File size: 32,644 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 |
import copy
import os
import sys
from datetime import datetime
from functools import lru_cache
from typing import List
import gymnasium as gym
import matplotlib.pyplot as plt
import numpy as np
from ding.envs.env.base_env import BaseEnv, BaseEnvTimestep
from ding.utils.registry_factory import ENV_REGISTRY
from ditk import logging
from easydict import EasyDict
from zoo.board_games.tictactoe.envs.get_done_winner_cython import get_done_winner_cython
from zoo.board_games.tictactoe.envs.legal_actions_cython import legal_actions_cython
from zoo.board_games.alphabeta_pruning_bot import AlphaBetaPruningBot
@lru_cache(maxsize=512)
def _legal_actions_func_lru(board_tuple):
# Convert tuple to NumPy array.
board_array = np.array(board_tuple, dtype=np.int32)
# Convert NumPy array to memory view.
board_view = board_array.view(dtype=np.int32).reshape(board_array.shape)
return legal_actions_cython(board_view)
@lru_cache(maxsize=512)
def _get_done_winner_func_lru(board_tuple):
# Convert tuple to NumPy array.
board_array = np.array(board_tuple, dtype=np.int32)
# Convert NumPy array to memory view.
board_view = board_array.view(dtype=np.int32).reshape(board_array.shape)
return get_done_winner_cython(board_view)
@ENV_REGISTRY.register('tictactoe')
class TicTacToeEnv(BaseEnv):
config = dict(
# env_name (str): The name of the environment.
env_name="TicTacToe",
# battle_mode (str): The mode of the battle. Choices are 'self_play_mode' or 'alpha_beta_pruning'.
battle_mode='self_play_mode',
# battle_mode_in_simulation_env (str): The mode of Monte Carlo Tree Search. This is only used in AlphaZero.
battle_mode_in_simulation_env='self_play_mode',
# bot_action_type (str): The type of action the bot should take. Choices are 'v0' or 'alpha_beta_pruning'.
bot_action_type='v0',
# save_replay_gif (bool): If True, the replay will be saved as a gif file.
save_replay_gif=False,
# replay_path_gif (str): The path to save the replay gif.
replay_path_gif='./replay_gif',
# agent_vs_human (bool): If True, the agent will play against a human.
agent_vs_human=False,
# prob_random_agent (int): The probability of the random agent.
prob_random_agent=0,
# prob_expert_agent (int): The probability of the expert agent.
prob_expert_agent=0,
# channel_last (bool): If True, the channel will be the last dimension.
channel_last=True,
# scale (bool): If True, the pixel values will be scaled.
scale=True,
# stop_value (int): The value to stop the game.
stop_value=1,
# alphazero_mcts_ctree (bool): If True, the Monte Carlo Tree Search from AlphaZero is used.
alphazero_mcts_ctree=False,
)
@classmethod
def default_config(cls: type) -> EasyDict:
cfg = EasyDict(copy.deepcopy(cls.config))
cfg.cfg_type = cls.__name__ + 'Dict'
return cfg
def __init__(self, cfg=None):
self.cfg = cfg
self.channel_last = cfg.channel_last
self.scale = cfg.scale
self.battle_mode = cfg.battle_mode
# The mode of interaction between the agent and the environment.
assert self.battle_mode in ['self_play_mode', 'play_with_bot_mode', 'eval_mode']
# The mode of MCTS is only used in AlphaZero.
self.battle_mode_in_simulation_env = 'self_play_mode'
self.board_size = 3
self.players = [1, 2]
self.total_num_actions = 9
self.prob_random_agent = cfg.prob_random_agent
self.prob_expert_agent = cfg.prob_expert_agent
assert (self.prob_random_agent >= 0 and self.prob_expert_agent == 0) or (
self.prob_random_agent == 0 and self.prob_expert_agent >= 0), \
f'self.prob_random_agent:{self.prob_random_agent}, self.prob_expert_agent:{self.prob_expert_agent}'
self._env = self
self.agent_vs_human = cfg.agent_vs_human
self.bot_action_type = cfg.bot_action_type
if 'alpha_beta_pruning' in self.bot_action_type:
self.alpha_beta_pruning_player = AlphaBetaPruningBot(self, cfg, 'alpha_beta_pruning_player')
self.alphazero_mcts_ctree = cfg.alphazero_mcts_ctree
self._replay_path_gif = cfg.replay_path_gif
self._save_replay_gif = cfg.save_replay_gif
self._save_replay_count = 0
@property
def legal_actions(self):
# Convert NumPy arrays to nested tuples to make them hashable.
return _legal_actions_func_lru(tuple(map(tuple, self.board)))
# only for evaluation speed
@property
def legal_actions_cython(self):
return legal_actions_cython(list(self.board))
# only for evaluation speed
@property
def legal_actions_cython_lru(self):
# Convert NumPy arrays to nested tuples to make them hashable.
return _legal_actions_func_lru(tuple(map(tuple, self.board)))
def get_done_winner(self):
"""
Overview:
Check if the game is over and who the winner is. Return 'done' and 'winner'.
