File size: 43,442 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
import copy
from typing import List, Dict, Any, Tuple, Union

import numpy as np
import torch
import torch.optim as optim
from ding.model import model_wrap
from ding.torch_utils import to_tensor
from ding.utils import POLICY_REGISTRY
from torch.nn import L1Loss

from lzero.mcts import StochasticMuZeroMCTSCtree as MCTSCtree
from lzero.mcts import StochasticMuZeroMCTSPtree as MCTSPtree
from lzero.model import ImageTransforms
from lzero.policy import scalar_transform, InverseScalarTransform, cross_entropy_loss, phi_transform, \
    DiscreteSupport, to_torch_float_tensor, mz_network_output_unpack, select_action, negative_cosine_similarity, \
    prepare_obs
from lzero.policy.muzero import MuZeroPolicy
from lzero.policy.utils import plot_topk_accuracy, visualize_avg_softmax, plot_argmax_distribution


@POLICY_REGISTRY.register('stochastic_muzero')
class StochasticMuZeroPolicy(MuZeroPolicy):
    """
    Overview:
        The policy class for Stochastic MuZero proposed in the paper https://openreview.net/pdf?id=X6D9bAHhBQ1.
    """

    # The default_config for Stochastic MuZero policy.
    config = dict(
        model=dict(
            # (str) The model type. For 1-dimensional vector obs, we use mlp model. For the image obs, we use conv model.
            model_type='conv',  # options={'mlp', 'conv'}
            # (bool) If True, the action space of the environment is continuous, otherwise discrete.
            continuous_action_space=False,
            # (tuple) The stacked obs shape.
            # observation_shape=(1, 96, 96),  # if frame_stack_num=1
            observation_shape=(4, 96, 96),  # if frame_stack_num=4
            # (int) The chance space size.
            chance_space_size=2,
            # (bool) Whether to use the self-supervised learning loss.
            self_supervised_learning_loss=False,
            # (bool) Whether to use discrete support to represent categorical distribution for value/reward/value_prefix.
            categorical_distribution=True,
            # (int) The image channel in image observation.
            image_channel=1,
            # (int) The number of frames to stack together.
            frame_stack_num=1,
            # (int) The number of res blocks in MuZero model.
            num_res_blocks=1,
            # (int) The number of channels of hidden states in MuZero model.
            num_channels=64,
            # (int) The scale of supports used in categorical distribution.
            # This variable is only effective when ``categorical_distribution=True``.
            support_scale=300,
            # (bool) whether to learn bias in the last linear layer in value and policy head.
            bias=True,
        ),
        # ****** common ******
        # (bool) Whether to enable the sampled-based algorithm (e.g. Sampled EfficientZero)
        sampled_algo=False,
        # (bool) Whether to enable the gumbel-based algorithm (e.g. Gumbel Muzero).
        gumbel_algo=False,
        # (bool) Whether to use C++ MCTS in policy. If False, use Python implementation.
        mcts_ctree=True,
        # (bool) Whether to use cuda for network.
        cuda=True,
        # (int) The number of environments used in collecting data.
        collector_env_num=8,
        # (int) The number of environments used in evaluating policy.
        evaluator_env_num=3,
        # (str) The type of environment. Options is ['not_board_games', 'board_games'].
        env_type='not_board_games',
        # (str) The type of action space. Options are ['fixed_action_space', 'varied_action_space'].
        action_type='fixed_action_space',
        # (str) The type of battle mode. Options is ['play_with_bot_mode', 'self_play_mode'].
        battle_mode='play_with_bot_mode',
        # (bool) Whether to monitor extra statistics in tensorboard.
        monitor_extra_statistics=True,
        # (bool) Whether to analyze the chance distribution.
        analyze_chance_distribution=False,
        # (int) The transition number of one ``GameSegment``.
        game_segment_length=200,

        # ****** observation ******
        # (bool) Whether to transform image to string to save memory.
        transform2string=False,
        # (bool) Whether to use gray scale image.
        gray_scale=False,
        # (bool) Whether to use data augmentation.
        use_augmentation=False,
        # (list) The style of augmentation.
        augmentation=['shift', 'intensity'],

