File size: 4,577 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import pytest
from easydict import EasyDict
from connect4_env import Connect4Env
@pytest.mark.envtest
class TestConnect4Env:
def test_self_play_mode(self) -> None:
cfg = EasyDict(
battle_mode='self_play_mode',
bot_action_type='rule', # {'rule', 'mcts'}
channel_last=False,
scale=True,
screen_scaling=9,
prob_random_action_in_bot=0.,
render_mode='state_realtime_mode',
agent_vs_human=False,
prob_random_agent=0,
prob_expert_agent=0,
)
env = Connect4Env(cfg)
env.reset()
print('init board state: ')
while True:
"""player 1"""
# action = env.human_to_action()
action = env.bot_action()
# action = env.random_action()
# test legal_actions
# legal_actions = env.legal_actions
# print('legal_actions: ', legal_actions)
# action = legal_actions[-1]
print('player 1: ' + env.action_to_string(action))
obs, reward, done, info = env.step(action)
# print(reward)
if done:
if reward > 0:
print('player 1 win')
else:
print('draw')
break
"""player 2"""
action = env.bot_action()
print('player 2 : ' + env.action_to_string(action))
obs, reward, done, info = env.step(action)
# print(reward)
env.render()
if done:
if reward > 0:
print('player 2 win')
else:
print('draw')
break
def test_play_with_bot_mode(self) -> None:
cfg = EasyDict(
battle_mode='play_with_bot_mode',
bot_action_type='rule', # {'rule', 'mcts'}
channel_last=False,
scale=True,
screen_scaling=9,
prob_random_action_in_bot=0.,
render_mode='state_realtime_mode',
agent_vs_human=False,
prob_random_agent=0,
prob_expert_agent=0,
)
env = Connect4Env(cfg)
env.reset()
print('init board state: ')
while True:
"""player 1"""
# action = env.human_to_action()
action = env.bot_action()
# action = env.random_action()
# test legal_actions
# legal_actions = env.legal_actions
# print('legal_actions: ', legal_actions)
# action = legal_actions[-1]
print('player 1: ' + env.action_to_string(action))
obs, reward, done, info = env.step(action)
# reward is in the perspective of player1
if done:
if reward != 0 and env.current_player == 2:
print('player 1 (human player) win')
elif reward != 0 and env.current_player == 1:
print('player 2 (computer player) win')
else:
print('draw')
break
def test_eval_mode(self) -> None:
cfg = EasyDict(
battle_mode='eval_mode',
bot_action_type='rule', # {'rule', 'mcts'}
channel_last=False,
scale=True,
screen_scaling=9,
prob_random_action_in_bot=0.,
render_mode='state_realtime_mode',
agent_vs_human=False,
prob_random_agent=0,
prob_expert_agent=0,
)
env = Connect4Env(cfg)
env.reset(replay_name_suffix=f'test_eval_mode')
print('init board state: ')
while True:
"""player 1"""
# action = env.human_to_action()
action = env.bot_action()
# action = env.random_action()
# test legal_actions
# legal_actions = env.legal_actions
# print('legal_actions: ', legal_actions)
# action = legal_actions[-1]
print('player 1: ' + env.action_to_string(action))
obs, reward, done, info = env.step(action)
# reward is in the perspective of player1
if done:
if reward != 0 and env.current_player == 2:
print('player 1 (human player) win')
elif reward != 0 and env.current_player == 1:
print('player 2 (computer player) win')
else:
print('draw')
break
|