Returns:
- outputs (:obj:`Tuple`): Tuple containing 'done' and 'winner',
- if player 1 win, 'done' = True, 'winner' = 1
- if player 2 win, 'done' = True, 'winner' = 2
- if draw, 'done' = True, 'winner' = -1
- if game is not over, 'done' = False, 'winner' = -1
"""
# Convert NumPy arrays to nested tuples to make them hashable.
return _get_done_winner_func_lru(tuple(map(tuple, self.board)))
def reset(self, start_player_index=0, init_state=None, katago_policy_init=False, katago_game_state=None):
"""
Overview:
This method resets the environment and optionally starts with a custom state specified by 'init_state'.
Arguments:
- start_player_index (:obj:`int`, optional): Specifies the starting player. The players are [1,2] and
their corresponding indices are [0,1]. Defaults to 0.
- init_state (:obj:`Any`, optional): The custom starting state. If provided, the game starts from this state.
Defaults to None.
- katago_policy_init (:obj:`bool`, optional): This parameter is used to maintain compatibility with the
handling of 'katago' related parts in 'alphazero_mcts_ctree' in Go. Defaults to False.
- katago_game_state (:obj:`Any`, optional): This parameter is similar to 'katago_policy_init' and is used to
maintain compatibility with 'katago' in 'alphazero_mcts_ctree'. Defaults to None.
"""
if self.alphazero_mcts_ctree and init_state is not None:
# Convert byte string to np.ndarray
init_state = np.frombuffer(init_state, dtype=np.int32)
if self.scale:
self._observation_space = gym.spaces.Box(
low=0, high=1, shape=(self.board_size, self.board_size, 3), dtype=np.float32
)
else:
self._observation_space = gym.spaces.Box(
low=0, high=2, shape=(self.board_size, self.board_size, 3), dtype=np.uint8
)
self._action_space = gym.spaces.Discrete(self.board_size ** 2)
self._reward_space = gym.spaces.Box(low=0, high=1, shape=(1,), dtype=np.float32)
self.start_player_index = start_player_index
self._current_player = self.players[self.start_player_index]
if init_state is not None:
self.board = np.array(copy.deepcopy(init_state), dtype="int32")
if self.alphazero_mcts_ctree:
self.board = self.board.reshape((self.board_size, self.board_size))
else:
self.board = np.zeros((self.board_size, self.board_size), dtype="int32")
action_mask = np.zeros(self.total_num_actions, 'int8')
action_mask[self.legal_actions] = 1
if self.battle_mode == 'play_with_bot_mode' or self.battle_mode == 'eval_mode':
# In ``play_with_bot_mode`` and ``eval_mode``, we need to set the "to_play" parameter in the "obs" dict to -1,
# because we don't take into account the alternation between players.
# The "to_play" parameter is used in the MCTS algorithm.
obs = {
'observation': self.current_state()[1],
'action_mask': action_mask,
'board': copy.deepcopy(self.board),
'current_player_index': self.start_player_index,
'to_play': -1
}
elif self.battle_mode == 'self_play_mode':
# In the "self_play_mode", we set to_play=self.current_player in the "obs" dict,
# which is used to differentiate the alternation of 2 players in the game when calculating Q in the MCTS algorithm.
obs = {
'observation': self.current_state()[1],
'action_mask': action_mask,
'board': copy.deepcopy(self.board),
'current_player_index': self.start_player_index,
'to_play': self.current_player
}
if self._save_replay_gif:
self._frames = []
return obs
def reset_v2(self, start_player_index=0, init_state=None):
"""
Overview:
only used in alpha-beta pruning bot.