        # ******* learn ******
        # (bool) Whether to ignore the done flag in the training data. Typically, this value is set to False.
        # However, for some environments with a fixed episode length, to ensure the accuracy of Q-value calculations,
        # we should set it to True to avoid the influence of the done flag.
        ignore_done=False,
        # (int) How many updates(iterations) to train after collector's one collection.
        # Bigger "update_per_collect" means bigger off-policy.
        # collect data -> update policy-> collect data -> ...
        # For different env, we have different episode_length,
        # we usually set update_per_collect = collector_env_num * episode_length / batch_size * reuse_factor
        update_per_collect=100,
        # (float) The ratio of the collected data used for training. Only effective when ``update_per_collect`` is not None.
        model_update_ratio=0.1,
        # (int) Minibatch size for one gradient descent.
        batch_size=256,
        # (str) Optimizer for training policy network. ['SGD', 'Adam']
        optim_type='Adam',
        # (float) Learning rate for training policy network. Ininitial lr for manually decay schedule.
        learning_rate=int(3e-3),
        # (int) Frequency of target network update.
        target_update_freq=100,
        # (float) Weight decay for training policy network.
        weight_decay=1e-4,
        # (float) One-order Momentum in optimizer, which stabilizes the training process (gradient direction).
        momentum=0.9,
        # (float) The maximum constraint value of gradient norm clipping.
        grad_clip_value=10,
        # (int) The number of episode in each collecting stage.
        n_episode=8,
        # (int) the number of simulations in MCTS.
        num_simulations=50,
        # (float) Discount factor (gamma) for returns.
        discount_factor=0.997,
        # (int) The number of step for calculating target q_value.
        td_steps=5,
        # (int) The number of unroll steps in dynamics network.
        num_unroll_steps=5,
        # (float) The weight of reward loss.
        reward_loss_weight=1,
        # (float) The weight of value loss.
        value_loss_weight=0.25,
        # (float) The weight of policy loss.
        policy_loss_weight=1,
        # (float) The weight of afterstate policy loss.
        afterstate_policy_loss_weight=1,
        # (float) The weight of afterstate value loss.
        afterstate_value_loss_weight=0.25,
        # (float) The weight of vqvae encoder commitment loss.
        commitment_loss_weight=1.0,
        # (float) The weight of ssl (self-supervised learning) loss.
        ssl_loss_weight=0,
        # (bool) Whether to use piecewise constant learning rate decay.
        # i.e. lr: 0.2 -> 0.02 -> 0.002
        lr_piecewise_constant_decay=False,
        # (int) The number of final training iterations to control lr decay, which is only used for manually decay.
        threshold_training_steps_for_final_lr=int(5e4),
        # (bool) Whether to use manually decayed temperature.
        manual_temperature_decay=False,
        # (int) The number of final training iterations to control temperature, which is only used for manually decay.
        threshold_training_steps_for_final_temperature=int(1e5),
        # (float) The fixed temperature value for MCTS action selection, which is used to control the exploration.
        # The larger the value, the more exploration. This value is only used when manual_temperature_decay=False.
        fixed_temperature_value=0.25,
        # (bool) Whether to use the true chance in MCTS. If False, use the predicted chance.
        use_ture_chance_label_in_chance_encoder=False,

        # ****** Priority ******
        # (bool) Whether to use priority when sampling training data from the buffer.
        use_priority=True,
        # (bool) Whether to use the maximum priority for new collecting data.
        use_max_priority_for_new_data=True,
        # (float) The degree of prioritization to use. A value of 0 means no prioritization,
        # while a value of 1 means full prioritization.
        priority_prob_alpha=0.6,
        # (float) The degree of correction to use. A value of 0 means no correction,
        # while a value of 1 means full correction.
        priority_prob_beta=0.4,

        # ****** UCB ******
        # (float) The alpha value used in the Dirichlet distribution for exploration at the root node of search tree.
        root_dirichlet_alpha=0.3,
        # (float) The noise weight at the root node of the search tree.
        root_noise_weight=0.25,

        # ****** Explore by random collect ******
        # (int) The number of episodes to collect data randomly before training.
        random_collect_episode_num=0,

        # ****** Explore by eps greedy ******
        eps=dict(
            # (bool) Whether to use eps greedy exploration in collecting data.
            eps_greedy_exploration_in_collect=False,
            # (str) The type of decaying epsilon. Options are 'linear', 'exp'.
            type='linear',
            # (float) The start value of eps.
            start=1.,
            # (float) The end value of eps.
            end=0.05,
            # (int) The decay steps from start to end eps.
            decay=int(1e5),
        ),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        """
        Overview:
            Return this algorithm default model setting.
        Returns:
            - model_info (:obj:`Tuple[str, List[str]]`): model name and model import_names.
                - model_type (:obj:`str`): The model type used in this algorithm, which is registered in ModelRegistry.
                - import_names (:obj:`List[str]`): The model class path list used in this algorithm.
        .. note::
            The user can define and use customized network model but must obey the same interface definition indicated \
            by import_names path. For MuZero, ``lzero.model.muzero_model.MuZeroModel``.
        """
        if self._cfg.model.model_type == "conv":
            return 'StochasticMuZeroModel', ['lzero.model.stochastic_muzero_model']
        elif self._cfg.model.model_type == "mlp":
            return 'StochasticMuZeroModelMLP', ['lzero.model.stochastic_muzero_model_mlp']
        else:
            raise ValueError("model type {} is not supported".format(self._cfg.model.model_type))

