:`str`): The type of normalization in networks. Default sets it to 'BN'.
        """
        super().__init__()
        self.continuous_action_space = continuous_action_space
        self.flatten_output_size_for_value_head = flatten_output_size_for_value_head
        self.flatten_output_size_for_policy_head = flatten_output_size_for_policy_head
        self.norm_type = norm_type
        self.sigma_type = sigma_type
        self.fixed_sigma_value = fixed_sigma_value
        self.bound_type = bound_type
        self.activation = activation

        self.resblocks = nn.ModuleList(
            [
                ResBlock(
                    in_channels=num_channels,
                    activation=activation,
                    norm_type='BN',
                    res_type='basic',
                    bias=False
                ) for _ in range(num_res_blocks)
            ]
        )

        self.conv1x1_value = nn.Conv2d(num_channels, value_head_channels, 1)
        self.conv1x1_policy = nn.Conv2d(num_channels, policy_head_channels, 1)

        if norm_type == 'BN':
            self.norm_value = nn.BatchNorm2d(value_head_channels)
            self.norm_policy = nn.BatchNorm2d(policy_head_channels)
        elif norm_type == 'LN':
            if downsample:
                self.norm_value = nn.LayerNorm(
                    [value_head_channels, math.ceil(observation_shape[-2] / 16), math.ceil(observation_shape[-1] / 16)])
                self.norm_policy = nn.LayerNorm([policy_head_channels, math.ceil(observation_shape[-2] / 16),
                                                 math.ceil(observation_shape[-1] / 16)])
            else:
                self.norm_value = nn.LayerNorm([value_head_channels, observation_shape[-2], observation_shape[-1]])
                self.norm_policy = nn.LayerNorm([policy_head_channels, observation_shape[-2], observation_shape[-1]])

        self.fc_value_head = MLP(
            in_channels=self.flatten_output_size_for_value_head,
            hidden_channels=fc_value_layers[0],
            out_channels=output_support_size,
            layer_num=len(fc_value_layers) + 1,
            activation=activation,
            norm_type=self.norm_type,
            output_activation=False,
            output_norm=False,
            # last_linear_layer_init_zero=True is beneficial for convergence speed.
            last_linear_layer_init_zero=last_linear_layer_init_zero
        )

        # sampled related core code
        if self.continuous_action_space:
            self.fc_policy_head = ReparameterizationHead(
                input_size=self.flatten_output_size_for_policy_head,
                output_size=action_space_size,
                layer_num=len(fc_policy_layers) + 1,
                sigma_type=self.sigma_type,
                fixed_sigma_value=self.fixed_sigma_value,
                activation=nn.ReLU(),
                norm_type=None,
                bound_type=self.bound_type
            )
        else:
            self.fc_policy_head = MLP(
                in_channels=self.flatten_output_size_for_policy_head,
                hidden_channels=fc_policy_layers[0],
                out_channels=action_space_size,
                layer_num=len(fc_policy_layers) + 1,
                activation=activation,
                norm_type=self.norm_type,
                output_activation=False,
                output_norm=False,
                # last_linear_layer_init_zero=True is beneficial for convergence speed.
                last_linear_layer_init_zero=last_linear_layer_init_zero
            )

    def forward(self, latent_state: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Overview:
            Forward computation of the prediction network.
        Arguments:
            - latent_state (:obj:`torch.Tensor`): input tensor with shape (B, in_channels).
        Returns:
             - policy (:obj:`torch.Tensor`): policy tensor. If action space is discrete, shape is (B, action_space_size).
                If action space is continuous, shape is (B, action_space_size * 2).
            - value (:obj:`torch.Tensor`): value tensor with shape (B, output_support_size).
        """

        for res_block in self.resblocks:
            latent_state = res_block(latent_state)
        value = self.conv1x1_value(latent_state)
        value = self.norm_value(value)
        value = self.activation(value)

        policy = self.conv1x1_policy(latent_state)
        policy = self.norm_policy(policy)
        policy = self.activation(policy)

        value = value.reshape(-1, self.flatten_output_size_for_value_head)
        policy = policy.reshape(-1, self.flatten_output_size_for_policy_head)
        value = self.fc_value_head(value)

        # sampled related core code
        policy = self.fc_policy_head(policy)

        if self.continuous_action_space:
            policy = torch.cat([policy['mu'], policy['sigma']], dim=-1)

        return policy, value