"""
self.start_player_index = start_player_index
self._current_player = self.players[self.start_player_index]
if init_state is not None:
self.board = np.array(init_state, dtype="int32")
else:
self.board = np.zeros((self.board_size, self.board_size), dtype="int32")
def step(self, action):
if self.battle_mode == 'self_play_mode':
if self.prob_random_agent > 0:
if np.random.rand() < self.prob_random_agent:
action = self.random_action()
elif self.prob_expert_agent > 0:
if np.random.rand() < self.prob_expert_agent:
action = self.bot_action()
timestep = self._player_step(action)
if timestep.done:
# The eval_episode_return is calculated from Player 1's perspective。
timestep.info['eval_episode_return'] = -timestep.reward if timestep.obs[
'to_play'] == 1 else timestep.reward
return timestep
elif self.battle_mode == 'play_with_bot_mode':
# player 1 battle with expert player 2
# player 1's turn
timestep_player1 = self._player_step(action)
# self.env.render()
if timestep_player1.done:
# NOTE: in play_with_bot_mode, we must set to_play as -1, because we don't consider the alternation between players.
# And the to_play is used in MCTS.
timestep_player1.obs['to_play'] = -1
return timestep_player1
# player 2's turn
bot_action = self.bot_action()
# print('player 2 (computer player): ' + self.action_to_string(bot_action))
timestep_player2 = self._player_step(bot_action)
# the eval_episode_return is calculated from Player 1's perspective
timestep_player2.info['eval_episode_return'] = -timestep_player2.reward
timestep_player2 = timestep_player2._replace(reward=-timestep_player2.reward)
timestep = timestep_player2
# NOTE: in play_with_bot_mode, we must set to_play as -1, because we don't consider the alternation between players.
# And the to_play is used in MCTS.
timestep.obs['to_play'] = -1
return timestep
elif self.battle_mode == 'eval_mode':
# player 1 battle with expert player 2
# player 1's turn
if self._save_replay_gif:
self._frames.append(self._env.render(mode='rgb_array'))
timestep_player1 = self._player_step(action)
# self.env.render()
if timestep_player1.done:
# NOTE: in eval_mode, we must set to_play as -1, because we don't consider the alternation between players.
# And the to_play is used in MCTS.
timestep_player1.obs['to_play'] = -1
if self._save_replay_gif:
if not os.path.exists(self._replay_path_gif):
os.makedirs(self._replay_path_gif)
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
path = os.path.join(
self._replay_path_gif,
'tictactoe_episode_{}_{}.gif'.format(self._save_replay_count, timestamp)
)
self.display_frames_as_gif(self._frames, path)
print(f'save episode {self._save_replay_count} in {self._replay_path_gif}!')
self._save_replay_count += 1
return timestep_player1
# player 2's turn
if self.agent_vs_human:
bot_action = self.human_to_action()
else:
bot_action = self.bot_action()
# print('player 2 (computer player): ' + self.action_to_string(bot_action))
if self._save_replay_gif:
self._frames.append(self._env.render(mode='rgb_array'))
timestep_player2 = self._player_step(bot_action)
if self._save_replay_gif:
self._frames.append(self._env.render(mode='rgb_array'))
# the eval_episode_return is calculated from Player 1's perspective
timestep_player2.info['eval_episode_return'] = -timestep_player2.reward
timestep_player2 = timestep_player2._replace(reward=-timestep_player2.reward)
timestep = timestep_player2
# NOTE: in eval_mode, we must set to_play as -1, because we don't consider the alternation between players.
# And the to_play is used in MCTS.
timestep.obs['to_play'] = -1
if timestep_player2.done:
if self._save_replay_gif:
if not os.path.exists(self._replay_path_gif):
os.makedirs(self._replay_path_gif)
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
path = os.path.join(
self._replay_path_gif,
'tictactoe_episode_{}_{}.gif'.format(self._save_replay_count, timestamp)
)
self.display_frames_as_gif(self._frames, path)
print(f'save episode {self._save_replay_count} in {self._replay_path_gif}!')
self._save_replay_count += 1
return timestep
def _player_step(self, action):
if action in self.legal_actions:
row, col = self.action_to_coord(action)
self.board[row, col] = self.current_player
else:
logging.warning(
f"You input illegal action: {action}, the legal_actions are {self.legal_actions}. "
f"Now we randomly choice a action from self.legal_actions."