    def _init_learn(self) -> None:
        """
        Overview:
            Learn mode init method. Called by ``self.__init__``. Initialize the learn model, optimizer and MCTS utils.
        """
        assert self._cfg.optim_type in ['SGD', 'Adam'], self._cfg.optim_type
        # NOTE: in board_games, for fixed lr 0.003, 'Adam' is better than 'SGD'.
        if self._cfg.optim_type == 'SGD':
            self._optimizer = optim.SGD(
                self._model.parameters(),
                lr=self._cfg.learning_rate,
                momentum=self._cfg.momentum,
                weight_decay=self._cfg.weight_decay,
            )
        elif self._cfg.optim_type == 'Adam':
            self._optimizer = optim.Adam(
                self._model.parameters(), lr=self._cfg.learning_rate, weight_decay=self._cfg.weight_decay
            )

        if self._cfg.lr_piecewise_constant_decay:
            from torch.optim.lr_scheduler import LambdaLR
            max_step = self._cfg.threshold_training_steps_for_final_lr
            # NOTE: the 1, 0.1, 0.01 is the decay rate, not the lr.
            lr_lambda = lambda step: 1 if step < max_step * 0.5 else (0.1 if step < max_step else 0.01)  # noqa
            self.lr_scheduler = LambdaLR(self._optimizer, lr_lambda=lr_lambda)

        # use model_wrapper for specialized demands of different modes
        self._target_model = copy.deepcopy(self._model)
        self._target_model = model_wrap(
            self._target_model,
            wrapper_name='target',
            update_type='assign',
            update_kwargs={'freq': self._cfg.target_update_freq}
        )
        self._learn_model = self._model

        if self._cfg.use_augmentation:
            self.image_transforms = ImageTransforms(
                self._cfg.augmentation,
                image_shape=(self._cfg.model.observation_shape[1], self._cfg.model.observation_shape[2])
            )
        self.value_support = DiscreteSupport(-self._cfg.model.support_scale, self._cfg.model.support_scale, delta=1)
        self.reward_support = DiscreteSupport(-self._cfg.model.support_scale, self._cfg.model.support_scale, delta=1)
        self.inverse_scalar_transform_handle = InverseScalarTransform(
            self._cfg.model.support_scale, self._cfg.device, self._cfg.model.categorical_distribution
        )

    def _forward_learn(self, data: Tuple[torch.Tensor]) -> Dict[str, Union[float, int]]:
        """
        Overview:
            The forward function for learning policy in learn mode, which is the core of the learning process. \
            The data is sampled from replay buffer. \
            The loss is calculated by the loss function and the loss is backpropagated to update the model.
        Arguments:
            - data (:obj:`Tuple[torch.Tensor]`): The data sampled from replay buffer, which is a tuple of tensors. \
                The first tensor is the current_batch, the second tensor is the target_batch.
        Returns:
            - info_dict (:obj:`Dict[str, Union[float, int]]`): The information dict to be logged, which contains \
                current learning loss and learning statistics.
        """
        self._learn_model.train()
        self._target_model.train()

        current_batch, target_batch = data
        if self._cfg.use_ture_chance_label_in_chance_encoder:
            obs_batch_orig, action_batch, mask_batch, indices, weights, make_time, chance_batch = current_batch
        else:
            obs_batch_orig, action_batch, mask_batch, indices, weights, make_time = current_batch
        target_reward, target_value, target_policy = target_batch
        
        if self._cfg.use_ture_chance_label_in_chance_encoder:
            chance_batch = torch.Tensor(chance_batch).to(self._cfg.device)
            chance_one_hot_batch = torch.nn.functional.one_hot(chance_batch.long(), self._cfg.model.chance_space_size)

        obs_batch, obs_target_batch = prepare_obs(obs_batch_orig, self._cfg)
        obs_list_for_chance_encoder = [obs_batch]

        for step_k in range(self._cfg.num_unroll_steps):
            beg_index, end_index = self._get_target_obs_index_in_step_k(step_k)
            obs_list_for_chance_encoder.append(obs_target_batch[:, beg_index:end_index])

        # do augmentations
        if self._cfg.use_augmentation:
            obs_batch = self.image_transforms.transform(obs_batch)
            if self._cfg.model.self_supervised_learning_loss:
                obs_target_batch = self.image_transforms.transform(obs_target_batch)

