File size: 6,897 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
from itertools import product
import pytest
import torch
from ding.torch_utils import is_differentiable
from lzero.model.sampled_efficientzero_model import PredictionNetwork, DynamicsNetwork
batch_size = [100, 10]
num_res_blocks = [3, 4, 5]
num_channels = [10]
lstm_hidden_size = [64]
action_space_size = [2, 3]
reward_head_channels = [2]
fc_reward_layers = [[16]]
output_support_size = [2]
flatten_output_size_for_reward_head = [180]
dynamics_network_args = list(
product(
batch_size, num_res_blocks, num_channels, lstm_hidden_size, action_space_size, reward_head_channels,
fc_reward_layers, output_support_size, flatten_output_size_for_reward_head
)
)
value_head_channels = [8]
policy_head_channels = [8]
fc_value_layers = [[
16,
]]
fc_policy_layers = [[
16,
]]
observation_shape = [1, 3, 3]
prediction_network_args = list(
product(
action_space_size,
batch_size,
num_res_blocks,
num_channels,
value_head_channels,
policy_head_channels,
fc_value_layers,
fc_policy_layers,
output_support_size,
)
)
@pytest.mark.unittest
class TestSampledEfficientZeroModel:
def output_check(self, model, outputs):
if isinstance(outputs, torch.Tensor):
loss = outputs.sum()
elif isinstance(outputs, list):
loss = sum([t.sum() for t in outputs])
elif isinstance(outputs, dict):
loss = sum([v.sum() for v in outputs.values()])
is_differentiable(loss, model)
@pytest.mark.parametrize(
'action_space_size, batch_size, num_res_blocks, num_channels, value_head_channels, policy_head_channels, fc_value_layers, fc_policy_layers, output_support_size',
prediction_network_args
)
def test_prediction_network(
self, action_space_size, batch_size, num_res_blocks, num_channels, value_head_channels, policy_head_channels,
fc_value_layers, fc_policy_layers, output_support_size
):
obs = torch.rand(batch_size, num_channels, 3, 3)
flatten_output_size_for_value_head = value_head_channels * observation_shape[1] * observation_shape[2]
flatten_output_size_for_policy_head = policy_head_channels * observation_shape[1] * observation_shape[2]
prediction_network = PredictionNetwork(
observation_shape=observation_shape,
continuous_action_space=True,
action_space_size=action_space_size,
num_res_blocks=num_res_blocks,
num_channels=num_channels,
value_head_channels=value_head_channels,
policy_head_channels=policy_head_channels,
fc_value_layers=fc_value_layers,
fc_policy_layers=fc_policy_layers,
output_support_size=output_support_size,
flatten_output_size_for_value_head=flatten_output_size_for_value_head,
flatten_output_size_for_policy_head=flatten_output_size_for_policy_head,
last_linear_layer_init_zero=True,
)
policy, value = prediction_network(obs)
assert policy.shape == torch.Size([batch_size, action_space_size * 2])
assert value.shape == torch.Size([batch_size, output_support_size])
@pytest.mark.parametrize(
'batch_size, num_res_blocks, num_channels, lstm_hidden_size, action_space_size, reward_head_channels, fc_reward_layers, output_support_size,'
'flatten_output_size_for_reward_head', dynamics_network_args
)
def test_dynamics_network(
self, batch_size, num_res_blocks, num_channels, lstm_hidden_size, action_space_size, reward_head_channels,
fc_reward_layers, output_support_size, flatten_output_size_for_reward_head
):
print('=' * 20)
print(
batch_size, num_res_blocks, num_channels, lstm_hidden_size, action_space_size, reward_head_channels,
fc_reward_layers, output_support_size, flatten_output_size_for_reward_head
)
print('=' * 20)
observation_shape = [1, 3, 3]
flatten_output_size_for_reward_head = reward_head_channels * observation_shape[1] * observation_shape[2]
state_action_embedding = torch.rand(batch_size, num_channels, observation_shape[1], observation_shape[2])
dynamics_network = DynamicsNetwork(
observation_shape=observation_shape,
action_encoding_dim=action_space_size,
num_res_blocks=num_res_blocks,
num_channels=num_channels,
lstm_hidden_size=lstm_hidden_size,
reward_head_channels=reward_head_channels,
fc_reward_layers=fc_reward_layers,
output_support_size=output_support_size,
flatten_output_size_for_reward_head=flatten_output_size_for_reward_head
)
next_state, reward_hidden_state, value_prefix = dynamics_network(
state_action_embedding,
(torch.randn(1, batch_size, lstm_hidden_size), torch.randn(1, batch_size, lstm_hidden_size))
)
assert next_state.shape == torch.Size([batch_size, num_channels - action_space_size, 3, 3])
assert reward_hidden_state[0].shape == torch.Size([1, batch_size, lstm_hidden_size])
assert reward_hidden_state[1].shape == torch.Size([1, batch_size, lstm_hidden_size])
assert value_prefix.shape == torch.Size([batch_size, output_support_size])
if __name__ == "__main__":
batch_size = 2
num_res_blocks = 3
num_channels = 10
lstm_hidden_size = 64
action_space_size = 5
reward_head_channels = 2
fc_reward_layers = [16]
output_support_size = 2
observation_shape = [1, 3, 3]
# flatten_output_size_for_reward_head = 180
flatten_output_size_for_reward_head = reward_head_channels * observation_shape[1] * observation_shape[2]
state_action_embedding = torch.rand(batch_size, num_channels, observation_shape[1], observation_shape[2])
dynamics_network = DynamicsNetwork(
observation_shape=observation_shape,
action_encoding_dim=action_space_size,
num_res_blocks=num_res_blocks,
num_channels=num_channels,
reward_head_channels=reward_head_channels,
fc_reward_layers=fc_reward_layers,
output_support_size=output_support_size,
flatten_output_size_for_reward_head=flatten_output_size_for_reward_head
)
next_state, reward_hidden_state, value_prefix = dynamics_network(
state_action_embedding,
(torch.randn(1, batch_size, lstm_hidden_size), torch.randn(1, batch_size, lstm_hidden_size))
)
assert next_state.shape == torch.Size([batch_size, num_channels - action_space_size, 3, 3])
assert reward_hidden_state[0].shape == torch.Size([1, batch_size, lstm_hidden_size])
assert reward_hidden_state[1].shape == torch.Size([1, batch_size, lstm_hidden_size])
assert value_prefix.shape == torch.Size([batch_size, output_support_size])
|