)
action = np.random.choice(self.legal_actions)
row, col = self.action_to_coord(action)
self.board[row, col] = self.current_player
# Check whether the game is ended or not and give the winner
done, winner = self.get_done_winner()
reward = np.array(float(winner == self.current_player)).astype(np.float32)
info = {'next player to play': self.next_player}
"""
NOTE: here exchange the player
"""
self.current_player = self.next_player
if done:
info['eval_episode_return'] = reward
# print('tictactoe one episode done: ', info)
action_mask = np.zeros(self.total_num_actions, 'int8')
action_mask[self.legal_actions] = 1
obs = {
'observation': self.current_state()[1],
'action_mask': action_mask,
'board': copy.deepcopy(self.board),
'current_player_index': self.players.index(self.current_player),
'to_play': self.current_player
}
return BaseEnvTimestep(obs, reward, done, info)
def current_state(self):
"""
Overview:
obtain the state from the view of current player.
self.board is nd-array, 0 indicates that no stones is placed here,
1 indicates that player 1's stone is placed here, 2 indicates player 2's stone is placed here
Returns:
- current_state (:obj:`array`):
the 0 dim means which positions is occupied by self.current_player,
the 1 dim indicates which positions are occupied by self.next_player,
the 2 dim indicates which player is the to_play player, 1 means player 1, 2 means player 2
"""
board_curr_player = np.where(self.board == self.current_player, 1, 0)
board_opponent_player = np.where(self.board == self.next_player, 1, 0)
board_to_play = np.full((self.board_size, self.board_size), self.current_player)
raw_obs = np.array([board_curr_player, board_opponent_player, board_to_play], dtype=np.float32)
if self.scale:
scale_obs = copy.deepcopy(raw_obs / 2)
else:
scale_obs = copy.deepcopy(raw_obs)
if self.channel_last:
# move channel dim to last axis
# (C, W, H) -> (W, H, C)
return np.transpose(raw_obs, [1, 2, 0]), np.transpose(scale_obs, [1, 2, 0])
else:
# (C, W, H)
return raw_obs, scale_obs
def get_done_reward(self):
"""
Overview:
Check if the game is over and what is the reward in the perspective of player 1.
Return 'done' and 'reward'.
Returns:
- outputs (:obj:`Tuple`): Tuple containing 'done' and 'reward',
- if player 1 win, 'done' = True, 'reward' = 1
- if player 2 win, 'done' = True, 'reward' = -1
- if draw, 'done' = True, 'reward' = 0
- if game is not over, 'done' = False,'reward' = None
"""
done, winner = self.get_done_winner()
if winner == 1:
reward = 1
elif winner == 2:
reward = -1
elif winner == -1 and done:
reward = 0
elif winner == -1 and not done:
# episode is not done
reward = None
return done, reward
def random_action(self):
action_list = self.legal_actions
return np.random.choice(action_list)
def bot_action(self):
if self.bot_action_type == 'v0':
return self.rule_bot_v0()
elif self.bot_action_type == 'alpha_beta_pruning':
return self.bot_action_alpha_beta_pruning()
else:
raise NotImplementedError
def bot_action_alpha_beta_pruning(self):
action = self.alpha_beta_pruning_player.get_best_action(self.board, player_index=self.current_player_index)
return action
def rule_bot_v0(self):
"""
Overview:
Hard coded expert agent for tictactoe env.
First random sample a action from legal_actions, then take the action that will lead a connect3 of current player's pieces.
Returns:
- action (:obj:`int`): the expert action to take in the current game state.
"""
# To easily calculate expert action, we convert the chessboard notation:
# from player 1: 1, player 2: 2
# to player 1: -1, player 2: 1
# TODO: more elegant implementation
board = copy.deepcopy(self.board)
for i in range(board.shape[0]):
for j in range(board.shape[1]):
if board[i][j] == 1:
board[i][j] = -1
elif board[i][j] == 2:
board[i][j] = 1
# first random sample a action from legal_actions
action = np.random.choice(self.legal_actions)
# Horizontal and vertical checks
for i in range(3):
if abs(sum(board[i, :])) == 2:
# if i-th horizontal line has two same pieces and one empty position
# find the index in the i-th horizontal line
ind = np.where(board[i, :] == 0)[0][0]
# convert ind to action
action = np.ravel_multi_index((np.array([i]), np.array([ind])), (3, 3))[0]
if self.current_player_to_compute_bot_action * sum(board[i, :]) > 0:
# only take the action that will lead a connect3 of current player's pieces
return action
if abs(sum(board[:, i])) == 2:
# if i-th vertical line has two same pieces and one empty position
# find the index in the i-th vertical line
ind = np.where(board[:, i] == 0)[0][0]
# convert ind to action
action = np.ravel_multi_index((np.array([ind]), np.array([i])), (3, 3))[0]
if self.current_player_to_compute_bot_action * sum(board[:, i]) > 0:
# only take the action that will lead a connect3 of current player's pieces
return action
# Diagonal checks
diag = board.diagonal()
anti_diag = np.fliplr(board).diagonal()
if abs(sum(diag)) == 2:
# if diagonal has two same pieces and one empty position
# find the index in the diag vector
ind = np.where(diag == 0)[0][0]
# convert ind to action
action = np.ravel_multi_index((np.array([ind]), np.array([ind])), (3, 3))[0]
if self.current_player_to_compute_bot_action * sum(diag) > 0:
# only take the action that will lead a connect3 of current player's pieces
return action
if abs(sum(anti_diag)) == 2:
# if anti-diagonal has two same pieces and one empty position
# find the index in the anti_diag vector
ind = np.where(anti_diag == 0)[0][0]
# convert ind to action
action = np.ravel_multi_index((np.array([ind]), np.array([2 - ind])), (3, 3))[0]
if self.current_player_to_compute_bot_action * sum(anti_diag) > 0:
# only take the action that will lead a connect3 of current player's pieces
return action
return action
@property
def current_player(self):
return self._current_player
@property
def current_player_index(self):
"""
Overview:
current_player_index = 0, current_player = 1
current_player_index = 1, current_player = 2
"""
return 0 if self._current_player == 1 else 1
@property
def next_player(self):
return self.players[0] if self.current_player == self.players[1] else self.players[1]
@property
def current_player_to_compute_bot_action(self):
"""
Overview: to compute expert action easily.
"""
return -1 if self.current_player == 1 else 1
def human_to_action(self):
"""
Overview:
For multiplayer games, ask the user for a legal action
and return the corresponding action number.
Returns:
An integer from the action space.
"""
print(self.board)
while True:
try:
row = int(
input(
f"Enter the row (1, 2, or 3, from up to bottom) to play for the player {self.current_player}: "
)
)
col = int(
input(
f"Enter the column (1, 2 or 3, from left to right) to play for the player {self.current_player}: "
)
)
choice = self.coord_to_action(row - 1, col - 1)
if (choice in self.legal_actions and 1 <= row and 1 <= col and row <= self.board_size
and col <= self.board_size):
break
else:
print("Wrong input, try again")
except KeyboardInterrupt:
print("exit")
sys.exit(0)
except Exception as e:
print("Wrong input, try again")
return choice
def coord_to_action(self, i, j):
"""
Overview:
convert coordinate i, j to action index a in [0, board_size**2)
"""
return i * self.board_size + j
def action_to_coord(self, a):
"""
Overview:
convert action index a in [0, board_size**2) to coordinate (i, j)
"""
return a // self.board_size, a % self.board_size
def action_to_string(self, action_number):
"""
Overview:
Convert an action number to a string representing the action.
Arguments:
- action_number: an integer from the action space.
Returns:
- String representing the action.
"""
row = action_number // self.board_size + 1
col = action_number % self.board_size + 1
return f"Play row {row}, column {col}"
def simulate_action(self, action):
"""
Overview:
execute action and get next_simulator_env. used in AlphaZero.
Arguments:
- action: an integer from the action space.
Returns:
- next_simulator_env: next simulator env after execute action.
"""
if action not in self.legal_actions:
raise ValueError("action {0} on board {1} is not legal".format(action, self.board))
new_board = copy.deepcopy(self.board)
row, col = self.action_to_coord(action)
new_board[row, col] = self.current_player
if self.start_player_index == 0:
start_player_index = 1 # self.players = [1, 2], start_player = 2, start_player_index = 1
else:
start_player_index = 0 # self.players = [1, 2], start_player = 1, start_player_index = 0
next_simulator_env = copy.deepcopy(self)
next_simulator_env.reset(start_player_index, init_state=new_board)
return next_simulator_env
def simulate_action_v2(self, board, start_player_index, action):
"""
Overview:
execute action from board and get new_board, new_legal_actions. used in alphabeta_pruning_bot.
Arguments:
- board (:obj:`np.array`): current board
- start_player_index (:obj:`int`): start player index
- action (:obj:`int`): action
Returns:
- new_board (:obj:`np.array`): new board
- new_legal_actions (:obj:`list`): new legal actions
"""
self.reset(start_player_index, init_state=board)
if action not in self.legal_actions:
raise ValueError("action {0} on board {1} is not legal".format(action, self.board))
row, col = self.action_to_coord(action)
self.board[row, col] = self.current_player
new_legal_actions = copy.deepcopy(self.legal_actions)
new_board = copy.deepcopy(self.board)
return new_board, new_legal_actions
def render(self, mode="human"):
"""
Render the game state, either as a string (mode='human') or as an RGB image (mode='rgb_array').