        # shape: (batch_size, num_unroll_steps, action_dim)
        # NOTE: .long(), in discrete action space.
        action_batch = torch.from_numpy(action_batch).to(self._cfg.device).unsqueeze(-1).long()
        data_list = [
            mask_batch,
            target_reward.astype('float32'),
            target_value.astype('float32'), target_policy, weights
        ]
        [mask_batch, target_reward, target_value, target_policy,
         weights] = to_torch_float_tensor(data_list, self._cfg.device)

        target_reward = target_reward.view(self._cfg.batch_size, -1)
        target_value = target_value.view(self._cfg.batch_size, -1)

        assert obs_batch.size(0) == self._cfg.batch_size == target_reward.size(0)

        # ``scalar_transform`` to transform the original value to the scaled value,
        # i.e. h(.) function in paper https://arxiv.org/pdf/1805.11593.pdf.
        transformed_target_reward = scalar_transform(target_reward)
        transformed_target_value = scalar_transform(target_value)

        # transform a scalar to its categorical_distribution. After this transformation, each scalar is
        # represented as the linear combination of its two adjacent supports.
        target_reward_categorical = phi_transform(self.reward_support, transformed_target_reward)
        target_value_categorical = phi_transform(self.value_support, transformed_target_value)

        # ==============================================================
        # the core initial_inference in MuZero policy.
        # ==============================================================
        network_output = self._learn_model.initial_inference(obs_batch)

        # value_prefix shape: (batch_size, 10), the ``value_prefix`` at the first step is zero padding.
        latent_state, reward, value, policy_logits = mz_network_output_unpack(network_output)

        # transform the scaled value or its categorical representation to its original value,
        # i.e. h^(-1)(.) function in paper https://arxiv.org/pdf/1805.11593.pdf.
        original_value = self.inverse_scalar_transform_handle(value)

        # Note: The following lines are just for debugging.
        predicted_rewards = []
        if self._cfg.monitor_extra_statistics:
            latent_state_list = latent_state.detach().cpu().numpy()
            predicted_values, predicted_policies = original_value.detach().cpu(), torch.softmax(
                policy_logits, dim=1
            ).detach().cpu()

        # calculate the new priorities for each transition.
        value_priority = L1Loss(reduction='none')(original_value.squeeze(-1), target_value[:, 0])
        value_priority = value_priority.data.cpu().numpy() + 1e-6

        # ==============================================================
        # calculate policy and value loss for the first step.
        # ==============================================================
        policy_loss = cross_entropy_loss(policy_logits, target_policy[:, 0])
        value_loss = cross_entropy_loss(value, target_value_categorical[:, 0])

        reward_loss = torch.zeros(self._cfg.batch_size, device=self._cfg.device)
        consistency_loss = torch.zeros(self._cfg.batch_size, device=self._cfg.device)

        afterstate_policy_loss = torch.zeros(self._cfg.batch_size, device=self._cfg.device)
        afterstate_value_loss = torch.zeros(self._cfg.batch_size, device=self._cfg.device)
        commitment_loss = torch.zeros(self._cfg.batch_size, device=self._cfg.device)

        # ==============================================================
        # the core recurrent_inference in MuZero policy.
        # ==============================================================
        for step_k in range(self._cfg.num_unroll_steps):
            # unroll with the afterstate dynamic function: predict 'afterstate',
            # given current ``state`` and ``action``.
            # 'afterstate reward' is not used, we kept it for the sake of uniformity between decision nodes and chance nodes.
            # And then predict afterstate_policy_logits and afterstate_value with the afterstate prediction function.
            network_output = self._learn_model.recurrent_inference(
                latent_state, action_batch[:, step_k], afterstate=False
            )
            afterstate, afterstate_reward, afterstate_value, afterstate_policy_logits = mz_network_output_unpack(network_output)

            # ==============================================================
            # encode the consecutive frames to predict chance
            # ==============================================================
            # concat consecutive frames to predict chance
            concat_frame = torch.cat((obs_list_for_chance_encoder[step_k],
                                      obs_list_for_chance_encoder[step_k + 1]), dim=1)
            chance_encoding, chance_one_hot = self._learn_model.chance_encode(concat_frame)
            if self._cfg.use_ture_chance_label_in_chance_encoder:
                true_chance_code = chance_batch[:, step_k]
                true_chance_one_hot = chance_one_hot_batch[:, step_k]
                chance_code = true_chance_code
            else:
                chance_code = torch.argmax(chance_encoding, dim=1).long().unsqueeze(-1)
            
            # unroll with the dynamics function: predict the next ``latent_state``, ``reward``,
            # given current ``afterstate`` and ``chance_code``.
            # And then predict policy_logits and value with the prediction function.
            network_output = self._learn_model.recurrent_inference(afterstate, chance_code, afterstate=True)

            latent_state, reward, value, policy_logits = mz_network_output_unpack(network_output)

            # transform the scaled value or its categorical representation to its original value,
            # i.e. h^(-1)(.) function in paper https://arxiv.org/pdf/1805.11593.pdf.
            original_value = self.inverse_scalar_transform_handle(value)

            if self._cfg.model.self_supervised_learning_loss:
                # ==============================================================
                # calculate consistency loss for the next ``num_unroll_steps`` unroll steps.
                # ==============================================================
                if self._cfg.ssl_loss_weight > 0:
                    # obtain the oracle hidden states from representation function.
                    beg_index, end_index = self._get_target_obs_index_in_step_k(step_k)
                    network_output = self._learn_model.initial_inference(obs_target_batch[:, beg_index:end_index])

                    latent_state = to_tensor(latent_state)
                    representation_state = to_tensor(network_output.latent_state)

                    # NOTE: no grad for the representation_state branch
                    dynamic_proj = self._learn_model.project(latent_state, with_grad=True)
                    observation_proj = self._learn_model.project(representation_state, with_grad=False)
                    temp_loss = negative_cosine_similarity(dynamic_proj, observation_proj) * mask_batch[:, step_k]
                    consistency_loss += temp_loss

            # NOTE: the target policy, target_value_categorical, target_reward_categorical is calculated in
            # game buffer now.
            # ==============================================================
            # calculate policy loss for the next ``num_unroll_steps`` unroll steps.
            # NOTE: the +=.
            # ==============================================================
            policy_loss += cross_entropy_loss(policy_logits, target_policy[:, step_k + 1])

            if self._cfg.use_ture_chance_label_in_chance_encoder:
                afterstate_policy_loss += cross_entropy_loss(afterstate_policy_logits, true_chance_one_hot.detach())

                if self._cfg.analyze_chance_distribution:
                    # visualize the avg softmax of afterstate_policy_logits
                    visualize_avg_softmax(afterstate_policy_logits)
                    # plot the argmax distribution of true_chance_one_hot
                    plot_argmax_distribution(true_chance_one_hot)
                    topK_values = range(1, self._cfg.model.chance_space_size+1)  # top_K values from 1 to 32
                    # calculate the topK accuracy of afterstate_policy_logits and plot the topK accuracy curve.
                    plot_topk_accuracy(afterstate_policy_logits, true_chance_one_hot, topK_values)

                # The chance encoder is not used in the mcts, so we don't need to calculate the commitment loss.
                commitment_loss += torch.nn.MSELoss()(chance_encoding, true_chance_one_hot.float().detach())
            else:
                afterstate_policy_loss += cross_entropy_loss(afterstate_policy_logits, chance_one_hot.detach())

                if self._cfg.analyze_chance_distribution:
                    # visualize the avg softmax of afterstate_policy_logits
                    visualize_avg_softmax(afterstate_policy_logits)
                    # plot the argmax distribution of true_chance_one_hot
                    plot_argmax_distribution(true_chance_one_hot)
                    topK_values = range(1, self._cfg.model.chance_space_size+1)  # top_K values from 1 to 32
                    # calculate the topK accuracy of afterstate_policy_logits and plot the topK accuracy curve.
                    plot_topk_accuracy(afterstate_policy_logits, true_chance_one_hot, topK_values)

                commitment_loss += torch.nn.MSELoss()(chance_encoding, chance_one_hot.float())

            afterstate_value_loss += cross_entropy_loss(afterstate_value, target_value_categorical[:, step_k])
            value_loss += cross_entropy_loss(value, target_value_categorical[:, step_k + 1])
            reward_loss += cross_entropy_loss(reward, target_reward_categorical[:, step_k])

            if self._cfg.monitor_extra_statistics:
                original_rewards = self.inverse_scalar_transform_handle(reward)
                original_rewards_cpu = original_rewards.detach().cpu()

                predicted_values = torch.cat(
                    (predicted_values, self.inverse_scalar_transform_handle(value).detach().cpu())
                )
                predicted_rewards.append(original_rewards_cpu)
                predicted_policies = torch.cat((predicted_policies, torch.softmax(policy_logits, dim=1).detach().cpu()))
                latent_state_list = np.concatenate((latent_state_list, latent_state.detach().cpu().numpy()))

        # ==============================================================
        # the core learn model update step.
        # ==============================================================
        # weighted loss with masks (some invalid states which are out of trajectory.)
        loss = (
            self._cfg.ssl_loss_weight * consistency_loss + self._cfg.policy_loss_weight * policy_loss +
            self._cfg.value_loss_weight * value_loss + self._cfg.reward_loss_weight * reward_loss +
            self._cfg.afterstate_policy_loss_weight * afterstate_policy_loss +
            self._cfg.afterstate_value_loss_weight * afterstate_value_loss + self._cfg.commitment_loss_weight * commitment_loss
        )
        weighted_total_loss = (weights * loss).mean()

        gradient_scale = 1 / self._cfg.num_unroll_steps
        weighted_total_loss.register_hook(lambda grad: grad * gradient_scale)
        self._optimizer.zero_grad()
        weighted_total_loss.backward()
        total_grad_norm_before_clip = torch.nn.utils.clip_grad_norm_(
            self._learn_model.parameters(), self._cfg.grad_clip_value
        )
        self._optimizer.step()
        if self._cfg.lr_piecewise_constant_decay is True:
            self.lr_scheduler.step()