Arguments:
- mode (:obj:`str`): The mode to render with. Valid modes are:
- 'human': render to the current display or terminal and
- 'rgb_array': Return an numpy.ndarray with shape (x, y, 3),
representing RGB values for an image of the board
Returns:
if mode is:
- 'human': returns None
- 'rgb_array': return a numpy array representing the rendered image.
Raises:
ValueError: If the provided mode is unknown.
"""
if mode == 'human':
print(self.board)
elif mode == 'rgb_array':
dpi = 80
fig, ax = plt.subplots(figsize=(6, 6), dpi=dpi)
# """Piece is in the cross point of row and col"""
# # Draw a black background, white grid
# ax.imshow(np.zeros((self.board_size, self.board_size, 3)), origin='lower')
# ax.grid(color='white', linewidth=2)
#
# # Draw the 'X' and 'O' symbols for each player
# for i in range(self.board_size):
# for j in range(self.board_size):
# if self.board[i, j] == 1: # Player 1
# ax.text(j, i, 'X', ha='center', va='center', color='white', fontsize=24)
# elif self.board[i, j] == 2: # Player 2
# ax.text(j, i, 'O', ha='center', va='center', color='white', fontsize=24)
# # Setup the axes
# ax.set_xticks(np.arange(self.board_size))
# ax.set_yticks(np.arange(self.board_size))
"""Piece is in the center point of grid"""
# Draw a peachpuff background, black grid
ax.imshow(np.ones((self.board_size, self.board_size, 3)) * np.array([255, 218, 185]) / 255, origin='lower')
ax.grid(color='black', linewidth=2)
# Draw the 'X' and 'O' symbols for each player
for i in range(self.board_size):
for j in range(self.board_size):
if self.board[i, j] == 1: # Player 1
ax.text(j, i, 'X', ha='center', va='center', color='black', fontsize=24)
elif self.board[i, j] == 2: # Player 2
ax.text(j, i, 'O', ha='center', va='center', color='white', fontsize=24)
# Setup the axes
ax.set_xticks(np.arange(0.5, self.board_size, 1))
ax.set_yticks(np.arange(0.5, self.board_size, 1))
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.xaxis.set_ticks_position('none')
ax.yaxis.set_ticks_position('none')
# Set the title of the game
plt.title('TicTacToe: ' + ('Black Turn' if self.current_player == 1 else 'White Turn'))
fig.canvas.draw()
# Get the width and height of the figure
width, height = fig.get_size_inches() * fig.get_dpi()
width = int(width)
height = int(height)
# Use the width and height values to reshape the numpy array
img = np.frombuffer(fig.canvas.tostring_rgb(), dtype='uint8')
img = img.reshape(height, width, 3)
plt.close(fig)
return img
else:
raise ValueError(f"Unknown mode '{mode}', it should be either 'human' or 'rgb_array'.")
@staticmethod
def display_frames_as_gif(frames: list, path: str) -> None:
import imageio
imageio.mimsave(path, frames, fps=20)
def clone(self):
return copy.deepcopy(self)
def seed(self, seed: int, dynamic_seed: bool = True) -> None:
self._seed = seed
self._dynamic_seed = dynamic_seed
np.random.seed(self._seed)
@property
def observation_space(self) -> gym.spaces.Space:
return self._observation_space
@property
def action_space(self) -> gym.spaces.Space:
return self._action_space
@property
def reward_space(self) -> gym.spaces.Space:
return self._reward_space
@current_player.setter
def current_player(self, value):
self._current_player = value
@staticmethod
def create_collector_env_cfg(cfg: dict) -> List[dict]:
collector_env_num = cfg.pop('collector_env_num')
cfg = copy.deepcopy(cfg)
return [cfg for _ in range(collector_env_num)]
@staticmethod
def create_evaluator_env_cfg(cfg: dict) -> List[dict]:
evaluator_env_num = cfg.pop('evaluator_env_num')
cfg = copy.deepcopy(cfg)
# In eval phase, we use ``eval_mode`` to make agent play with the built-in bot to
# evaluate the performance of the current agent.
cfg.battle_mode = 'eval_mode'
return [cfg for _ in range(evaluator_env_num)]
def __repr__(self) -> str:
return "LightZero TicTacToe Env"
def close(self) -> None:
pass
|