        # ==============================================================
        # the core target model update step.
        # ==============================================================
        self._target_model.update(self._learn_model.state_dict())

        # packing loss info for tensorboard logging
        loss_info = (
            weighted_total_loss.item(),
            loss.mean().item(),
            policy_loss.mean().item(),
            reward_loss.mean().item(),
            value_loss.mean().item(),
            consistency_loss.mean(),
            afterstate_policy_loss.mean().item(),
            afterstate_value_loss.mean().item(),
            commitment_loss.mean().item(),
        )
        if self._cfg.monitor_extra_statistics:
            predicted_rewards = torch.stack(predicted_rewards).transpose(1, 0).squeeze(-1)
            predicted_rewards = predicted_rewards.reshape(-1).unsqueeze(-1)

            td_data = (
                value_priority,
                target_reward.detach().cpu().numpy(),
                target_value.detach().cpu().numpy(),
                transformed_target_reward.detach().cpu().numpy(),
                transformed_target_value.detach().cpu().numpy(),
                target_reward_categorical.detach().cpu().numpy(),
                target_value_categorical.detach().cpu().numpy(),
                predicted_rewards.detach().cpu().numpy(),
                predicted_values.detach().cpu().numpy(),
                target_policy.detach().cpu().numpy(),
                predicted_policies.detach().cpu().numpy(),
                latent_state_list,
            )

        return {
            'collect_mcts_temperature': self._collect_mcts_temperature,
            'cur_lr': self._optimizer.param_groups[0]['lr'],
            'weighted_total_loss': loss_info[0],
            'total_loss': loss_info[1],
            'policy_loss': loss_info[2],
            'reward_loss': loss_info[3],
            'value_loss': loss_info[4],
            'consistency_loss': loss_info[5] / self._cfg.num_unroll_steps,
            'afterstate_policy_loss': loss_info[6],
            'afterstate_value_loss': loss_info[7],
            'commitment_loss': loss_info[8],

            # ==============================================================
            # priority related
            # ==============================================================
            'value_priority_orig': value_priority,
            'value_priority': td_data[0].flatten().mean().item(),
            
            'target_reward': td_data[1].flatten().mean().item(),
            'target_value': td_data[2].flatten().mean().item(),
            'transformed_target_reward': td_data[3].flatten().mean().item(),
            'transformed_target_value': td_data[4].flatten().mean().item(),
            'predicted_rewards': td_data[7].flatten().mean().item(),
            'predicted_values': td_data[8].flatten().mean().item(),
            'total_grad_norm_before_clip': total_grad_norm_before_clip
        }

    def _init_collect(self) -> None:
        """
        Overview:
            Collect mode init method. Called by ``self.__init__``. Initialize the collect model and MCTS utils.
        """
        self._collect_model = self._model
        if self._cfg.mcts_ctree:
            self._mcts_collect = MCTSCtree(self._cfg)
        else:
            self._mcts_collect = MCTSPtree(self._cfg)
        self._collect_mcts_temperature = 1

    def _forward_collect(
            self,
            data: torch.Tensor,
            action_mask: list = None,
            temperature: float = 1,
            to_play: List = [-1],
            epsilon: float = 0.25,
            ready_env_id: np.array = None,
    ) -> Dict:
        """
        Overview:
            The forward function for collecting data in collect mode. Use model to execute MCTS search. \
            Choosing the action through sampling during the collect mode.
        Arguments:
            - data (:obj:`torch.Tensor`): The input data, i.e. the observation.
            - action_mask (:obj:`list`): The action mask, i.e. the action that cannot be selected.
            - temperature (:obj:`float`): The temperature of the policy.
            - to_play (:obj:`int`): The player to play.
            - ready_env_id (:obj:`list`): The id of the env that is ready to collect.
        Shape:
            - data (:obj:`torch.Tensor`):
                - For Atari, its shape is :math:`(N, C*S, H, W)`, where N is the number of collect_env, C is the number of channels, \
                    S is the number of stacked frames, H is the height of the image, W is the width of the image.
                - For lunarlander, its shape is :math:`(N, O)`, where N is the number of collect_env, O is the observation space size.
            - action_mask: :math:`(N, action_space_size)`, where N is the number of collect_env.
            - temperature: :math:`(1, )`.
            - to_play: :math:`(N, 1)`, where N is the number of collect_env.
            - ready_env_id: None
        Returns:
            - output (:obj:`Dict[int, Any]`): Dict type data, the keys including ``action``, ``distributions``, \
                ``visit_count_distribution_entropy``, ``value``, ``pred_value``, ``policy_logits``.
        """
        self._collect_model.eval()
        self._collect_mcts_temperature = temperature
        active_collect_env_num = data.shape[0]
        with torch.no_grad():
            # data shape [B, S x C, W, H], e.g. {Tensor:(B, 12, 96, 96)}
            network_output = self._collect_model.initial_inference(data)
            latent_state_roots, reward_roots, pred_values, policy_logits = mz_network_output_unpack(network_output)

            if not self._learn_model.training:
                # if not in training, obtain the scalars of the value/reward
                pred_values = self.inverse_scalar_transform_handle(pred_values).detach().cpu().numpy()
                latent_state_roots = latent_state_roots.detach().cpu().numpy()
                policy_logits = policy_logits.detach().cpu().numpy().tolist()

            legal_actions = [[i for i, x in enumerate(action_mask[j]) if x == 1] for j in range(active_collect_env_num)]
            # the only difference between collect and eval is the dirichlet noise
            noises = [
                np.random.dirichlet([self._cfg.root_dirichlet_alpha] * int(sum(action_mask[j]))
                                    ).astype(np.float32).tolist() for j in range(active_collect_env_num)
            ]
            if self._cfg.mcts_ctree:
                # cpp mcts_tree
                roots = MCTSCtree.roots(active_collect_env_num, legal_actions)
            else:
                # python mcts_tree
                roots = MCTSPtree.roots(active_collect_env_num, legal_actions)

            roots.prepare(self._cfg.root_noise_weight, noises, reward_roots, policy_logits, to_play)
            self._mcts_collect.search(roots, self._collect_model, latent_state_roots, to_play)

            # list of list, shape: ``{list: batch_size} -> {list: action_space_size}``
            roots_visit_count_distributions = roots.get_distributions()
            roots_values = roots.get_values()  # shape: {list: batch_size}

            data_id = [i for i in range(active_collect_env_num)]
            output = {i: None for i in data_id}

            if ready_env_id is None:
                ready_env_id = np.arange(active_collect_env_num)

            for i, env_id in enumerate(ready_env_id):
                distributions, value = roots_visit_count_distributions[i], roots_values[i]
                # NOTE: Only legal actions possess visit counts, so the ``action_index_in_legal_action_set`` represents
                # the index within the legal action set, rather than the index in the entire action set.
                action_index_in_legal_action_set, visit_count_distribution_entropy = select_action(
                    distributions, temperature=self._collect_mcts_temperature, deterministic=False
                )
                # NOTE: Convert the ``action_index_in_legal_action_set`` to the corresponding ``action`` in the
                # entire action set.
                action = np.where(action_mask[i] == 1.0)[0][action_index_in_legal_action_set]
                output[env_id] = {
                    'action': action,
                    'visit_count_distributions': distributions,
                    'visit_count_distribution_entropy': visit_count_distribution_entropy,
                    'searched_value': value,
                    'predicted_value': pred_values[i],
                    'predicted_policy_logits': policy_logits[i],
                }

        return output

    def _init_eval(self) -> None:
        """
        Overview:
            Evaluate mode init method. Called by ``self.__init__``. Initialize the eval model and MCTS utils.
        """
        self._eval_model = self._model
        if self._cfg.mcts_ctree:
            self._mcts_eval = MCTSCtree(self._cfg)
        else:
            self._mcts_eval = MCTSPtree(self._cfg)

    def _forward_eval(self, data: torch.Tensor, action_mask: list, to_play: int = -1, ready_env_id: np.array = None,) -> Dict:
        """
        Overview:
            The forward function for evaluating the current policy in eval mode. Use model to execute MCTS search. \
            Choosing the action with the highest value (argmax) rather than sampling during the eval mode.
        Arguments:
            - data (:obj:`torch.Tensor`): The input data, i.e. the observation.
            - action_mask (:obj:`list`): The action mask, i.e. the action that cannot be selected.
            - to_play (:obj:`int`): The player to play.
            - ready_env_id (:obj:`list`): The id of the env that is ready to collect.
        Shape:
            - data (:obj:`torch.Tensor`):
                - For Atari, :math:`(N, C*S, H, W)`, where N is the number of collect_env, C is the number of channels, \
                    S is the number of stacked frames, H is the height of the image, W is the width of the image.
                - For lunarlander, :math:`(N, O)`, where N is the number of collect_env, O is the observation space size.
            - action_mask: :math:`(N, action_space_size)`, where N is the number of collect_env.
            - to_play: :math:`(N, 1)`, where N is the number of collect_env.
            - ready_env_id: None
        Returns:
            - output (:obj:`Dict[int, Any]`): Dict type data, the keys including ``action``, ``distributions``, \
                ``visit_count_distribution_entropy``, ``value``, ``pred_value``, ``policy_logits``.
        """
        self._eval_model.eval()
        active_eval_env_num = data.shape[0]
        with torch.no_grad():
            # data shape [B, S x C, W, H], e.g. {Tensor:(B, 12, 96, 96)}
            network_output = self._collect_model.initial_inference(data)
            latent_state_roots, reward_roots, pred_values, policy_logits = mz_network_output_unpack(network_output)

            if not self._eval_model.training:
                # if not in training, obtain the scalars of the value/reward
                pred_values = self.inverse_scalar_transform_handle(pred_values).detach().cpu().numpy()  # shape(B, 1)
                latent_state_roots = latent_state_roots.detach().cpu().numpy()
                policy_logits = policy_logits.detach().cpu().numpy().tolist()  # list shape(B, A)

            legal_actions = [[i for i, x in enumerate(action_mask[j]) if x == 1] for j in range(active_eval_env_num)]
            if self._cfg.mcts_ctree:
                # cpp mcts_tree
                roots = MCTSCtree.roots(active_eval_env_num, legal_actions)
            else:
                # python mcts_tree
                roots = MCTSPtree.roots(active_eval_env_num, legal_actions)
            roots.prepare_no_noise(reward_roots, policy_logits, to_play)
            self._mcts_eval.search(roots, self._eval_model, latent_state_roots, to_play)

            # list of list, shape: ``{list: batch_size} -> {list: action_space_size}``
            roots_visit_count_distributions = roots.get_distributions()
            roots_values = roots.get_values()  # shape: {list: batch_size}

            data_id = [i for i in range(active_eval_env_num)]
            output = {i: None for i in data_id}

            if ready_env_id is None:
                ready_env_id = np.arange(active_eval_env_num)

            for i, env_id in enumerate(ready_env_id):
                distributions, value = roots_visit_count_distributions[i], roots_values[i]
                # NOTE: Only legal actions possess visit counts, so the ``action_index_in_legal_action_set`` represents
                # the index within the legal action set, rather than the index in the entire action set.
                #  Setting deterministic=True implies choosing the action with the highest value (argmax) rather than
                # sampling during the evaluation phase.
                action_index_in_legal_action_set, visit_count_distribution_entropy = select_action(
                    distributions, temperature=1, deterministic=True
                )
                # NOTE: Convert the ``action_index_in_legal_action_set`` to the corresponding ``action`` in the
                # entire action set.
                action = np.where(action_mask[i] == 1.0)[0][action_index_in_legal_action_set]

                output[env_id] = {
                    'action': action,
                    'visit_count_distributions': distributions,
                    'visit_count_distribution_entropy': visit_count_distribution_entropy,
                    'searched_value': value,
                    'predicted_value': pred_values[i],
                    'predicted_policy_logits': policy_logits[i],
                }

        return output

    def _monitor_vars_learn(self) -> List[str]:
        """
        Overview:
            Register the variables to be monitored in learn mode. The registered variables will be logged in \
            tensorboard according to the return value ``_forward_learn``.
        """
        return [
            'collect_mcts_temperature',
            'cur_lr',
            'weighted_total_loss',
            'total_loss',
            'policy_loss',
            'reward_loss',
            'value_loss',
            'consistency_loss',
            'afterstate_policy_loss',
            'afterstate_value_loss',
            'commitment_loss',
            'value_priority',
            'target_reward',
            'target_value',
            'predicted_rewards',
            'predicted_values',
            'transformed_target_reward',
            'transformed_target_value',
            'total_grad_norm_before_clip',
        ]

    def _state_dict_learn(self) -> Dict[str, Any]:
        """
        Overview:
            Return the state_dict of learn mode, usually including model, target_model and optimizer.
        Returns:
            - state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn state, for saving and restoring.
        """
        return {
            'model': self._learn_model.state_dict(),
            'target_model': self._target_model.state_dict(),
            'optimizer': self._optimizer.state_dict(),
        }

    def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
        """
        Overview:
            Load the state_dict variable into policy learn mode.
        Arguments:
            - state_dict (:obj:`Dict[str, Any]`): The dict of policy learn state saved before.
        """
        self._learn_model.load_state_dict(state_dict['model'])
        self._target_model.load_state_dict(state_dict['target_model'])
        self._optimizer.load_state_dict(state_dict['optimizer'])

    def _process_transition(self, obs, policy_output, timestep):
        # be compatible with DI-engine Policy class
        pass

    def _get_train_sample(self, data):
        # be compatible with DI-engine Policy class
        pass